Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Li, L.; Yu, J. Applications of zeolites in sustainable chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. [Google Scholar] [CrossRef]
- Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 15 December 2023).
- Frising, T.; Leflaive, P. Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous Mesoporous Mater. 2008, 114, 27–63. [Google Scholar] [CrossRef]
- Chao, C.C. Process for Separating Nitrogen from Mixtures Thereof with Less Polar Substances. U.S. Patent 4,859,217, 22 August 1989. [Google Scholar]
- Vogt, E.T.C.; Weckhuysen, B.M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 2015, 44, 7342–7370. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.E.W.; Strohmaier, K.G. Crystalline Zeolite (ECR-1) and Process for Preparing It. U.S. Patent 4,657,748, 14 April 1987. [Google Scholar]
- Database of Zeolite Structures—Building Scheme for EON. Available online: http://www.iza-structure.org/databases/ModelBuilding/EON.pdf (accessed on 15 December 2023).
- Hsia Chen, C.S.; Schlenker, J.L.; Wentzek, S.E. Synthesis and characterization of synthetic zeolite ECR-1. Zeolites 1996, 17, 393–400. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Ferrari, S.; Galli, E.; Di Renzo, F.; van Beek, W. Rietveld structure refinement of zeolite ECR-1. Chem. Mater. 2006, 18, 76–84. [Google Scholar] [CrossRef]
- Song, J.; Dai, L.; Ji, Y.; Xiao, F.-S. Organic template free synthesis of aluminosilicate zeolite ECR-1. Chem. Mater. 2006, 18, 2775–2777. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Z.; Zhang, H.; Qin, J.; Yang, Y.; Cheng, P.; Zhao, Z. Radicalized seeds-assist route for the rapid synthesis of zeolite ECR-1 in the absence of organic templates. Microporous Mesoporous Mater. 2022, 341, 112071. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chen, H.; He, P.Y.; Juan Li, C. Developing silica fume-based self-supported ECR-1 zeolite membrane for seawater desalination. Mater. Lett. 2019, 236, 538–541. [Google Scholar] [CrossRef]
- Leonowicz, M.E.; Vaughan, D.E.W. Proposed synthetic zeolite ECR-1 structure gives a new zeolite framework topology. Nature 1987, 329, 819–821. [Google Scholar] [CrossRef]
- Chatelard, C.; Dodin, M.; Martinez-Franco, R.; Tuel, A. Di- and trioxacyclohexane as structure directing molecules in the synthesis of zeolites omega and ECR-1. Microporous Mesoporous Mater. 2021, 318, 111015. [Google Scholar] [CrossRef]
- Weirich, T.E.; Lábár, J.L.; Zou, X. Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials; Springer: Dordrecht, The Netherlands, 2006; p. 536. [Google Scholar]
- Vincent, R.; Midgley, P.A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 1994, 53, 271–282. [Google Scholar] [CrossRef]
- Midgley, P.A.; Eggeman, A.S. Precession electron diffraction—A topical review. IUCrJ 2015, 2, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Mugnaioli, E.; Gorelik, T.; Kolb, U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 2009, 109, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Sun, J.; Su, J.; Hovmoller, S.; Zou, X. Three-dimensional rotation electron diffraction: Software RED for automated data collection and data processing. J. Appl. Cryst. 2013, 46, 1863–1873. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zou, X.; Smeets, S. Automated serial rotation electron diffraction combined with cluster analysis: An efficient multi-crystal workflow for structure determination. IUCrJ 2019, 6, 854–867. [Google Scholar] [CrossRef] [PubMed]
- Palatinus, L.; Petříček, V.; Corrêa, C.A. Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 235–244. [Google Scholar] [CrossRef]
- Gemmi, M.; Mugnaioli, E.; Gorelik, T.E.; Kolb, U.; Palatinus, L.; Boullay, P.; Hovmöller, S.; Abrahams, J.P. 3D electron diffraction: The nanocrystallography revolution. ACS Cent. Sci. 2019, 5, 1315–1329. [Google Scholar] [CrossRef] [PubMed]
