Next Article in Journal
Accelerated Stability Testing in Food Supplements Underestimates Shelf Life Prediction of Resveratrol with Super-Arrhenius Behavior
Previous Article in Journal
Generalized Neuromorphism and Artificial Intelligence: Dynamics in Memory Space
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra

1
Department of Mathematics Newtouch Center for Mathematics, Shanghai University, Shanghai 200444, China
2
Collaborative Innovation Center for the Marine Artificial Intelligence, Shanghai 200444, China
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(4), 491; https://doi.org/10.3390/sym16040491
Submission received: 22 March 2024 / Revised: 7 April 2024 / Accepted: 12 April 2024 / Published: 18 April 2024
(This article belongs to the Section Mathematics)

Abstract

:
In this paper, we investigate the necessary and sufficient conditions for solving a dual split quaternion matrix equation A X B   =   C , and present the general solution expression when the solvability conditions are met. As an application, we delve into the necessary and sufficient conditions for the existence of a Hermitian solution to this equation by using a newly defined real representation method. Furthermore, we obtain the solutions for the dual split quaternion matrix equations A X   =   C and X B   =   C . Finally, we provide a numerical example to demonstrate the findings of this paper.
MSC:
15A03; 15A09; 15A24; 15B33; 15B57

1. Introduction

In 1843, Hamilton [1] introduced the real quaternions, which can be represented as
H = q = q 0 + q 1 i + q 2 j + q 3 k : i 2 = j 2 = k 2 = i j k = 1 , q 0 , q 1 , q 2 , q 3 R .
The set of real quaternions form a noncommutative division algebra [2,3]. In 1849, James Cockle [4] introduced split quaternions:
H s = q = q 0 + q 1 i + q 2 j + q 3 k : q 0 , q 1 , q 2 , q 3 R ,
where
i 2 = j 2 = k 2 = 1 , i j = j i = k , j k = k j = i , k i = i k = j .
The set of split quaternions comprises a four-dimensional associative and noncommutative Clifford algebra that is characterized by the existence of zero divisors, nilpotent elements, and nontrivial idempotents, as referenced in [5,6,7]. This algebra has found widespread application in the fields of geometry and physics, as evidenced by works such as [8,9,10]. In 1873, Clifford introduced the concept of dual numbers, which is an expansion of the real numbers by adjoining a new element ϵ with the property ϵ 2 = 0 [11]. The set of dual numbers forms a two-dimensional commutative and associative algebra over real numbers. As an extension of quaternions through dual number coefficients, dual quaternions have proven useful in theoretical kinematics, as well as in practical applications, like 3D computer graphics, robotics, and computer vision [12,13,14]. Similarly, we can extend split quaternions by incorporating dual numbers. This concept has numerous applications in screw motions and curve theory within the three-dimensional Minkowski space, piquing the interest of numerous scholars, as demonstrated in [15,16,17,18].
In [17], the components of a dual split quaternion are obtained by replacing the L-Euler parameters with their split dual versions. In [19], Kong et al. gave three forms of De Moivre’s theorem for the representation matrix of dual split quaternions by using the polar representation of dual split quaternions. In [20], authors use dual split quaternions to represent involution and anti-involution mappings. Some important properties and some interesting results of matrices over dual split quaternions are presented in [21]. Furthermore, Ref. [18] explored the dual split quaternionic representation of general displacement.
It is well established that linear matrix equations have been a focal point in matrix theory and its applications. Numerous researchers have devoted attention to studying the solutions of matrix equations [22,23,24,25,26]. The matrix equation
A X B = C
is a classical and fundamental topic that has been extensively investigated, yielding a series of significant results. For instance, Ben-Israel and Greville [27] provided the necessary and sufficient conditions for successfully solving matrix Equation (4). Liao et al. [28] studied the centrally symmetric solutions of matrix Equation (4) when B = A T . Huang et al. [29] investigated the skew-symmetric solution and the optimal approximate solution for matrix Equation (4). Peng [30] studied the centro-symmetric solutions of matrix Equation (4). Xie and Wang [31] deduced the reducible solution to quaternion matrix Equation (4). Additionally, Chen et al. [32] determined the necessary and sufficient conditions for the solvability of dual quaternion matrix Equation (4), and further provided the expression for the general solution when it is solvable.
Until now, there has been a scarcity of knowledge regarding matrix Equation (4) over the dual split quaternion algebra. Drawing inspiration from the preceding studies, this paper is dedicated to presenting the solvability conditions and providing the expression of the general solution for dual split quaternion matrix Equation (4).
This paper is organized as follows. In Section 2, we provide several basic definitions and properties that will serve as the foundation for our subsequent discussions in the following sections. In Section 3, we consider the necessary and sufficient conditions for solvability and the expression for the general solution regarding dual split quaternion matrix Equation (4). We also deduce the necessary and sufficient condition for the existence of the Hermitian solution to (4), and consider some particular instances of dual split quaternion matrix Equation (4). At the end, a numerical example is given in Section 4.
Throughout this paper, the sets of dual numbers, dual quaternions, and dual split quaternions are denoted by D , DH , and D H s , respectively. The sets of all m × n matrices over R , C , H , H s , DH , and D H s are denoted by R m × n , C m × n , H m × n , H s m × n , D H m × n , and D H s m × n , respectively. The symbols I n , 0, and A * represent the n × n identity matrix, the zero matrix with appropriate size, and the conjugate transpose of A, respectively. A T and A denote the transpose and the Moore–Penrose inverse of matrix A, respectively. L A = I A A and R A = I A A are the two projectors induced by A .

2. Preliminary

In this section, we explore the definitions of dual numbers, dual split quaternions, and associated properties. Additionally, we introduce the concept of dual split quaternion matrices and elaborate on the real representation for split quaternion matrices, which plays a pivotal role in the derivation of our main results.

2.1. Dual Numbers and Dual Split Quaternions

The set of dual numbers is denoted by
D = { x = x 0 + x 1 ϵ | ϵ 2 = 0 , x 0 , x 1 R } ,
where ϵ is the infinitesimal unit. We call x 0 the real part or the standard part of x, while x 1 is the dual part or the infinitesimal part of x. For any dual numbers x = x = x 0 + x 1 ϵ and y = y 0 + y 1 ϵ , we have x = y if x 0 = y 0 and x 1 = y 1 , and the sum and product of x and y are defined as
x + y = x 0 + y 0 + ( x 1 + y 1 ) ϵ , x y = x 0 y 0 + ( x 0 y 1 + x 1 y 0 ) ϵ .
Moreover, the conjugate and norm of x are defined by
x ¯ = x 0 x 1 ϵ , r = | x | = x x ¯ = | x 0 | ,
respectively. The set of dual quaternions, which can be regarded as an extension of quaternions by incorporating dual numbers, is denoted as
DH = { q = q 0 + q 1 i + q 2 j + q 3 k : q 0 , q 1 , q 2 , q 3 D } ,
where
i 2 = j 2 = k 2 = 1 , i j = j i = k , j k = k j = i , k i = i k = j ,
and
ϵ i = i ϵ , ϵ j = j ϵ , ϵ k = k ϵ , ϵ 0 , ϵ 2 = 0 .
In a similar way, we can present the definition of a dual split quaternion, which can be regarded as an extension of split quaternions by incorporating dual numbers, is denoted as
D H s = { q = q 0 + q 1 i + q 2 j + q 3 k : q 0 , q 1 , q 2 , q 3 D } ,
where
i 2 = j 2 = k 2 = 1 , i j = j i = k , j k = k j = i , k i = i k = j ,
and
ϵ i = i ϵ , ϵ j = j ϵ , ϵ k = k ϵ , ϵ 0 , ϵ 2 = 0 .
Now, we present the definitions of a quaternion matrix and dual split quaternion matrix, along with several definitions that are pertinent to our discussion.
Let X 0 , X 1 H m × n ( H s m × n ). X is said to be a dual quaternion (dual split quaternion) matrix if X takes the form X = X 0 + X 1 ϵ , where the set of all dual quaternion matrices and all dual split quaternion matrices are denoted by
D H m × n = { X = X 0 + X 1 ϵ | ϵ 2 = 0 , X 0 , X 1 H m × n } ,
and
D H s m × n = { X = X 0 + X 1 ϵ | ϵ 2 = 0 , X 0 , X 1 H s m × n } ,
respectively.
The set of n × n dual split quaternion matrices, which are equipped with standard matrix summation and multiplication operations, constitutes a ring with unity. Given any matrix A = ( A i j ) D H s m × n and q D H s , right and left scalar multiplications are defined as A q = ( A i j q ) and q A = ( q A i j ) , respectively. Consequently, D H s m × n is a left (right) vector space over D H s . Given any matrix A = A 0 + A 1 ϵ = ( A i j ) D H s m × n , the Hamiltonian conjugate of A is defined as A ¯ = A 0 ¯ + A 1 ¯ ϵ = ( A i j ¯ ) D H s m × n , the transpose of A is given by A T = A 0 T + A 1 T ϵ = ( A j i ) D H s n × m , and the conjugate transpose of A is defined as A * = A 0 * + A 1 * ϵ = ( A ¯ ) T D H s n × m .

