Optimal System, Symmetry Reductions and Exact Solutions of the (2 + 1)-Dimensional Seventh-Order Caudrey–Dodd–Gibbon–KP Equation
Abstract
:1. Introduction
2. Lie Point Symmetries
3. One-Dimensional Optimal System
3.1. Invariants of Lie Algebra
3.2. Adjoint Matrix
3.3. Classification of Symmetry Algebra
4. Similarity Reductions
4.1. Subalgebra
4.2. Subalgebra
4.3. Subalgebra
4.4. Subalgebra
4.5. Subalgebra
4.6. Subalgebra
4.7. Subalgebra
4.8. Subalgebra
4.9. Subalgebra
4.10. Subalgebra
5. Exact Solution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin, German, 1991. [Google Scholar]
- Gu, C.H.; Hu, H.S.; Zhou, Z.X. Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry; Springer Science & Business Media: New York, NY, USA, 2004. [Google Scholar]
- Olver, P.J. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Fan, E.G. Multiple travelling wave solutions of nonlinear evolution equations using a unified algebraic method. J. Phys. A Math. Gen. 2002, 35, 6853. [Google Scholar] [CrossRef]
- Lou, S.Y. Symmetries of the Kadomtsev-Petviashvili equation. J. Phys. A Math. Gen. 1993, 26, 4387. [Google Scholar] [CrossRef]
- Hu, X.R.; Chen, Y.; Huang, F. Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation. Chin. Phys. B 2010, 19, 080203. [Google Scholar]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
- Sahoo, S.; Garai, G.; Saha Ray, S. Lie symmetry analysis for similarity reduction and exact solutions of modified KdV–Zakharov–Kuznetsov equation. Nonlinear Dyn. 2017, 87, 1995–2000. [Google Scholar] [CrossRef]
- Bansal, A.; Biswas, A.; Zhou, Q.; Babatin, M.M. Lie symmetry analysis for cubic–quartic nonlinear Schrödinger’s equation. Optik 2018, 169, 12–15. [Google Scholar] [CrossRef]
- Kumar, M.; Tiwari, A.K. Soliton solutions of BLMP equation by Lie symmetry approach. Comput. Math. Appl. 2018, 75, 1434–1442. [Google Scholar] [CrossRef]
- Biswas, A.; Vega-Guzman, J.; Bansal, A.; Kara, A.H.; Alzahrani, A.K.; Zhou, Q.; Belic, M.R. Optical dromions, domain walls and conservation laws with Kundu–Mukherjee–Naskar equation via traveling waves and Lie symmetry. Results Phys. 2020, 16, 102850. [Google Scholar] [CrossRef]
- Liu, F.Y.; Gao, Y.T.; Yu, X.; Li, L.Q.; Ding, C.C.; Wang, D. Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation in fluid mechanics and plasma physics. Eur. Phys. J. Plus 2021, 136, 656. [Google Scholar] [CrossRef]
- Kumar, S.; Dhiman, S.K. Lie symmetry analysis, optimal system, exact solutions and dynamics of solitons of a (3+1)-dimensional generalised BKP–Boussinesq equation. Pramana-J. Phys. 2022, 96, 31. [Google Scholar] [CrossRef]
- Ali, M.R.; Ma, W.X.; Sadat, R. Lie symmetry analysis and invariant solutions for (2+ 1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation. J. Ocean Eng. Sci. 2022, 7, 248–254. [Google Scholar] [CrossRef]
- Paliathanasis, A. Symmetry analysis for the 2D aw-rascle traffic-flow model of multi-lane motorways in the Euler and Lagrange variables. Symmetry 2023, 15, 1525. [Google Scholar] [CrossRef]
- Rafiq, M.H.; Jhangeer, A.; Raza, N. Symmetry and complexity: A Lie symmetry approach to bifurcation, chaos, stability and travelling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili equation. Phys. Scr. 2023, 98, 115239. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Kadomtsev, B.B.; Petviashvili, V.I. On the stability of solitary waves in weakly dispersing media. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia, 1970; Volume 192, pp. 753–756. [Google Scholar]
- Abbasbandy, S.; Zakaria, F.S. Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 2008, 51, 83–87. [Google Scholar] [CrossRef]
- Salas, A.H.; Gómez S, C.A. Application of the Cole-Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math. Probl. Eng. 2010, 2010, 194329. [Google Scholar] [CrossRef]
- Wazwaz, A.M. One and two soliton solutions for seventh-order Caudrey-Dodd-Gibbon and Caudrey-Dodd-Gibbon-KP equations. Open Phys. 2012, 10, 1013–1017. [Google Scholar] [CrossRef]
- Hu, X.R.; Li, Y.Q.; Chen, Y. A direct algorithm of one-dimensional optimal system for the group invariant solutions. J. Math. Phys. 2015, 56, 053504. [Google Scholar] [CrossRef]
- Miao, Q.; Hu, X.R.; Chen, Y. ONEOptimal: A Maple package for generating one-dimensional optimal system of finite dimensional Lie algebra. Commun. Theor. Phys. 2014, 61, 160. [Google Scholar] [CrossRef]
0 | 0 | 0 | 0 | ||
0 | 0 | 0 | |||
0 | 0 | 0 | |||
0 | 0 | ||||
0 |
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Wang, Y.; Yuen, M. Optimal System, Symmetry Reductions and Exact Solutions of the (2 + 1)-Dimensional Seventh-Order Caudrey–Dodd–Gibbon–KP Equation. Symmetry 2024, 16, 403. https://doi.org/10.3390/sym16040403
Qin M, Wang Y, Yuen M. Optimal System, Symmetry Reductions and Exact Solutions of the (2 + 1)-Dimensional Seventh-Order Caudrey–Dodd–Gibbon–KP Equation. Symmetry. 2024; 16(4):403. https://doi.org/10.3390/sym16040403
Chicago/Turabian StyleQin, Mengyao, Yunhu Wang, and Manwai Yuen. 2024. "Optimal System, Symmetry Reductions and Exact Solutions of the (2 + 1)-Dimensional Seventh-Order Caudrey–Dodd–Gibbon–KP Equation" Symmetry 16, no. 4: 403. https://doi.org/10.3390/sym16040403
APA StyleQin, M., Wang, Y., & Yuen, M. (2024). Optimal System, Symmetry Reductions and Exact Solutions of the (2 + 1)-Dimensional Seventh-Order Caudrey–Dodd–Gibbon–KP Equation. Symmetry, 16(4), 403. https://doi.org/10.3390/sym16040403