- Gruene, T.; Mugnaioli, E. 3D electron diffraction for chemical analysis: Instrumentation developments and innovative applications. Chem. Rev. 2021, 121, 11823–11834. [Google Scholar] [CrossRef]
- Samperisi, L.; Zou, X.; Huang, Z. Three-dimensional electron diffraction: A powerful structural characterization technique for crystal engineering. CrystEngComm 2022, 24, 2719–2728. [Google Scholar] [CrossRef]
- Klar, P.B.; Krysiak, Y.; Xu, H.; Steciuk, G.; Cho, J.; Zou, X.; Palatinus, L. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat. Chem. 2023, 15, 848–855. [Google Scholar] [CrossRef]
- Cho, J.; Willhammar, T.; Zou, X. The synergistic development of electron crystallography and zeolite discovery. Microporous Mesoporous Mater. 2023, 358, 112400. [Google Scholar] [CrossRef]
- Lorgouilloux, Y.; Dodin, M.; Mugnaioli, E.; Marichal, C.; Bats, N.; Caullet, P.; Kolb, U.; Paillaud, J.-L. IM-17: A new zeolitic material, synthesis and structure elucidation from electron diffraction ADT data and Rietveld analysis. RSC Adv. 2014, 4, 19440–19449. [Google Scholar] [CrossRef]
- Cichocka, M.O.; Lorgouilloux, Y.; Smeets, S.; Su, J.; Wan, W.; Caullet, P.; Bats, N.; McCusker, L.B.; Paillaud, J.-L.; Zou, X. Multidimensional disorder in zeolite IM-18 revealed by combining transmission electron microscopy and X-ray powder diffraction analyses. Cryst. Growth Des. 2018, 18, 2441–2451. [Google Scholar] [CrossRef]
- Steciuk, G.; Schäf, O.; Tortet, L.; Pizzala, H.; Hornfeck, W.; Palatinus, L.; Paillaud, J.-L. A new lithium-rich zeolitic 10-MR zincolithosilicate MZS-1 hydrothermally synthesized under high pressure and characterized by 3D electron diffraction. Eur. J. Inorg. Chem. 2021, 2021, 628–638. [Google Scholar] [CrossRef]
- Krysiak, Y.; Barton, B.; Marler, B.; Neder, R.B.; Kolb, U. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography. Acta Crystallogr. Sect. A Found. Adv. 2018, 74, 93–101. [Google Scholar] [CrossRef]
- Krysiak, Y.; Marler, B.; Barton, B.; Plana-Ruiz, S.; Gies, H.; Neder, R.B.; Kolb, U. New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy. IUCrJ 2020, 7, 522–534. [Google Scholar] [CrossRef]
- Fitch, A.; Dejoie, C.; Covacci, E.; Confalonieri, G.; Grendal, O.; Claustre, L.; Guillou, P.; Kieffer, J.; de Nolf, W.; Petitdemange, S.; et al. ID22—The high-resolution powder-diffraction beamline at ESRF. J. Synchrotron Radiat. 2023, 30, 1003–1012. [Google Scholar] [CrossRef]
- Le Bail, A.; Duroy, H.; Fourquet, J.L. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater. Res. Bull. 1988, 23, 447–452. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Cryst. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Palatinus, L.; Brázda, P.; Jelínek, M.; Hrdá, J.; Steciuk, G.; Klementová, M. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Jana2020—A new version of the crystallographic computing system Jana. Z. Kristallogr. Cryst. Mater. 2023, 238, 271–282. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Brandenburg, K.; Putz, H. Diamond—Crystal and Molecular Structure Visualization; Version 3.2k4; Crystal Impact: Bonn, Germany, 2018; Available online: https://www.crystalimpact.de/diamond (accessed on 3 December 2023).
- Ammouli, T.; Paillaud, J.-L.; Nouali, H.; Stephan, R.; Hanf, M.-C.; Sonnet, P.; Deroche, I. Insights into water adsorption in potassium-exchanged X-type faujasite zeolite: Molecular simulation and experiment. J. Phys. Chem. C 2021, 125, 19405–19416. [Google Scholar] [CrossRef]
- Martin, M.G. MCCCS Towhee: A tool for Monte Carlo molecular simulation. Mol. Simul. 2013, 39, 1212–1222. [Google Scholar] [CrossRef]
- Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954, 39, 92–96. Available online: https://pubs.geoscienceworld.org/msa/ammin/article-abstract/39/1-2/92/539331 (accessed on 21 October 2023).