2.2. Real Representation of Split Quaternion Matrices and Its Properties

For any matrix A H s m × n , it can be uniquely represented as A = A 1 + A 2 i + A 3 j + A 4 k , where A 1 , A 2 , A 3 , A 4 R m × n , and A * = A 1 T A 2 T i A 3 T j A 4 T k is the usual conjugate transpose of A. In addition, we define the i-conjugate and i-conjugate transpose as follows:
A i = i 1 A i = A 1 + A 2 i A 3 j A 4 k , A i * = i A * i = A 1 T A 2 T i + A 3 T j + A 4 T k .
It is evident that A i * = ( A * ) i = ( A i ) * .
The real representation method is crucial in analyzing the foundational theory of split quaternions. For A H s m × n , A = A 1 + A 2 i + A 3 j + A 4 k , where A 1 , A 2 , A 3 , A 4 R m × n , we define
A σ 1 : = A 1 A 2 A 3 A 4 A 2 A 1 A 4 A 3 A 3 A 4 A 1 A 2 A 4 A 3 A 2 A 1 .
To further explore the properties of split quaternion matrices, based on the classical real representation A σ 1 , we define a new real representation as follows.
Definition 1.
Suppose that A = A 1 + A 2 i + A 3 j + A 4 k H s m × n , where A 1 , A 2 , A 3 , A 4 R m × n . We define
A σ i : = U m A σ 1 = A 1 A 2 A 3 A 4 A 2 A 1 A 4 A 3 A 3 A 4 A 1 A 2 A 4 A 3 A 2 A 1 , U m = I m 0 0 0 0 I m 0 0 0 0 I m 0 0 0 0 I m .
The properties of the real representations are presented subsequently. For simplicity, we denote
P m = 0 0 I m 0 0 0 0 I m I m 0 0 0 0 I m 0 0 , Q m = 0 I m 0 0 I m 0 0 0 0 0 0 I m 0 0 I m 0 , R m = 0 0 0 I m 0 0 I m 0 0 I m 0 0 I m 0 0 0 .
Proposition 1.
Let  A , B H s m × n , C H s n × p , and  b R . Then,
  • A = B A σ 1 = B σ 1 , A = B A σ i = B σ i .
  • ( A + B ) σ 1 = A σ 1 + B σ 1 a n d ( b A ) σ 1 = b A σ 1 ; ( A + B ) σ i = A σ i + B σ i a n d ( b A ) σ i = b A σ i .
  • ( A C ) σ 1 = A σ 1 C σ 1 a n d ( A C ) σ i = A σ i U n C σ i .
  • (i)
    P m T A σ 1 P n = A σ 1 , Q m T A σ 1 Q n = A σ 1 , R m T A σ 1 R n = A σ 1 .
    (ii)
    P m T A σ i P n = A σ i , Q m T A σ i Q n = A σ i , R m T A σ i R n = A σ i .
  • (i)
    A = 1 2 I m I m i I m j I m k A σ 1 I n I n i I n j I n k .
    (ii)
    A = 1 2 I m I m i I m j I m k A σ i I n I n i I n j I n k .
  • ( A * ) σ i = ( A σ i ) T .
  • ( A i ) σ i = U m A σ i U n .
The proof for Proposition 1 is relatively straightforward, and thus, we omit it.

