Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- The function holds true for all .
- For sequences and in converging to τ as , where , the superior limit as of is less than 0.
- (1)
- for all .
- (2)
- , where is a continuous function such that for all .
- (3)
- , where is a continuous function such that r for all .
- (4)
- , where is a continuous function such that for all and .
- (1)
- A sequence is defined as ϖ-convergent to some if as . Here, p is termed the ϖ-limit of .
- (2)
- is referred to as ϖ-Cauchy if as .
- (3)
- Regarding a ϖ-convergent that converges to some , if , then M is termed ϖ-closed.
- (4)
- For a ϖ-Cauchy sequence , if converges to some , then M is termed ϖ-complete.
3. Best Proximity Point Results
- ϖ is assumed to be of regular nature.
- The symbol ϕ represents a lower semi-continuous function, defined as , while ς denotes a simulation function belonging to .
- For a non-self mapping , a point is termed the best proximity point of the mapping g if
4. Modular Metric Spaces to Fuzzy Metric Spaces
- (i)
- The sequence is considered a μ-Cauchy sequence if, for all , 1 for all and .
- (ii)
- The sequence is considered to be μ-convergent to some if
- (iii)
- The fuzzy metric space is deemed μ-complete if every μ-Cauchy sequence in χ converges to some .
- (iv)
- g is called a μ-continuous mapping if implies 1.
5. Application to Fuzzy Fractional Differential Equations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sadiq Basha, S. Extensions of Banach’s contraction principle. Numer. Funct. Anal. Optim. 2010, 31, 569–576. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Best proximity points for α-ψ-proximal contractive type mappings and applications. Bull. Des Sci. MathéMatiques 2013, 8, 977–995. [Google Scholar] [CrossRef]
- Hussain, N.; Kutbi, M.A.; Salimi, P. Global optimal solutions for proximal fuzzy contractions. Phys. Stat. Mech. Its Appl. 2020, 551, 123925. [Google Scholar] [CrossRef]
- Moussaoui, A.; Hussain, N.; Melliani, S.; Hayel, N.; Imdad, M. Fixed point results via extended FZ-simulation functions in fuzzy metric spaces. J. Inequal. Appl. 2022, 2022, 69. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Roldán-López-de-Hierro, A.F.; Karapınar, E.; Roldán-López-de-Hierro, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Moussaoui, A.; Melliani, S. Some Relation-Theoretic Fixed Point Results in Fuzzy Metric Spaces. Asia Pac. J. Math. 2023, 10, 15. [Google Scholar]
- Ćirić, L.; Abbas, M.; Saadati, R.; Hussain, N. Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 2011, 217, 5784–5789. [Google Scholar] [CrossRef]
- Abdou, A.A.; Khamsi, M.A. On the fixed points of nonexpansive mappings in modular metric spaces. Fixed Point Theory Appl. 2013, 2013, 229. [Google Scholar] [CrossRef]
- Abdou, A.A.; Khamsi, M.A. Fixed points of multivalued contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2014, 2014, 249. [Google Scholar] [CrossRef]
- Basha, S.S. Best proximity point theorems on partially ordered sets. Optim. Lett. 2013, 7, 1035–1043. [Google Scholar] [CrossRef]
- Chistyakov, V.V. A fixed point theorem for contractions in modular metric spaces. arXiv 2011, arXiv:1112.5561. [Google Scholar]
- Chistyakov, V.V. Modular metric spaces, I: Basic concepts. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1–14. [Google Scholar] [CrossRef]
- Chistyakov, V.V. Modular metric spaces, II: Application to superposition operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 15–30. [Google Scholar] [CrossRef]
- Chauhan, S.; Shatanawi, W.; Kumar, S.; Radenovic, S. Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces. J. Nonlinear Sci. Appl. 2014, 7, 28–41. [Google Scholar] [CrossRef]
- Mongkolkeha, C.; Sintunavarat, W.; Kumam, P. Fixed point theorems for contraction mappings in modular metric spaces. Fixed Point Theory Appl. 2011, 2011, 93. [Google Scholar] [CrossRef]
- Raj, V.S. A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. Theory Methods Appl. 2011, 74, 4804–4808. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 1, 94. [Google Scholar] [CrossRef]
- Di Bari, C.; Vetro, C. Fixed point, attractors and weak fuzzy contractive mappings in a fuzzy metric space. J. Fuzzy Math. 2005, 13, 973–982. [Google Scholar]
- Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. J. Nonlinear Sci. Appl. 2015, 8, 1082–1094. [Google Scholar] [CrossRef]
- Hussain, N.; Salimi, P. Implicit contractive mappings in modular metric and fuzzy metric spaces. Sci. World J. 2014, 2014, 981578. [Google Scholar] [CrossRef]
- George, A.; Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets Syst. 1994, 64, 395–399. [Google Scholar] [CrossRef]
- Hussain, N.; Latif, A.; Salimi, P. Best proximity point results for modified Suzuki α-ψ-proximal contractions. Fixed Point Theory Appl. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Musielak, J.; Orlicz, W. Some remarks on modular spaces. Bull. Acad. Polon. Sci. 1959, 7, 661–668. [Google Scholar]
- Zhang, J.; Su, Y.; Cheng, Q. A note on ‘A best proximity point theorem for Geraghty-contractions’. Fixed Point Theory Appl. 2013, 2013, 99. [Google Scholar] [CrossRef]
- Iqbal, I.; Hussain, N.; Kutbi, M.A. Existence of the solution to variational inequality, optimization problem, and elliptic boundary value problem through revisited best proximity point results. J. Comput. Appl. Math. 2020, 375, 112–804. [Google Scholar] [CrossRef]
- Chaipunya, P.; Je Cho, Y.; Kumam, P. Geraghty-type theorems in modular metric spaces with an application to partial differential equation. Adv. Differ. Equ. 2012, 2012, 83. [Google Scholar] [CrossRef]
- Salimi, P.; Latif, A.; Hussain, N. Modified α-ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 1, 151. [Google Scholar] [CrossRef]
- Samet, B.; Vetro, C.; Vetro, F. Fixed points in modular metric spaces via simulation functions. Mathematics 2010. [Google Scholar]
- Grabiec, M. Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 1988, 27, 385–389. [Google Scholar] [CrossRef]
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theory for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, G.; Hussain, N.; Moussaoui, A. Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations. Symmetry 2024, 16, 627. https://doi.org/10.3390/sym16050627
Ali G, Hussain N, Moussaoui A. Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations. Symmetry. 2024; 16(5):627. https://doi.org/10.3390/sym16050627
Chicago/Turabian StyleAli, Ghada, Nawab Hussain, and Abdelhamid Moussaoui. 2024. "Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations" Symmetry 16, no. 5: 627. https://doi.org/10.3390/sym16050627
APA StyleAli, G., Hussain, N., & Moussaoui, A. (2024). Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations. Symmetry, 16(5), 627. https://doi.org/10.3390/sym16050627