- Cygan, R.T.; Liang, J.-J.; Kalinichev, A.G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J. Phys. Chem. B 2004, 108, 1255–1266. [Google Scholar] [CrossRef]
- Mahoney, M.W.; Jorgensen, W.L. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 2000, 112, 8910–8922. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Newsam, J.M.; Deem, M.W.; Treacy, M.M.J.; Newsam, J.M.; Deem, M.W. A General recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. Math. Phys. Sci. 1991, 433, 499–520. [Google Scholar] [CrossRef]
- Kolb, U.; Gorelik, T.E.; Mugnaioli, E.; Stewart, A. Structural characterization of organics using manual and automated electron diffraction. Polym. Rev. 2010, 50, 385–409. [Google Scholar] [CrossRef]
- Palatinus, L.; Jacob, D.; Cuvillier, P.; Klementova, M.; Sinkler, W.; Marks, L.D. Structure refinement from precession electron diffraction data. Acta Crystallogr. Sect. A Found. Cryst. 2013, 69, 171–188. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Wang, Y.; Carraro, F.; Liang, W.; Roostaeinia, M.; Siahrostami, S.; Proserpio, D.M.; Doonan, C.; Falcaro, P.; Zheng, H.; et al. High-throughput electron diffraction reveals a hidden novel metal–organic framework for electrocatalysis. Angew. Chem. Int. Ed. 2021, 60, 11391–11397. [Google Scholar] [CrossRef] [PubMed]
- Girelli Consolaro, V.; Rouchon, V.; Ersen, O. Electron beam damages in zeolites: A review. Microporous Mesoporous Mater. 2024, 364, 112835. [Google Scholar] [CrossRef]
Parameters for the Non-Bonded Interactions | |||
---|---|---|---|
Atom | ε/kB (K) | σ (Å) | q (e) |
H(H2O) | 0 | 0 | 0.241 |
O(H2O) | 80.52 | 3.12 | 0 |
L(H2O) (lone pair interaction site) | 0 | 0 | −0.241 |
O (zeolite) | 78.20 | 3.17 | −1.094 |
Si (zeolite) | 0.93 × 10−3 | 3.30 | 2.10 |
Al (zeolite) | 0.93 × 10−3 | 3.30 | 1.58 |
Na+ | 65.47 | 2.35 | 1.00 |
Kinematical Refinement | Dynamical Refinement | |
---|---|---|
Refined empirical formula | Na8.84Si60O120 | Na8.16Si60O124.52 |
Formula weight | 3802.0 | 3869.5 |
Temperature/K | 103.0 | |
Crystal system | orthorhombic | |
Space group | Pmmn (#59) | |
a/Å | 7.487 (3) | |
b/Å | 17.846 (12) | |
c/Å | 25.655 (8) | |
α = β = γ/° | 90 | |
V/Å3 | 3427.60 (15) | |
Z | 1 | |
ρcalc g/cm3 | 1.842 | 1.875 |
F(000) | 629.896 | 635.553 |
Crystal size/nm | ~400 × ~200 | |
Data collection | TEM Philips CM200, | |
Collection mode | Precession-assisted 3D ED | |
Source (wavelength) | electrons (λ = 0.02508 Å) | |
2θ range for data collection/° | 0.05 to 1.01 | |
Index ranges | −8 ≤ h ≤ 9, −23 ≤ k ≤ 23, −31 ≤ l ≤ 26 | |
Reflections collected | 4367 | 17,481 |
Independent reflections | 438 (Rint = 0.1837) | 1040 (no averaging done) |
Data coverage for sinθ/λ = 0.6 Å−1 | 92.4% | 93% |
Data/restraints/constraints/parameters | 4367/0/137 | 17481/17/32/275 |
Avg./Min/Max crystal thickness | - | 526/25/2386 Å |
gmax, RSg(max) | - | 1.3, 0.5 |