3. The Solution of Matrix Equation (4)

In this section, we pay attention to deriving the solution to dual split quaternion matrix Equation (4). We start with several useful results over H or DH , which also hold over R .
Lemma 1
([27]). Assume that A, B, and C are given matrices with the appropriate dimensions over H ; then, quaternion matrix Equation (4) is consistent if and only if the following conditions are satisfied:
R A C = 0 , C L B = 0 .
In this case, the general solution can be expressed as
X = A C B + L A U + V R B ,
where U and V are any matrices over H with appropriate dimensions.
Lemma 2
([31]). Let A 1 , A 2 , B 1 , B 2 , and C 1 be given matrices with appropriate sizes. Set
A = R A 1 C , B = B 1 L B 2 , M = R A 1 A 2 , C 1 = C L B 2 .
Then, the following descriptions are equivalent:
(1) 
The quaternion matrix equation
A 1 X 1 B 1 + A 1 X 2 B 2 + A 2 X 3 B 2 = C
is consistent.
(2) 
R M A = 0 , R A 1 C L B 2 = 0 , a n d C 1 L B = 0 .
(3) 
r A 1 A 2 C = r A 1 A 2 , r B 2 0 C A 1 = r B 2 + r A 1 , r C 1 B 1 B 2 = r B 1 B 2 .
In this case, the general solution to (6) can be expressed as follows:
X 1 = A 1 C 1 B + L A 1 V 1 + V 2 R B , X 2 = A 1 ( C A 1 X 1 B 1 A 2 X 3 B 2 ) B 2 + T 1 R B 2 + L A 1 T 2 , X 3 = M A B 2 + L M U 1 + U 2 R B 2 ,
where U 1 , U 2 , V 1 , V 2 , T 1 , and T 2 are arbitrary matrices over H with appropriate sizes.
Lemma 3
([32]). Let A = A 0 + A 1 ϵ DH m × n , B = B 0 + B 1 ϵ DH r × l , and C = C 0 + C 1 ϵ DH m × l . Put
A 2 = A 1 L A 0 , B 2 = R B 0 B 1 , C 11 = A 0 A 0 C 0 B 0 B 1 ,
C 22 = A 1 A 0 C 0 B 0 B 0 , C 2 = C 1 C 11 C 22 ,
M = R A 0 A 2 , N = R A 0 C 2 , E = B 2 L B 0 , F = C 2 L B 0 .
Then, the following statements are equivalent:
(1) 
Dual quaternion matrix Equation (4) is consistent.
(2) 
R A 0 C 0 = 0 , C 0 L B 0 = 0 , R M N = 0 , R A 0 C 2 L B 0 = 0 , F L E = 0 .
(3) 
r A 0 C 0 = r A 0 , r B 0 C 0 = r B 0 , r A 1 A 0 C 1 A 0 0 C 0 = r A 1 A 0 A 0 0 , r C 1 A 0 B 0 0 = r A 0 + r B 0 , r B 1 B 0 B 0 0 C 1 C 0 = r B 1 B 0 B 0 0 .
In this case, the general solution X of dual quaternion matrix Equation (4) can be expressed as X = X 0 + X 1 ϵ , where
X 0 = A 0 C 0 B 0 + L A 0 U + V R B 0 , X 1 = A 0 ( C 2 A 0 V B 2 A 2 U B 0 ) B 0 + W 1 R B 0 + L A 0 W 2 , U = M N B 0 + L M Q 1 + Q 2 R B 0 , V = A 0 F E + L A 0 Q 3 + Q 4 R E ,
Moreover, Q i ( i = 1 , 4 ¯ ) and W i ( i = 1 , 2 ¯ ) are arbitrary matrices over H with appropriate dimensions.
Using the above lemmas and applying the real representation method of split quaternions, we can deduce the general solution of matrix Equation (4) over the dual split quaternion algebra.
Theorem 1.
Let A = A 00 + A 01 ϵ D H s m × n , B = B 00 + B 01 ϵ D H s r × l , and C = C 00 + C 01 ϵ D H s m × l . Let
A 0 = A 00 σ 1 , A 1 = A 01 σ 1 , B 0 = B 00 σ 1 , B 1 = B 01 σ 1 , C 0 = C 00 σ 1 , C 1 = C 01 σ 1 ,
A 2 = A 1 L A 0 , B 2 = R B 0 B 1 , C 11 = A 0 A 0 C 0 B 0 B 1 ,
C 22 = A 1 A 0 C 0 B 0 B 0 , C 2 = C 1 C 11 C 22 ,
M = R A 0 A 2 , N = R A 0 C 2 , E = B 2 L B 0 , F = C 2 L B 0 .
Then, the following statements are equivalent:
(1) 
Dual split quaternion matrix Equation (4) is consistent.
(2) 
The system of real matrix equations
A 0 X 0 B 0 = C 0 , A 0 X 0 B 1 + A 0 X 1 B 0 + A 1 X 0 B 0 = C 1 ,
is consistent.
(3) 
R A 0 C 0 = 0 , C 0 L B 0 = 0 ,
R M N = 0 , R A 0 C 2 L B 0 = 0 , F L E = 0 .
(4) 
r A 0 C 0 = r A 0 , r B 0 C 0 = r B 0 ,
r A 1 A 0 C 1 A 0 0 C 0 = r A 1 A 0 A 0 0 ,
r C 1 A 0 B 0 0 = r A 0 + r B 0 ,
r B 1 B 0 B 0 0 C 1 C 0 = r B 1 B 0 B 0 0 .
In this case, the general solution X of dual split quaternion matrix Equation (4) can be expressed as X = X 00 + X 01 ϵ , where
X 00 = 1 8 I n I n i I n j I n k ( X 0 + P n X 0 P r T + Q n X 0 Q r T + R n X 0 R r T ) I r I r i I r j I r k , X 01 = 1 8 I n I n i I n j I n k ( X 1 + P n X 1 P r T + Q n X 1 Q r T + R n X 1 R r T ) I r I r i I r j I r k ,
where
X 0 = A 0 C 0 B 0 + L A 0 U + V R B 0 , X 1 = A 0 ( C 2 A 0 V B 2 A 2 U B 0 ) B 0 + W 1 R B 0 + L A 0 W 2 , U = M N B 0 + L M Q 1 + Q 2 R B 0 , V = A 0 F E + L A 0 Q 3 + Q 4 R E ,
and Q i ( i = 1 , 4 ¯ ) and W i ( i = 1 , 2 ¯ ) are arbitrary matrices over R with appropriate dimensions.
Proof. 
( 1 ) ( 2 ) : Assume that dual split quaternion matrix Equation (4) has a solution denoted as X D H s n × r , which can be expressed as
X = X 00 + X 01 ϵ ,
where X 00 , X 01 H s n × r . Let X 0 = X 00 σ 1 and X 1 = X 01 σ 1 . By substituting (21) into (4) and utilizing the definition of equality for dual split quaternion matrices, we can obtain that dual split quaternion matrix Equation (4) is equivalent to the system of split quaternion matrix equations
A 00 X 00 B 00 = C 00 , A 00 X 00 B 01 + A 00 X 01 B 00 + A 01 X 00 B 00 = C 01 .
Applying (3) of Proposition 1 to (12) yields
A 00 σ 1 X 00 σ 1 B 00 σ 1 = C 00 σ 1 , A 00 σ 1 X 00 σ 1 B 01 σ 1 + A 00 σ 1 X 01 σ 1 B 00 σ 1 + A 01 σ 1 X 00 σ 1 B 00 σ 1 = C 01 σ 1 ,
i.e.,
A 0 X 0 B 0 = C 0 , A 0 X 0 B 1 + A 0 X 1 B 0 + A 1 X 0 B 0 = C 1 .
Clearly, ( X 0 , X 1 ) is a pair of solutions to the system (12).
Conversely, if the real system has a pair of solutions ( X 0 , X 1 ) , which can be expressed as
X 0 = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 R 4 n × 4 r ,
and
X 1 = b 11 b 12 b 13 b 14 b 21 b 22 b 23 b 24 b 31 b 32 b 33 b 34 b 41 b 42 b 43 b 44 R 4 n × 4 r ,
respectively, where a i j , b i j R n × r , ( i , j = 1 , 2 ¯ ) , then, using (4) of Proposition 1 to the above equations, we can obtain
P m T A 0 P n X 0 P r T B 0 P l = P m T C 0 P l , P m T A 0 P n X 0 P r T B 1 P l + P m T A 0 P n X 1 P r T B 0 P l + P m T A 1 P n X 0 P r T B 0 P l = P m T C 1 P l .
Hence,
A 0 P n X 0 P r T B 0 = C 0 , A 0 P n X 0 P r T B 1 + A 0 P n X 1 P r T B 0 + A 1 P n X 0 P r T B 0 = C 1 ,
and it follows that ( P n X 0 P r T , P n X 1 P r T ) is a pair of solutions to system (12). Similarly, ( Q n X 0 Q r T and Q n X 1 Q r T ) , ( R n X 0 R r T , R n X 1 R r T ) are also pairs of solutions to system (12). Then, so is ( Y 0 , Y 1 ) , where
Y 0 = 1 4 ( X 0 + P n X 0 P r T + Q n X 0 Q r T + R n X 0 R r T ) ,
Y 1 = 1 4 ( X 1 + P n X 1 P r T + Q n X 1 Q r T + R n X 1 R r T ) .
By direct computation, we have
Y 0 = c 1 c 2 c 3 c 4 c 2 c 1 c 4 c 3 c 3 c 4 c 1 c 2 c 4 c 3 c 2 c 1 ,
Y 1 = d 1 d 2 d 3 d 4 d 2 d 1 d 4 d 3 d 3 d 4 d 1 d 2 d 4 d 3 d 2 d 1 ,
where
c 1 = 1 4 ( a 11 + a 22 + a 33 + a 44 ) , c 2 = 1 4 ( a 12 a 21 a 34 + a 43 ) ,
c 3 = 1 4 ( a 13 + a 24 + a 31 + a 42 ) , c 4 = 1 4 ( a 14 a 23 a 32 + a 41 ) ,
and
d 1 = 1 4 ( b 11 + 22 + b 33 + b 44 ) , d 2 = 1 4 ( b 12 b 21 b 34 + b 43 ) ,
d 3 = 1 4 ( b 13 + b 24 + b 31 + b 42 ) , d 4 = 1 4 ( b 14 b 23 b 32 + b 41 ) .
Now, we obtain that
X 00 = c 1 + c 2 i + c 3 j + c 4 k = 1 2 I n I n i I n j I n k Y 0 I r I r i I r j I r k H s n × r ,
X 01 = d 1 + d 2 i + d 3 j + d 4 k = 1 2 I n I n i I n j I n k Y 1 I r I r i I r j I r k H s n × r .
According to (5) of Proposition 1, X 00 σ 1 = Y 0 and X 01 σ 1 = Y 1 . Consequently,
A 00 σ 1 X 00 σ 1 B 00 σ 1 = C 00 σ 1 , A 00 σ 1 X 00 σ 1 B 01 σ 1 + A 00 σ 1 X 01 σ 1 B 00 σ 1 + A 01 σ 1 X 00 σ 1 B 00 σ 1 = C 01 σ 1 ,
indicating that ( X 00 , X 01 ) is a pair of solutions to the system of split quaternion matrix Equation (22). From Lemma 3, we can easily know that the system of the split quaternion matrix Equation (22) is equivalent to dual split quaternion matrix Equation (4). Thus, matrix Equation (4) has a dual split solution X D H s n × r if and only if the system of real matrix Equation (12) is consistent. And in such a case, the general solution to dual split quaternion matrix Equation (4) can be expressed as (19) and (20).
According to Lemmas 1–3, we can easily verify that system (12) is consistent if and only if (13)–(18) hold. Thus, we have shown the equivalence of (2)–(4). □
As an application of the above theorem and real representation method, next we investigate the necessary and sufficient conditions for the existence of Hermitian solution to dual split quaternion matrix Equation (4).
Theorem 2.
Let A = A 00 + A 01 ϵ D H s m × n , B = B 00 + B 01 ϵ D H s n × l , and C = C 00 + C 01 ϵ D H s m × l . Let
A 0 = A 00 σ i , A 1 = A 01 σ i ,
B 0 = B 00 σ i , B 1 = B 01 σ i ,
C 0 = C 00 σ i , C 1 = C 01 σ i .
Then, dual split quaternion matrix Equation (4) has a Hermitian solution X = X * D H s n × n if and only if the system of real matrix equations
A 0 X 0 B 0 = C 0 , A 0 X 0 B 1 + A 0 X 1 B 0 + A 1 X 0 B 0 = C 1 ,
has a pair of symmetric solutions ( X 0 , X 1 ) .
Proof. 
Assume that X = X * D H s n × n is a solution to dual split quaternion matrix Equation (4), which can be expressed as
X = X 00 + X 01 ϵ ,
where X 00 , X 01 H s n × n , X 00 = X 00 * , and X 01 = X 01 * . Let X 0 = U n X 00 σ i U n and X 1 = U n X 01 σ i U n . By combining (24) and (6) of Proposition 1, we can obtain that
A 00 σ i U n X 00 σ i U n B 00 σ i = C 00 σ i , A 00 σ i U n X 00 σ i U n B 01 σ i + A 00 σ i U n X 01 σ i U n B 00 σ i + A 01 σ i U n X 00 σ i U n B 00 σ i = C 01 σ i ,
and
X 00 σ i = ( X 00 * ) σ i = ( X 00 σ i ) T ,
X 01 σ i = ( X 01 * ) σ i = ( X 01 σ i ) T ,
i.e.,
A 0 X 0 B 0 = C 0 , A 0 X 0 B 1 + A 0 X 1 B 0 + A 1 X 0 B 0 = C 1 ,
and
X 0 = X 0 T , X 1 = X 1 T .
Conversely, if the system of real matrix Equation (24) has a pair of symmetric solutions ( X 0 , X 1 ) , which can be expressed as
X 0 = a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 24 a 31 a 32 a 33 a 34 a 41 a 42 a 43 a 44 R 4 n × 4 n ,
and
X 1 = b 11 b 12 b 13 b 14 b 21 b 22 b 23 b 24 b 31 b 32 b 33 b 34 b 41 b 42 b 43 b 44 R 4 n × 4 n ,