Goodness-of-fit on F2 | obs: 2.34, all: 1.281 | obs: 2.62, all: 0.7976 |
Final R values [I ≥ 3σ(I)] | Robs = 0.169, wR2obs = 0.358 | Robs = 0.097, wR2obs = 0.1798 |
Final R values [all data] | Rall = 0.604, wR2all = 0.641 | Rall = 0.517, wR2all = 0.2245 |
Gualtieri et al. [10] | This Work | ||||||
---|---|---|---|---|---|---|---|
C1 | O13 | 2× | 2.25(4) | Na1 | Ow3 | 2× | 2.48(8) |
H2O10 | 1× | 2.36(9) | O22 | 1× | 2.72(4) | ||
O8 | 2× | 2.36(5) | O10 | 2× | 2.98(2) | ||
O5 | 2× | 2.95(7) | Na2 | Ow2 | 1× | 2.29(2) | |
O11 | 1× | 3.03(7) | Ow1 | 1× | 2.32(3) | ||
C2 | O11 | 1× | 2.28(4) | O2 | 2× | 2.64(1) | |
H2O1 | 2× | 2.65(2) | O13 | 1× | 2.66(2) | ||
O6 | 2× | 2.76(2) | O9 | 1× | 2.79(2) | ||
H2O6 | 1× | 3.06(5) | O16 | 2× | 2.85(2) | ||
C3 | H2O4 | 1× | 2.35(2) | Na3 | O14 | 2× | 2.41(6) |
H2O5 | 1× | 2.49(4) | O11 | 2× | 2.59(5) | ||
O20 | 1× | 2.58(3) | Na4 | O6 | 1× | 2.46(6) | |
O14 | 1× | 2.62(3) | O14 | 2× | 2.52(5) | ||
C3b | O16 | 1× | 2.40(4) | O1 | 2× | 2.57(5) | |
H2O4 | 2× | 2.47(4) | Na5 | Ow2 | 1× | 2.44(1) | |
O19 | 2× | 2.50(4) | O13 | 1× | 2.73(1) | ||
C4 | H2O7 | 1× | 2.37(6) | O16 | 2× | 2.83(8) | |
H2O3 | 2× | 2.51(4) | O18 | 2× | 3.08(1) | ||
O22 | 2× | 2.954(4) | Na6 | O14 | 2× | 2.33(3) | |
O7 | 1× | 2.41(6) | |||||
O11 | 2× | 2.84(4) |
H2O/Unit Cell | Na1 | Na2 | Na3 | Na4 | Na5 | Na6 | Others | |
---|---|---|---|---|---|---|---|---|
0 | Nb. of cations | 3.05 | 2.79 | 1.50 | 0.03 | 0.00 | 0.49 | 3.14 |
s.o.f. (MC@103 K) a | 0.76 | 0.70 | 0.38 | 0.01 | 0.00 | 0.16 | ||
4 | Nb. of cations | 2.41 | 3.00 | 1.13 | 0.16 | 0.00 | 0.35 | 3.95 |
s.o.f. (MC@103 K) a | 0.60 | 0.75 | 0.28 | 0.04 | 0.00 | 0.09 | ||
s.o.f. (3D ED) b | 0.507 | 0.789 | 0.212 | 0.209 | 0.082 | 0.240 |
Ow1 | Ow2 | Ow3 | Ow4 | Na5 | Others | |
---|---|---|---|---|---|---|
Nb. of H2O molecules | 0.50 | 0.38 | 0.89 | 0.13 | 0.32 | 2.10 |
s.o.f. (MC-103K) a | 0.25 | 0.19 | 0.11 | 0.06 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Örs, T.; Deroche, I.; Chatelard, C.; Dodin, M.; Martinez-Franco, R.; Tuel, A.; Paillaud, J.-L. Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method. Symmetry 2024, 16, 477. https://doi.org/10.3390/sym16040477
Örs T, Deroche I, Chatelard C, Dodin M, Martinez-Franco R, Tuel A, Paillaud J-L. Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method. Symmetry. 2024; 16(4):477. https://doi.org/10.3390/sym16040477
Chicago/Turabian StyleÖrs, Taylan, Irena Deroche, Corentin Chatelard, Mathias Dodin, Raquel Martinez-Franco, Alain Tuel, and Jean-Louis Paillaud. 2024. "Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method" Symmetry 16, no. 4: 477. https://doi.org/10.3390/sym16040477
APA StyleÖrs, T., Deroche, I., Chatelard, C., Dodin, M., Martinez-Franco, R., Tuel, A., & Paillaud, J. -L. (2024). Determination of Na+ Cation Locations in Nanozeolite ECR-1 Using a 3D ED Method. Symmetry, 16(4), 477. https://doi.org/10.3390/sym16040477