respectively, where a i j , b i j R n × n ( i , j = 1 , 2 ¯ ) , then (24) holds, and
A 00 σ i X 0 B 00 σ i = C 00 σ i , A 00 σ i X 0 B 01 σ i + A 00 σ i X 1 B 00 σ i + A 01 σ i X 0 B 00 σ i = C 01 σ i ,
where X 0 = X 0 T and X 1 = X 1 T . According to (4) of Proposition 1, we can obtain that ( P n X 0 P n T , P n X 1 P n T ) , ( Q n X 0 Q n T , Q n X 1 Q n T ) , and ( R n X 0 R n T , R n X 1 R n T ) are also pairs of symmetric solutions to system (24). Then, so is ( Y 0 , Y 1 ) , where
Y 0 = 1 4 ( X 0 P n X 0 P n T + Q n X 0 Q n T R n X 0 R n T ) ,
Y 1 = 1 4 ( X 1 P n X 1 P n T + Q n X 1 Q n T R n X 1 R n T ) .
By direct computation, we have
Y 0 = c 1 c 2 c 3 c 4 c 2 c 1 c 4 c 3 c 3 c 4 c 1 c 2 c 4 c 3 c 2 c 1 ,
Y 1 = d 1 d 2 d 3 d 4 d 2 d 1 d 4 d 3 d 3 d 4 d 1 d 2 d 4 d 3 d 2 d 1 ,
where
c 1 = 1 4 ( a 11 + a 22 a 33 a 44 ) , c 2 = 1 4 ( a 12 a 21 + a 34 a 43 ) ,
c 3 = 1 4 ( a 13 + a 24 a 31 a 42 ) , c 4 = 1 4 ( a 14 a 23 + a 32 a 41 ) ,
and
d 1 = 1 4 ( b 11 + 22 b 33 b 44 ) , d 2 = 1 4 ( b 12 b 21 + b 34 b 43 ) ,
d 3 = 1 4 ( b 13 + b 24 b 31 b 42 ) , d 4 = 1 4 ( b 14 b 23 + b 32 b 41 ) .
Now, we obtain that
X 00 = c 1 + c 2 i + c 3 j + c 4 k = 1 2 I n I n i I n j I n k Y 0 I n I n i I n j I n k H s n × n ,
X 01 = d 1 + d 2 i + d 3 j + d 4 k = 1 2 I n I n i I n j I n k Y 1 I n I n i I n j I n k H s n × n .
According to (5) of Proposition 1, X 00 σ i = Y 0 and X 01 σ i = Y 1 . Consequently,
A 00 σ i X 00 σ i B 00 σ i = C 00 σ i , A 00 σ i X 00 σ i B 01 σ i + A 00 σ i X 01 σ i B 00 σ i + A 01 σ i X 00 σ i B 00 σ i = C 01 σ i ,
indicating that ( X 00 σ i , X 01 σ i ) is a pair of symmetric solutions to system (24). From (7) of Proposition 1, we can easily obtain that ( U n ( X 00 i ) σ i U n , U n ( X 01 i ) σ i U n ) is also a pair of symmetric solutions to system (24). Thus,
A 00 σ i U n ( X 00 i ) σ i U n B 00 σ i = C 00 σ i , A 00 σ i U n ( X 00 i ) σ i U n B 01 σ i + A 00 σ i U n ( X 01 i ) σ i U n B 00 σ i + A 01 σ i U n ( X 00 i ) σ i U n B 00 σ i = C 01 σ i ,
and
( X 00 i ) σ i = ( ( X 00 i ) σ i ) T = ( ( X 00 i ) * ) σ i ,
( X 01 i ) σ i = ( ( X 01 i ) σ i ) T = ( ( X 01 i ) * ) σ i ,
i.e.,
A 00 X 00 i B 00 = C 00 , A 00 X 00 i B 01 + A 00 X 01 i B 01 00 + A 01 X 00 i B 00 = C 01 .
and
X 00 i = ( X 00 i ) * ,
X 01 i = ( X 01 i ) * ,
which indicates that dual split quaternion matrix Equation (4) has a Hermitian solution X = X 00 i + X 01 i ϵ . □
Now, let us turn our attention to some specific instances of dual split quaternion matrix Equation (4).
Corollary 1.
Let A = A 00 + A 01 ϵ D H s m × n , C = C 00 + C 01 ϵ D H s m × r be known. Let
A 0 = A 00 σ 1 , A 1 = A 01 σ 1 , C 0 = C 00 σ 1 , C 1 = C 01 σ 1 ,
A 2 = A 1 L A 0 , C 22 = A 1 A 0 C 0 , C 2 = C 1 C 22 , M = R A 0 A 2 , N = R A 0 C 2 .
Then, the following statements are equivalent:
(1) 
The dual split quaternion matrix equation A X = C is consistent.
(2) 
The system of real matrix equations
A 0 X 0 = C 0 , A 0 X 1 + A 1 X 0 = C 1 ,
is consistent.
(3) 
R A 0 C 0 = 0 , R M N = 0 .
(4) 
r A 0 C 0 = r A 0 , r A 1 A 0 C 1 A 0 0 C 0 = r A 1 A 0 A 0 0 .
In this case, the general solution X of the dual split quaternion matrix equation A X = C can be expressed as X = X 00 + X 01 ϵ , where
X 00 = 1 8 I n I n i I n j I n k ( X 0 + P n X 0 P r T + Q n X 0 Q r T + R n X 0 R r T ) I r I r i I r j I r k , X 01 = 1 8 I n I n i I n j I n k ( X 1 + P n X 1 P r T + Q n X 1 Q r T + R n X 1 R r T ) I r I r i I r j I r k ,
where
X 0 = A 0 C 0 + L A 0 U , X 1 = A 0 ( C 2 A 2 U ) + L A 0 W 1 , U = M N + L M W 2 ,
and W 1 and W 2 are arbitrary matrices over R with appropriate dimensions.
Corollary 2.
Let B = B 0 + B 1 ϵ D H s r × l and C = C 0 + C 1 ϵ D H s n × l be known. Denote
B 0 = B 00 σ 1 , B 1 = B 01 σ 1 , C 0 = C 00 σ 1 , C 1 = C 01 σ 1 ,
B 2 = R B 0 B 1 , C 11 = C 0 B 0 B 1 , C 2 = C 1 C 11 , E = B 2 L B 0 , F = C 2 L B 0 .
Then, the following statements are equivalent:
(1) 
The dual split quaternion matrix equation X B = C is consistent.
(2) 
The system of real matrix equations
X 0 B 0 = C 0 , X 1 B 0 + X 0 B 1 = C 1 ,
is consistent.
(3) 
C 0 L B 0 = 0 , F L E = 0 .
(4) 
r B 0 C 0 = r B 0 , r B 1 B 0 B 0 0 C 1 C 0 = r B 1 B 0 B 0 0 .
In this case, the general solution X of the dual split quaternion matrix equation X B = C can be expressed as X = X 00 + X 01 ϵ , where
X 00 = 1 8 I n I n i I n j I n k ( X 0 + P n X 0 P r T + Q n X 0 Q r T + R n X 0 R r T ) I r I r i I r j I r k , X 01 = 1 8 I n I n i I n j I n k ( X 1 + P n X 1 P r T + Q n X 1 Q r T + R n X 1 R r T ) I r I r i I r j I r k ,
where
X 0 = C 0 B 0 + V R B 0 , X 1 = ( C 2 V B 2 ) B 0 + W 1 R B 0 , V = F E + W 2 R E ,
and W 1 and W 2 are arbitrary matrices over R with appropriate dimensions.

4. Numerical Example

Now, we provide a numerical example to further clarify the main findings of this paper.
A = A 00 + A 01 ϵ = i + k i + j j i k + 2 + j k i j 0 4 + 4 i ϵ , B = B 00 + B 01 ϵ = 1 + i + j i k 0 j + k + i k 3 k i + j 3 i + k ϵ , C = C 00 + C 01 ϵ = 4 7 i 5 j 6 k 6 8 i 14 j 2 k 10 8 i 14 j 7 13 i 14 j + 6 k + 2 + 3 i 10 i + 21 k 50 45 i 17 j 12 k 35 4 i 29 j + 37 k 67 + i 43 j + 31 k . ϵ .
From MATLAB9.10, we obtain
A 0 = A 00 σ 1 = 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 0 ,
A 1 = A 01 σ 1 = 2 0 0 1 1 1 1 0 0 4 0 4 0 0 0 0 0 1 2 0 1 0 1 1 0 4 0 4 0 0 0 0 1 1 1 0 2 0 0 1 0 0 0 0 0 4 0 4 1 0 1 1 0 1 2 0 0 0 0 0 0 4 0 4 ,
B 0 = B 00 σ 1 = 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 0 ,
B 1 = B 01 σ 1 = 0 0 1 0 0 0 1 3 0 0 1 3 1 0 0 1 1 0 0 0 1 3 0 0 1 3 0 0 0 1 1 0 0 0 1 3 0 0 1 0 1 0 0 1 0 0 1 3 1 3 0 0 1 0 0 0 0 1 1 0 1 3 0 0 ,
C 0 = C 00 σ 1 = 4 6 7 8 5 14 6 2 10 7 8 13 14 14 0 6 7 8 4 6 6 2 5 14 8 13 10 7 0 6 14 14 5 14 6 2 4 6 7 8 14 14 0 6 10 7 8 13 6 2 5 14 7 8 4 6 0 6 14 14 8 13 10 7 ,
C 1 = C 01 σ 1 = 2 50 3 45 10 17 21 12 35 67 4 1 29 43 37 31 3 45 2 50 21 12 10 17 4 1 35 67 37 31 29 43 10 17 21 12 2 50 3 45 29 43 37 31 35 67 4 1 21 12 10 17 3 45 2 50 37 31 29 43 4 1 35 67 ,
and
r A 0 C 0 = r A 0 = 8 , r B 0 C 0 = r B 0 = 8 , r A 1 A 0 C 1 A 0 0 C 0 = r A 1 A 0 A 0 0 = 16 , r C 1 A 0 B 0 0 = r A 0 + r B 0 = 16 , r B 1 B 0 B 0 0 C 1 C 0 = r B 1 B 0 B 0 0 = 16 .
Therefore, dual split quaternion matrix Equation (4) is consistent, and the general solution X can be expressed as
X = X 00 + X 01 ϵ ,
where
X 00 = 1 8 I 2 I 2 i I 2 j I 2 k ( X 0 + P 2 X 0 P 2 T + Q 2 X 0 Q 2 T + R 2 X 0 R 2 T ) I 2 I 2 i I 2 j I 2 k , X 01 = 1 8 I 2 I 2 i I 2 j I 2 k ( X 1 + P 2 X 1 P 2 T + Q 2 X 1 Q 2 T + R 2 X 1 R 2 T ) I 2 I 2 i I 2 j I 2 k ,
where
X 0 = 2.0127 × 10 15 3 3 4 3.5933 × 10 15 1.1003 × 10 14 1 3.9968 × 10 15 3 4 4 4 7.1979 × 10 15 2.3148 × 10 14 2.3662 × 10 15 2 3 4 3.2837 × 10 15 3 1 8.0045 × 10 15 2.0435 × 10 15 4.4409 × 10 16 4 4 3 4 7.8752 × 10 15 2 1.6862 × 10 15 3.5527 × 10 15 6.5817 × 10 16 2.2204 × 10 15 1 1.5321 × 10 14 5.3291 × 10 15 3 3 4 3.9526 × 10 15 3.8858 × 10 15 1.4846 × 10 15 2 3 4 4 3 1 4.885 × 10 15 4.8737 × 10 15 2.4425 × 10 15 3 4 4.8121 × 10 15 3 6.6578 × 10 15 2 2.1038 × 10 15 1.0547 × 10 14 4 4 3 4 + L A 0 U + V R B 0 , X 1 = A 0 ( C 2 A 0 V B 2 A 2 U B 0 ) B 0 + W 1 R B 0 + L A 0 W 2 = A 0 C 2 B 0 A 0 A 0 V B 2 B 0 A 0 A 2 U B 0 B 0 + W 1 R B 0 + L A 0 W 2 , U = M N B 0 + L M Q 1 + Q 2 R B 0 , V = A 0 F E + L A 0 Q 3 + Q 4 R E ,
where
L A 0 = 2.2204 e 16 2.3592 e 16 1.3878 e 17 2.7756 e 17 3.6082 e 16 2.0817 e 16 1.7019 e 17 5.5511 e 17 3.0531 e 16 0 4.4409 e 16 8.3267 e 17 5.5511 e 17 5.5511 e 17 5.5511 e 17 1.6653 e 16 5.5511 e 17 5.5511 e 17 0 1.6653 e 16 5.5511 e 17 3.3307 e 16 1.1102 e 16 4.9906 e 17 1.1102 e 16 2.2204 e 16 1.6653 e 16 2.2204 e 16 2.7756 e 16 5.5511 e 17 1.1102 e 16 2.2204 e 16 1.6653 e 16 1.5266 e 16 1.249 e 16 2.7756 e 16 2.2204 e 16 2.9143 e 16 1.6677 e 16 3.6082 e 16 1.6653 e 16 1.1102 e 16 0 1.1102 e 16 1.6653 e 16 0 3.6082 e 16 1.1102 e 16 5.5511 e 17 1.1102 e 16 0 5.5511 e 17 1.3878 e 16 1.1102 e 16 4.4409 e 16 4.1525 e 17 1.1102 e 16 1.9429 e 16 2.7756 e 16 1.1102 e 16 2.2204 e 16 2.2204 e 16 0 2.2204 e 16 ,
R B 0 = 4.4409 e 16 5.5511 e 16 1.3922 e 16 1.4988 e 15 4.7001 e 16 1.5765 e 15 1.0547 e 15 9.992 e 16 4.8392 e 16 6.6613 e 16 5.6769 e 16 7.7716 e 16 9.948 e 16 1.5089 e 15 8.5695 e 16 7.6328 e 16 8.5258 e 17 3.8858 e 16 2.2204 e 16 1.4433 e 15 0 2.2204 e 15 4.1633 e 17 1.6653 e 16 4.7132 e 16 3.8858 e 16 2.4029 e 16 8.8818 e 16 2.8563 e 16 1.0003 e 15 6.4879 e 16 2.0817 e 16 4.4556 e 16 3.3307 e 16 2.8039 e 16 2.2204 e 16 2.2204 e 16 1.4439 e 16 2.7756 e 16 1.1102 e 16 9.4234 e 16 4.5846 e 16 7.8744 e 16 4.2166 e 16 2.3413 e 16 1.3323 e 15 9.194 e 16 3.3307 e 16 3.073 e 16 4.996 e 16 0 2.1094 e 15 2.2204 e 16 2.2204 e 15 4.4409 e 16 5.5511 e 17 1.0272 e 15 4.9803 e 16 1.3749 e 17 1.5751 e 15 8.2236 e 16 5.5511 e 16 1.5613 e 16 8.8818 e 16 ,
A 0 C 2 B 0 = 15.5 18.5 5.5 10.5 9.5 1.5 12.5 15.5 9 3.5 0.5 16 14.5 2.5 12 6 5.5 10.5 15.5 18.5 12.5 15.5 9.5 1.5 0.5 16 9 3.5 12 6 14.5 2.5 9.5 1.5 12.5 15.5 15.5 18.5 5.5 10.5 14.5 2.5 12 6 9 3.5 0.5 16 12.5 15.5 9.5 1.5 5.5 10.5 15.5 18.5 12 6 14.5 2.5 0.5 16 9 3.5 ,
A 0 A 0 = 1 2.3592 e 16 1.3878 e 17 2.7756 e 17 3.6082 e 16 2.0817 e 16 1.7019 e 17 5.5511 e 17 3.0531 e 16 1 4.4409 e 16 8.3267 e 17 5.5511 e 17 5.5511 e 17 5.5511 e 17 1.6653 e 16 5.5511 e 17 5.5511 e 17 1 1.6653 e 16 5.5511 e 17 3.3307 e 16 1.1102 e 16 4.9906 e 17 1.1102 e 16 2.2204 e 16 1.6653 e 16 1 2.7756 e 16 5.5511 e 17 1.1102 e 16 2.2204 e 16 1.6653 e 16 1.5266 e 16 1.249 e 16 2.7756 e 16 1 2.9143 e 16 1.6677 e 16 3.6082 e 16 1.6653 e 16 1.1102 e 16 0 1.1102 e 16 1.6653 e 16 1 3.6082 e 16 1.1102 e 16 5.5511 e 17 1.1102 e 16 0 5.5511 e 17 1.3878 e 16 1.1102 e 16 1 4.1525 e 17 1.1102 e 16 1.9429 e 16 2.7756 e 16 1.1102 e 16 2.2204 e 16 2.2204 e 16 0 1 ,
B 2 B 0 = 4.8803 e 15 1.5856 e 15 1.4114 e 15 1.8483 e 15 2.301 e 15 1.9684 e 15 3.9389 e 15 3.0488 e 15 1.1967 e 15 2.0004 e 15 6.3534 e 16 4.38 e 15 1.6479 e 16 2.9698 e 15 9.7504 e 16 1.0854 e 15 3.3882 e 15 8.0989 e 16 1.2888 e 16 3.9918 e 15 2.2404 e 16 3.9225 e 15 3.6538 e 15 3.0759 e 15 2.8912 e 15 1.6549 e 15 1.4329 e 16 4.1303 e 16 4.5089 e 16 2.9855 e 16 2.6684 e 15 1.7165 e 15 1.4019 e 16 3.9624 e 16 8.9394 e 16 1.6538 e 15 6.7326 e 16 7.8393 e 16 3.6653 e 16 7.6439 e 17 2.7261 e 15 7.685 e 16 1.4098 e 15 1.8159 e 15 5.6968 e 16 5.8426 e 16 3.3023 e 15 3.1345 e 15 3.3564 e 15 8.9708 e 16 1.7052 e 16 5.2647 e 15 3.5883 e 16 5.9655 e 15 3.7153 e 15 2.1352 e 15 1.5856 e 15 1.4322 e 15 1.6259 e 15 3.4782 e 15 1.2513 e 15 2.9897 e 15 1.5507 e 15 1.861 e 15 ,
A 0 A 2 = 5.4123 e 16 6.5226 e 16 1.36 e 15 5.1348 e 16 9.5757 e 16 8.3267 e 17 1.0796 e 15 1.8776 e 15 4.8572 e 16 2.2204 e 16 3.6082 e 16 2.2898 e 16 1.6653 e 16 2.0817 e 16 4.785 e 16 3.0316 e 16 1.2074 e 15 6.245 e 16 1.6098 e 15 1.6653 e 16 9.8532 e 16 6.9389 e 16 1.4936 e 15 3.1081 e 16 2.2204 e 16 2.7756 e 16 1.249 e 16 7.7022 e 16 7.3552 e 16 9.7145 e 16 5.094 e 16 1.0422 e 17 9.0206 e 16 9.7145 e 17 2.1927 e 15 9.2981 e 16 1.5266 e 16 3.6082 e 16 5.8577 e 16 1.009 e 15 5.8287 e 16 3.747 e 16 8.6042 e 16 6.245 e 17 4.0246 e 16 4.0246 e 16 5.2876 e 16 4.3644 e 16 6.8001 e 16 1.4849 e 15 6.1062 e 16 1.0547 e 15 1.4572 e 15 1.9429 e 16 6.1587 e 16 8.8763 e 17 5.4123 e 16 7.0777 e 16 3.747 e 16 3.9552 e 16 4.4409 e 16 1.6653 e 16 8.7313 e 16 5.3489 e 16 ,
B 0 B 0 = 1 5.5511 e 16 1.3922 e 16 1.4988 e 15 4.7001 e 16 1.5765 e 15 1.0547 e 15 9.992 e 16 4.8392 e 16 1 5.6769 e 16 7.7716 e 16 9.948 e 16 1.5089 e 15 8.5695 e 16 7.6328 e 16 8.5258 e 17 3.8858 e 16 1 1.4433 e 15 0 2.2204 e 15 4.1633 e 17 1.6653 e 16 4.7132 e 16 3.8858 e 16 2.4029 e 16 1 2.8563 e 16 1.0003 e 15 6.4879 e 16 2.0817 e 16 4.4556 e 16 3.3307 e 16 2.8039 e 16 2.2204 e 16 1 1.4439 e 16 2.7756 e 16 1.1102 e 16 9.4234 e 16 4.5846 e 16 7.8744 e 16 4.2166 e 16 2.3413 e 16 1 9.194 e 16 3.3307 e 16 3.073 e 16 4.996 e 16 0 2.1094 e 15 2.2204 e 16 2.2204 e 15 1 5.5511 e 17 1.0272 e 15 4.9803 e 16 1.3749 e 17 1.5751 e 15 8.2236 e 16 5.5511 e 16 1.5613 e 16 1 ,
M N B 0 = 6.2377 e + 18 2.4105 e + 18 6.1833 e + 17 6.8994 e + 18 4.4277 e + 18 3.3644 e + 18 3.5926 e + 18 6.8943 e + 18 1.1248 e + 19 3.834 e + 18 6.6182 e + 17 1.2568 e + 19 8.2455 e + 18 5.573 e + 18 6.1128 e + 18 1.2602 e + 19 1.7805 e + 18 7.2581 e + 17 2.1352 e + 17 1.9662 e + 18 1.2463 e + 18 9.9693 e + 17 1.0527 e + 18 1.9558 e + 18 4.0065 e + 16 5.6617 e + 16 3.312 e + 16 3.0466 e + 16 1.313 e + 16 4.8279 e + 16 6.2713 e + 16 2.4915 e + 16 1.1536 e + 19 3.8397 e + 18 6.0227 e + 17 1.2917 e + 19 8.4948 e + 18 5.6326 e + 18 6.1956 e + 18 1.297 e + 19 1.1206 e + 18 1.5149 e + 17 1.3099 e + 17 1.3095 e + 18 9.1978 e + 17 3.3884 e + 17 4.3339 e + 17 1.3485 e + 18 5.2048 e + 18 1.8961 e + 18 4.081 e + 17 5.7957 e + 18 3.7609 e + 18 2.6951 e + 18 2.9163 e + 18 5.7955 e + 18 1.4725 e + 18 6.206 e + 17 1.748 e + 17 1.6148 e + 18 1.0288 e + 18 8.3326 e + 17 8.839 e + 17 1.6076 e + 18 ,
A 0 F E = 2.8568 e + 16 1.6704 e + 16 2.0793 e + 16 5.8446 e + 16 6.7243 e + 15 1.0034 e + 15 4.3475 e + 16 2.8446 e + 16 7.7278 e + 16 5.7089 e + 16 1.2901 e + 17 1.5362 e + 17 2.7298 e + 17 9.2832 e + 16 1.8373 e + 17 1.5771 e + 17 1.2054 e + 16 5.3499 e + 15 1.9751 e + 15 2.9874 e + 16 1.8516 e + 16 1.0741 e + 16 2.3958 e + 15 6.1126 e + 15 7.1856 e + 15 2.3841 e + 16 4.6849 e + 16 4.6068 e + 16 9.1217 e + 16 6.927 e + 16 2.565 e + 16 2.1639 e + 16 2.0472 e + 16 2.7534 e + 15 1.6588 e + 16 4.1079 e + 16 5.3058 e + 16 2.28 e + 16 2.1991 e + 16 2.565 e + 16 6.2067 e + 16 2.3586 e + 16 1.1923 e + 17 1.498 e + 17 2.1765 e + 17 1.0301 e + 17 1.4548 e + 17 1.2029 e + 17 2.023 e + 16 8.1942 e + 15 1.75 e + 16 3.678 e + 16 7.1696 e + 15 1.2602 e + 15 2.6006 e + 16 1.3023 e + 16 4.8389 e + 16 6.6122 e + 16 6.6368 e + 16 7.1589 e + 16 1.3094 e + 17 1.4671 e + 16 1.308 e + 17 1.0964 e + 17 ,
L M = 1.2979 e 13 1.4662 e 13 1.3478 e 13 4.6119 e 14 3.7328 e 14 3.1961 e 14 0 5.6843 e 14 1.0965 e 13 2.3637 e 13 3.441 e 13 6.9303 e 14 4.244 e 14 7.2383 e 14 2.2737 e 13 0 5.417 e 14 5.3952 e 14 1.5321 e 14 1.1605 e 14 1.3894 e 14 2.3729 e 14 0 5.6843 e 14 7.303 e 15 4.1083 e 15 1.8898 e 15 5.5511 e 16 2.7367 e 15 6.1332 e 15 1.7764 e 15 1.199 e 14 1.058 e 13 1.6536 e 13 3.254 e 13 4.8524 e 14 2.2204 e 14 1.3086 e 14 1.1369 e 13 1.1369 e 13 2.5236 e 15 1.1949 e 14 3.9934 e 14 9.594 e 15 1.3776 e 15 2.2649 e 14 7.1054 e 15 7.816 e 14 1.0633 e 13 8.1478 e 14 1.6474 e 13 5.5747 e 14 3.8423 e 14 9.437 e 16 0 0 3.5282 e 14 4.1752 e 14 1.6804 e 14 1.2359 e 14 5.7038 e 15 7.664 e 15 2.8422 e 14 7.1054 e 14 ,
R E = 5.6399 e 14 2.565 e 14 1.6338 e 13 1.4923 e 13 1.4404 e 13 7.9398 e 14 1.954 e 13 1.8119 e 13 5.6917 e 14 5.9952 e 14 5.7493 e 14 6.2536 e 14 1.2586 e 13 2.1922 e 14 9.9476 e 14 1.2079 e 13 1.5585 e 14 1.8697 e 14 1.2879 e 14 4.7515 e 14 4.655 e 14 3.6591 e 14 1.35 e 13 2.2027 e 13 1.43 e 15 5.6567 e 15 1.2536 e 14 3.3307 e 15 3.8836 e 14 3.4182 e 16 5.6843 e 14 1.4921 e 13 1.5677 e 14 1.9792 e 14 2.6416 e 14 8.3162 e 15 3.7192 e 14 6.3602 e 15 2.1316 e 14 2.1316 e 14 5.8261 e 14 2.0009 e 14 3.9568 e 14 4.9441 e 14 1.9104 e 13 8.1823 e 14 1.8474 e 13 1.7053 e 13 9.2378 e 15 4.541 e 15 2.8567 e 14 2.0738 e 14 1.4258 e 14 4.5358 e 15 6.7502 e 14 1.35 e 13 2.7341 e 14 2.5121 e 14 3.3505 e 14 3.3193 e 14 8.2425 e 14 1.2146 e 14 7.1054 e 14 7.1054 e 14 .
and Q i ( i = 1 , 4 ¯ ) and W i ( i = 1 , 2 ¯ ) are arbitrary matrices over R with appropriate dimensions, P 2 , Q 2 , R 2 are the forms of (5) when m = 2.

5. Conclusions

In this paper, we provide the solvability conditions for dual split quaternion matrix Equation (4) and derive the general solution expressions when the equation is consistent. As an application, we give the necessary and sufficient conditions for the existence of a Hermitian solution to Equation (4). Additionally, we analyze some particular instances of dual split quaternion matrix Equation (4). To further demonstrate our findings, an illustrative example is provided. Looking ahead, our research will focus on exploring more intricate matrix and tensor equations over the dual split quaternion algebra.

Author Contributions

Methodology, K.-W.S. and Q.-W.W.; software, K.-W.S.; writing—original draft preparation, Q.-W.W. and K.-W.S.; writing—review and editing, Q.-W.W. and K.-W.S.; supervision, Q.-W.W.; project administration, Q.-W.W. All authors read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (no. 12371023).

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Hamilton, W.R. Lectures on Quaternions. In Landmark Writings in Western Mathematics 1640–1940; Hodges and Smith: Dublin, Ireland, 1853. [Google Scholar] [CrossRef]
  2. Farenick, D.R.; Pidkowich, B.A.F. The spectral theorem in quaternions. Linear Algebra Its Appl. 2003, 371, 75–102. [Google Scholar] [CrossRef]
  3. Zhang, F.Z. Quaternions and matrices of quaternions. Linear Algebra Its Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef]
  4. Cockle, J. On systems of algebra involving more than one imaginary and on equations of the fifth degree. Philos. Mag. 1849, 36, 434–437. [Google Scholar] [CrossRef]
  5. Alagöz, Y.; Oral, K.H.; Yüce, S. Split quaternion matrices. Miskolc Math. Notes 2012, 13, 223–232. [Google Scholar] [CrossRef]
  6. Erdoğdu, M.; Ozdemir, M. On eigenvalues of split quaternion matrices. Adv. Appl. Clifford Algebr. 2013, 23, 615–623. [Google Scholar] [CrossRef]
  7. Erdoğdu, M.; Ozdemir, M. On complex split quaternion matrices. Adv. Appl. Clifford Algebr. 2013, 23, 625–638. [Google Scholar] [CrossRef]
  8. Kula, L.; Yaylı, Y. Split quaternions and rotations in semi Euclidean space. J. Korean Math. Soc. 2007, 44, 1313–1327. [Google Scholar] [CrossRef]
  9. Özdemir, M.; Ergin, A.A. Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 2006, 56, 326–332. [Google Scholar] [CrossRef]
  10. Özdemir, M.; Erdoğdu, M.; Şimşek, H. On the eigenvalues and eigenvectors of a Lorentzian rotation matrix by using split quaternions. Adv. Appl. Clifford Algebr. 2014, 24, 179–192. [Google Scholar] [CrossRef]
  11. Clifford, W.K. Preliminary sketch of bi-quaternions. Proc. Lond. Math. Soc. 1873, 4, 381–395. [Google Scholar] [CrossRef]
  12. Cheng, J.; Kim, J.; Jiang, Z.; Che, W. Dual quaternion-based graph SLAM. Robot. Auton. Syst. 2016, 77, 15–24. [Google Scholar] [CrossRef]
  13. Brambley, G.; Kim, J. Unit dual quaternion-based pose optimization for visual runway observations. IET Cyber-Syst. Robot. 2020, 2, 181–189. [Google Scholar] [CrossRef]
  14. Wang, X.; Yu, C.; Lin, Z. A dual quaternion solution to attitude and position control for rigid body coordination. IEEE Trans. Robot. 2012, 28, 1162–1170. [Google Scholar] [CrossRef]
  15. Çöken, A.; Ekici, C.; Kocayusufoğlu, İ.; Görgülü, A. Formulas for dual split quaternionic curves. Kuwait J. Sci. Eng. 2009, 36, 1–14. [Google Scholar]
  16. Kula, L.; Yaylı, Y. Dual split quaternions and screw motion in Minkowski 3-space. Iran. J. Sci. Technol. Trans. 2006, 30, 245–258. [Google Scholar]
  17. Özkaldı, S.; Gündoğan, H. Dual split quaternions and screw motion in 3-dimensional Lorentzian space. Adv. Appl. Clifford Algebr. 2011, 21, 193–202. [Google Scholar] [CrossRef]
  18. Ramis, Ç.; Yaylı, Y. Dual split quaternions and Chasles’ theorem in 3 dimensional Minkowski space E 1 3 . Adv. Appl. Clifford Algebr. 2013, 23, 951–964. [Google Scholar] [CrossRef]
  19. Kong, X.Q. De Moivre’s theorem for the matrix representation of dual generalized quaternions. Educ. Reform Dev. 2022, 4, 10–24. [Google Scholar] [CrossRef]
  20. Bekar, M.; Yaylı, Y. Involutions in dual split quaternions. Adv. Appl. Clifford Algebr. 2016, 26, 553–571. [Google Scholar] [CrossRef]
  21. Erdoğdu, M.; Özdemir, M. Split quaternion matrix representation of dual split quaternions and their matrices. Adv. Appl. Clifford Algebr. 2015, 13, 787–798. [Google Scholar] [CrossRef]
  22. Xu, X.L.; Wang, Q.W. The consistency and the general common solution to some quaternion matrix equations. Ann. Funct. Anal. 2023, 14, 53. [Google Scholar] [CrossRef]
  23. Zhang, Y.; Wang, Q.-W.; Xie, L.-M. The Hermitian solution to a new system of commutative quaternion matrix equations. Symmetry 2024, 16, 361. [Google Scholar] [CrossRef]
  24. Yu, C.; Liu, X.; Zhang, Y. The generalized quaternion matrix equation AXB + CXD = E. Math. Methods Appl. Sci. 2020, 43, 8506–8517. [Google Scholar] [CrossRef]
  25. Dmytryshyn, A.; Kagstrom, B. Coupled Sylvester-type matrix equations and block diagonalization. SIAM J. Matrix Anal. Appl. 2015, 36, 580–593. [Google Scholar] [CrossRef]
  26. Zhang, H.; Yin, H. Conjugate gradient least squares algorithm for solving the generalized coupled sylvester matrix equations. Comput. Math. Appl. 2017, 12, 2529–2547. [Google Scholar] [CrossRef]
  27. Ben-Israel, A.; Greville, T.N.E. Generalized Inverses: Theory and Application; John Wiley and Sons: New York, NY, USA, 1974. [Google Scholar] [CrossRef]
  28. Liao, A.P.; Bai, Z.Z. The constrained solutions of two matrix equations. Acta Math. Sin. 2002, 18, 671–678. [Google Scholar] [CrossRef]
  29. Huang, G.X.; Yin, F.; Guo, K. An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB = C. J. Comput. Appl. Math. 2008, 212, 231–244. [Google Scholar] [CrossRef]
  30. Peng, Z.Y. The centro-symmetric solutions of linear matrix equation AXB = C and its optimal approximation. Chin. J. Eng. Math. 2003, 20, 60–64. [Google Scholar] [CrossRef]
  31. Xie, M.Y.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
  32. Chen, Y.; Wang, Q.W.; Xie, L.M. Dual quaternion matrix equation AXB = C with applications. Symmetry 2024, 16, 287. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Si, K.-W.; Wang, Q.-W. The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra. Symmetry 2024, 16, 491. https://doi.org/10.3390/sym16040491

AMA Style

Si K-W, Wang Q-W. The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra. Symmetry. 2024; 16(4):491. https://doi.org/10.3390/sym16040491

Chicago/Turabian Style

Si, Kai-Wen, and Qing-Wen Wang. 2024. "The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra" Symmetry 16, no. 4: 491. https://doi.org/10.3390/sym16040491

APA Style

Si, K. -W., & Wang, Q. -W. (2024). The General Solution to a Classical Matrix Equation AXB = C over the Dual Split Quaternion Algebra. Symmetry, 16(4), 491. https://doi.org/10.3390/sym16040491

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop