Next Article in Journal
Dynamics of Symmetrical Discontinuous Hopfield Neural Networks with Poisson Stable Rates, Synaptic Connections and Unpredictable Inputs
Next Article in Special Issue
Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions
Previous Article in Journal
Nonexpansiveness and Fractal Maps in Hilbert Spaces
Previous Article in Special Issue
Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Unified Approach and Related Fixed-Point Theorems for Suzuki Contractions

1
Department of Mathematics, Informatics and Physics, Faculty of Natural Sciences, University of Gjirokastra, 6001 Gjirokastra, Albania
2
Faculty of Civil Engineering, University of Belgrade, Bulevarkralja Aleksandra 73, 11000 Belgrade, Serbia
3
Department of Mathematics and Informatics, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
4
Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia
5
Department of Teaching and English Language, High School “Abaz Shehu”, 6301 Tepelene, Albania
6
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia
*
Author to whom correspondence should be addressed.
Symmetry 2024, 16(6), 739; https://doi.org/10.3390/sym16060739
Submission received: 9 May 2024 / Revised: 2 June 2024 / Accepted: 12 June 2024 / Published: 13 June 2024
(This article belongs to the Special Issue Symmetry in Metric Spaces and Topology)

Abstract

:
This paper aims to give an extended class of contractive mappings combining types of Suzuki contractions α-admissible mapping and Wardowski F-contractions in b-metric-like spaces. Our results cover and generalize many of the recent advanced results on the existence and uniqueness of fixed points and fulfill the Suzuki-type nonlinear hybrid contractions on various generalized metrics.

1. Introduction

The advancement of fixed point theory in the last few decades has mainly been related to introducing a new kind of generalized metric space and extensions of the Banach Contraction Principle. This principle has become known as a useful tool for establishing the existence and uniqueness of a fixed point for contractive mappings. In this direction, in 2012, Wardowski [1,2] introduced a new type of contraction named  F -contraction as a generalization of this important principle in metric spaces. Subsequently, many researchers [3,4,5,6,7,8,9,10] further developed this new category by improving its properties and extending it in a more generalized setting. In the meantime, other recently defined concepts such as  α -admissible mapping in [11] promoted in [12,13,14,15,16], Suzuki contraction widely used in [17,18,19,20,21], and formulations in partial metric spaces, metric-like spaces,  b -metric spaces, and  b -metric -like spaces underline their significance and offer a broader understanding in various contexts of the fixed point theory. For an extended introduction, we could mention many new theorems and corresponding classical results with applications in the above spaces, resulting in notions of interpolative and hybrid contractions; see [22,23,24].
In this paper, we introduce the notion of generalized Suzuki-type  α , F -contraction via a set of implicit relations in the setting of  b -metric-like spaces. It strictly extends the known generalizations of metric and  b -metric spaces. Moreover, it presents a new approach and includes many types of contractions such as Suzuki  F -contraction, interpolative, hybrid, and  r -order hybrid contractions, exploring diverse fixed point theorems, implementations, and deduction for earlier and recent results.

2. Preliminaries

Definition 1.
Ref. [16]. Let  S  be a nonempty set and   v 1  be a given real number. A mapping   b : S × S 0 , +  is called a   b -metric-like if for all   s , , ζ S ,  the following conditions are satisfied:
  • b s , = 0  implies   s = ;
  • b s , = b , s ;
  • b s , v b s , ζ + b ζ , .
  • The pair   S , b  is called a   b -metric-like space (for short   b -m.l.s).
Note that by the first axiom of a definition, the self-distance of an arbitrary point  s S  may be positive.
There are various examples of  b -metric-like space in the reference literature. To illustrate them, we selected some from [16].
Example 1.
Let   S = 0 , +  and   b : S × S = 0 , +  defined by   b , ζ = + ζ 2  for all   , ζ S .  Then,   S , b  is a   b -m.l.s with parameter   v = 2  and   b  is not a   b -metric on   S .
Example 2.
Let   S = 0 , +  and   b : S × S = 0 , +  defined by   b , ζ = max , ζ 2  for all   , ζ S .  Then,   b  is a   b -metric-like on   S  with parameter   v = 2  and it is not a   b -metric or a metric-like on   S .
Definition 2.
Ref. [16]. Let  S , b  be a   b -m.l.s with parameter   v .  Then, for any sequence   s n  in   S  the following applies:
(a)
s n  is said to be convergent to  s S  if  lim n + b s n , s = b s , s ;
(b)
s n  is said to be a Cauchy sequence in   S , b  if   lim n , m + b s n , s m  exists and is finite;
(c)
S , b  is called a complete   b -m.l.s if, for every Cauchy sequence   s n  in   S , there exists   s S  such that   lim n , m + b s n , s m = lim n + b s n , s = b s , s .
Remark 1.
In a   b -metric-like-space:
-
The limit of a convergent sequence is not necessarily unique.
-
A convergent sequence need not be a Cauchy sequence.
The following example characterizes and supports Definition 2.
Example 3.
Let   S = 0 , +  and   b : S × S = 0 , +  defined by   b s , ζ = max s 2 , ζ 2 2  for all   s , ζ S .  Also let be the sequence   s n  as
s n = 1 i f n i s e v e n 0 i f n i s o d d .
For any  s 1  we have  lim n + b s n , s = lim n + max s n 2 , s 2 2 = s 4 = b s , s . Therefore, the sequence  s n  is convergent where  s n s  for each  s 1 , that is the limit of sequence, is not unique. Also, it is noted that  lim n , m + b s n , s m  does not exist, so it is not Cauchy.
Definition 3.
Ref. [16]. Let  S , b  be a   b -m.l.s with parameter   v , and a function   P : S S . We say that the function   P  is continuous if for each sequence   s n S  the sequence   P s n P s  whenever   s n s  as   n + ,  that is if   lim n + b s n , s = b s , s  yields   lim n + b P s n , P s = b P s , P s .
Remark 2.
In a   b -m.l.s with parameter   v 1 , if   lim n , m + b s n , s m = 0  then the limit of the sequence   s n  is unique if it exists.
Lemma 1.
Ref. [14]. Let  S , b  be a   b -m.l.s with parameter   v 1 . Then, the following applies:
(a) 
If   b ( s , ) = 0 ,  then   b ( s , s ) = b ( , ) = 0 ;
(b) 
If   s n  is a sequence such that   lim n + b s n , s n + 1 = 0 , then we have   lim n + b ( s n , s n ) = lim n + b ( s n + 1 , s n + 1 ) = 0 ;
(c) 
If   s , then   b ( s , ) > 0 .
Lemma 2.
Ref. [16]. Let  S , b  be a   b -metric-like space with parameter   v 1 , and suppose that   s n  is   b -convergent to   s  with   b s , s = 0 . Then, for each   S ,  we have
v 1 b s , lim inf n + b s n , lim sup n + b s n , v b s , .
Definition 4.
Ref. [1]. Let  S , b  be a metric space and   P : S S  be a mapping. Then,   P  is called an
  • F -contraction if there exists a function   F : 0 , + R  such that
  • F 1 F  is strictly increasing on   0 , + ;
  • F 2  For each sequence   α n  of positive numbers,
    lim n + α n = 0   if and only if lim n + F α n =
  • F 3  There exists   c 0 , 1  such that   lim α 0 + α c F α = 0 ;
  • F 4  There exists   τ > 0  such that
    τ + F b P s , P F b s ,
    for all   s , S  with   b P s , P > 0 .
For examples that show the class of  F -contraction, the reader can confront the extended literature in [1,2,3,6,7,9,12].
Definition 5.
Ref. [11]. Let  S  be a non-empty set. Let  P : S S  and  α : S × S R +  be given functions. We say that  P  is an  α -admissible mapping if  α s , 1  implies that  α P s , P 1  for all  s , S .
Definition 6.
Ref. [18]. Let  S ϕ  and  α : S × S 0 , +  be a function,  s n  be a sequence in  S  and  s S . Then,  S  is called  α -regular if for any  n N :  α s n , s n + 1 1  and  s n  converges to  s ,  then  α s n , s 1 .
Lemma 3.
Ref. [14]. Let  S , b  be complete  b -m.l.s with parameter  v 1 , let  s n  be a sequence such that  lim n + b s n , s n + 1 = 0 .  If for the sequence  s n ,  lim n , m + b s n , s m 0 , then there exists  ε > 0  and sequences  m k k = 1 +  and  n k k = 1 +  of natural numbers with  n k > m k > k ,  (positive integers) such that  b ( s m k , s n k ) ε , b ( s m k ,   s n k 1 ) < ε ,   ε / v 2 lim sup k + b ( s m k 1 , s n k 1 ) ε v , ε / v lim sup k + b ( s n k 1 , s m k ) ε v 2  and  ε / v lim sup k + b ( s m k 1 , s n k ) ε v 2 .
In the sequel, let we represent some notations and properties.
Suppose that  F : R + R  satisfied the conditions:
(a)
F is continuous and non-decreasing;
(b)
For any sequence of positive real numbers,  α n if  lim n + F α n =  then  lim n + α n = 0 .
This family of all functions  F : R + R  will be denoted by  F .
And  W 4  is the set of all continuous functions κ : 0 , + 4 0 , + , satisfying the conditions:
κ  is non-decreasing in respect to each variable;
κ u , u , u , u u   for   u 0 , + .
Let be the mappings  P : S S  and α : S × S 0 , + . We say that  P  satisfies admissible convergence property (for short A C -property), if for every sequence s n  in  S such that  α s n , s n + 1 1  for all  n N  and s n  converges to s ,  then α s , P s 1 .

3. Results

In this main section, among an enormous work presented for types of Suzuki contractions and interesting generalizations established in various spaces, we propose our new general definitions and related theorems concerning such contractive mappings.
Definition 7.
Let  S , b  be a complete  b -m.l.s with parameter  v 1 ,  P : S S  be a self-mapping, and there exist  F F ,  τ > 0  and  α : S × S 0 , + . Then,  P  is called a generalized  α -admissible Suzuki-type  α , F -contraction if the following condition is satisfied:
1 2 v b s , P s < b s , u
implies
α s , P s α u , P u F v 3 b P s , P u + τ F Ω s , u ,
for all  s , u S ,  α s , u 1  and  b P s , P u > 0 , where
  • Ω s , u = κ b s , u , b s , P s , b u , P u , b s , P u + b u , P s 4 v  for some  κ W 4 .
Definition 8.
Let  S , b  be a  b -m.l.s with parameter  v 1 ,  P : S S  be a self-mapping and  α : S × S 0 , + . Then,  P  is an  α -admissible Hardy–Rogers Suzuki-type interpolative  α , F -contraction, if there exist  F F ,   τ > 0  and  a 1 , a 2 , a 3 , a 4 0 , 1  with  0 < a 1 + a 2 + a 3 + a 4 < 1 ,  such that
1 2 v b s , P s < b s , u
implies
α s , P s α u , P u F v 3 b P s , P u + τ F Ω a s , u
for all   s , u S \ F i x P ,  α s , u 1  and  b P s , P u > 0 , where
Ω a ( s , u ) = b ( s , u ) a 1 b ( s , P s ) a 2 b ( u , P u ) a 3 b ( s , P u ) + b ( u , P s ) 4 v a 4 .
Definition 9.
Let  S , b  be a  b -m.l.s with parameter  v 1 ,  P : S S  be a self-mapping and  α : S × S 0 , + . Then,  P  is an  α -admissible Hardy–Rogers Suzuki-type  r -order hybrid  α , F -contraction, if there exist  F F ,   τ > 0  such that:
1 2 v b s , P s < b s , u
implies
α s , P s α u , P u F v 3 b P s , P u + τ F Ω a r s , u
for all   s , u S \ F i x P ,   α s , u 1 ,   r 0 ,   a i 0 , i = 1 , 2 , 3 , 4   such that   0 < a 1 + a 2 + a 3 + a 4 = 1   and   b P s , P u > 0 , where
Ω a r s , u = a 1 b ( s , u ) r + a 2 b ( s , P s ) r + a 3 b ( u , P u ) r + a 4 b ( s , P u ) + b ( u , P s ) 4 v r 1 r f o r r > 0 , s u b ( s , u ) a 1 b ( s , P s ) a 2 b ( u , P u ) a 3 b ( s , P u ) + b ( u , P s ) 4 v a 4 f o r r = 0 ; s , u S \ F i x P .
Remark 3.
Some notable cases of introduced definitions include the following:
  • v = 1   corresponds to all in metric setting.
  • F : 0 , + R   can be fixed regarding its condition, and it turns to a generalized Suzuki-type   α -contractions.
  • α s , u = 1 ,   leads to types of Suzuki   v , F -contraction defined in a   b -m.l.s.
  • All cases above taken simultaneously.
Theorem 1.
Let  S , b  be a complete  b -m.l.s with parameter  v 1  and  P  a generalized  α -admissible Suzuki-type  F -contraction. Assume that
J1. 
there exists  s 0 S  with  α s 0 , P s 0 1 ;
J2. 
P  is  α -admissible and satisfies  A C -property.
Then,  P  has a fixed point in  S , and it is unique if  α s , P s 1 , for all  s F i x P .
Proof. 
Let be  s n + 1 = P s n  for  n N 0 ,  the Picard sequence induced by function  P  with initial point  s 0 S  with  α s 0 , P s 0 1 .  Let we perform the general case where  s n s n + 1  for each n N 0 ,  (that is the same with  0 < b s n , P s n ). Since  P  is  α -admissible, then  α s 0 , P s 0 = α s 0 , s 1 1 implies  α P s 0 , P s 1 = α s 1 , s 2 1 . Repeating this process we obtain  α s n , s n + 1 1 . Hence, we have  α s n , s n + 1 1 , and  s n s n + 1 implies  1 2 v b s n , P s n < b s n , P s n = b s n , s n + 1 .□
Therefore, we apply Condition (1) of theorem
F b s n + 1 , s n + 2 + τ α s n , P s n α s n + 1 , P s n + 1 F v 3 b P s n , P s n + 1 + τ F κ b s n , s n + 1 , b s n , P s n , b s n + 1 , P s n + 1 , b s n , P s n + 1 + b s n + 1 , P s n 4 v = F κ b s n , s n + 1 , b s n , s n + 1 , b s n + 1 , s n + 2 , b s n , s n + 2 + b s n + 1 , s n + 1 4 v F κ b s n , s n + 1 , b s n , s n + 1 , b s n + 1 , s n + 2 , v b s n , s n + 1 + b s n + 1 , s n + 2 + 2 v b s n + 1 , s n 4 v F κ b s n , s n + 1 , b s n , s n + 1 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 + 3 b s n + 1 , s n 4
If suppose that
b s n , s n + 1 < b s n + 1 , s n + 2 ,
then from Inequality (4), we obtain
F b s n + 1 , s n + 2 + τ < F κ b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 ,
that implies
F b s n + 1 , s n + 2 F κ b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 τ < F κ b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 .
And from property of F have
b s n + 1 , s n + 2 < κ b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 , b s n + 1 , s n + 2 .
That is a contradiction based with property of  κ .  So we have that
b s n + 1 , s n + 2 b s n , s n + 1   for   all   n N .
Then, using the result (5), Inequality (4) yields
F b s n + 1 , s n + 2 F b s n , s n + 1 τ
Repeating this in general we obtain
F b s n + 1 , s n + 2 F b s n , s n + 1 τ F b s n 1 , s n 2 τ F b s n 2 , s n 1 3 τ ............................... F b s 0 , s 1 n τ .
As per above we have  lim n + F b s n , s n + 1 = since  τ > 0 . Hence, in view of property of F we obtain
lim n + b s n , s n + 1 = 0
Next, we show that lim n , m + b s n , s m = 0 .  Let we suppose that  lim n , m + b s n , s m > 0 . Then, by Lemma 3, there exist  ε > 0  and sequences  m k  and n k  of positive integers with  n k > m k > k ,  such that  b ( s m k , s n k ) ε , b ( s m k , s n k 1 ) < ε  and  ε v 2 lim sup k + b ( s m k 1 , s n k 1 ) ε v ε v lim sup k + b ( s n k 1 , s m k ) ε ,
ε v lim sup k + b ( s m k 1 , s n k ) ε v 2
From (7) and (8) we observe  1 2 v b s n k , P s n k < ε 2 v < b ( s m k , s n k )  and  0 < ε b ( s m k , s n k ) = b P s m k 1 , P s n k 1
Hence, applying Condition (1), we obtain
F v 3 b ( P s m k , P s n k ) + τ α ( s m k , P s m k ) α ( s n k , P s n k ) F b ( P s m k , P s n k ) + τ F κ ( b ( s m k , s n k ) , b ( s m k , P s m k ) , b ( s n k , P s n k ) , b ( s m k , P s n k ) + b ( s n k , P s m k ) 4 v ) = F κ b ( s m k , s n k ) , b ( s m k , s m k + 1 ) , b ( s n k , s n k + 1 ) , b ( s m k , s n k + 1 ) + b ( s n k , s m k + 1 ) 4 v ,
that implies
F v 3 b ( P s m k , P s n k ) + τ F κ b ( s m k , s n k ) , b ( s m k , s m k + 1 ) , b ( s n k , s n k + 1 ) , b ( s m k , s n k + 1 ) + b ( s n k , s m k + 1 ) 4 v .
By taking the limit superior as  k +  along (10), we write
lim sup k + F v 3 b ( P s m k , P s n k ) + τ lim sup k + F κ b ( s m k , s n k ) , b ( s m k , s m k + 1 ) , b ( s n k , s n k + 1 ) , b ( s m k , s n k + 1 ) + b ( s n k , s m k + 1 ) 4 v F κ lim sup k b ( s m k , s n k ) , lim sup k b ( s m k , s m k + 1 ) , lim sup k b ( s n k , s n k + 1 ) , lim sup x b ( s m k , s n k + 1 ) + lim sup x b ( s n k , s m k + 1 ) 4 v .
From (11), by using Lemmas 3 and result (7), we conclude
F v 3 ε v 2 F lim sup n + v 3 b ( s m k + 1 , s n k + 1 ) + τ F κ ε v , 0 , 0 , ε + ε v 2 4 v F κ ε v , 0 , 0 , ε v 2 F ε v .
Hence, the acquired inequality
F ε v + τ < F ε v
is a contradiction since  ε > 0 and  τ > 0 .
Hence,
lim n , m + b s n , s m = 0 .
The sequence  s n  is a  b -Cauchy sequence such that lim n , m b s n , s m = 0 .  Since  S , b  is a b-complete b -m.l.s, there is  s * S , such that
b s * , s * = lim n b s n , s * = lim n , m b s n , s m = 0 .
Further let we show that
1 2 v b s n , P s n < b s n , s * o r 1 2 v b P s n , P 2 s n < b P s n , s *
On the contrary, there exists  m N  with
1 2 v b s m , P s m b s m , s * a n d 1 2 v b P s m , P 2 s m b P s m , s * .
Therefore,
2 v b s m , s * b s m , P s m v b s m , s * + v b s * , P s m ,
and it gives
b s m , s * b s * , P s m .
Using (14) and (17), we conclude
b P s m , P 2 s m = b s m + 1 , s m + 2 < b s m , s m + 1 = b s m , P s m v b s m , s * + v b s * , P s m 2 v b s * , P s m .
and inequality above implies that
1 2 v b P s m , P 2 s m < b s * , P s m ,
that is a contradiction due to (16). Hence, Inequality (15) is true.
Therefore,
1 2 v b s n , P s n < b s n , s * , b P s n , P s * > 0   and   α s * , P s 1 .
So, we are in conditions to apply (1), and we have
F v 3 b s n + 1 , P s * + τ < α s n , P s n α s * , P s * F v 3 b P s n , P s * + τ F κ b s n , s * , b s n , P s n , b s * , P s * , b s n , P s * + b s * , P s n 4 v = F κ b s n , s * , b s n , s n + 1 , b s * , P s * , b s n , P s * + b s * , s n + 1 4 v
Taking limit superior as  n +  in Inequality (18) and keeping in mind (7), (14), and Lemma 3, we obtain
F v 2 b s * , P s * + τ F κ 0 , 0 , b s * , P s * , v b s * , P s * + 0 4 v F κ b s * , P s * , b s * , P s * , b s * , P s * , b s * , P s * F b s * , P s * ,
that implies
F v 2 b s * , P s * + τ F b s * , P s * .
Inequality (19) leads to a contradiction, so  b s * , P s * = 0 ,  and  s * S  is a fixed point of function  P . Also, the uniqueness of the fixed point can be proved easily from Condition (1) of the theorem.
Let there be two different fixed points named  u , s  with  α s , P s 1 , α u , P u 1 .
Then
u s i m p l i e s 0 < b u , s = b P u , P s ,
and
u s i m p l i e s 0 = 1 2 v b u , P u < b u , s .
Hence, being in the conditions of theorem and in view of (14), Inequality (1) implies
F v 3 b u , s + τ < α u , P u α s , P s F v 3 b P u , P s + τ F κ b u , s , b u , P u , b s , P s , b u , P s + b s , P u 4 v = F κ b u , s , b u , u , b s , s , b u , s + b s , u 4 v = F κ b u , s , 0 , 0 , b u , s 2 v F κ b u , s , b u , s , b u , s , b u , s .
From (20), we obtain
F v 3 b u , s + τ F κ b u , s , b u , s , b u , s , b u , s ,
which implies
F v 3 b u , s F κ b u , s , b u , s , b u , s , b u , s τ < F κ b u , s , b u , s , b u , s , b u , s .
The above inequality implies  b u , s < κ b u , s , b u , s , b u , s , b u , s  that is a contradiction due to property of κ . Therefore, the fixed point is unique.
Example 4.
Let  S , b  be a complete  b -m.l.s with parameter  v = 2 > 1 , where the  b -m.l. distance is given as  b s , u = s + u 2 . Define the mappings  P  and  α  by
P s = s / 8 f o r s 0 , 1 3 s f o r s > 1 , α s , u = 1 f o r s , u 0 , 1 0 o t h e r w i s e .
Clearly, the mapping  P is α -admissible. And for  s , u 0 , 1 , we have
1 2 v b s , P s = 1 4 b s , s 8 = 1 4 s + s 8 2 s 2 s + u 2 = b s , u .
Take  F F ,  such as  F t = ln t κ u 1 , u 2 , u 3 , u 4 = max u 1 , u 2 , u 3 , u 4  and τ = ln 8 . We see that for s , u S  that  α s , u = 1 , we have  s , u 0 , 1  and one can compute:
α s , P s α u , P u v 3 F b P s , P u + τ = ln v 3 b P s , P u + ln 8 = ln 8 s 8 + u 8 2 + ln 8 = ln 8 64 s + u 2 + ln 8 ln 1 8 b s , u + ln 8 = ln b s , u ln 8 + ln 8 ln max b s , u , b s , P s , b u , P u , b s , P u + b u , P s 4 v = ln κ b s , u , b s , P s , b u , P u , b s , P u + b u , P s 4 v = ln Ω s , u = F Ω s , u .
Then,  P  is a generalized Suzuki-type  α , F -contraction, and assumptions of theorem 1 are satisfied. Hence, s = 0  is the unique fixed point for  P .
Theorem 2.
Let  S , b  be a complete  b -m.l.s with parameter  v 1  and  P  a generalized  α -admissible Suzuki-type  F -contraction. Assume that
J1. 
P  is  α -admissible and there exists  s 0 S  with  α s 0 , P s 0 1 ;
J1. 
S  is  α  regular and for every sequence  s n  in S such that  α s n , s n + 1 1  for all  n N 0 ,  we have  α s m , s n 1  for all  m , n N  with  m < n .
Then,  P  has a fixed point, and it is unique if  α s , u 1 , for all  s , u F i x P .
Proof. 
Using J1, we define the Picard sequence  s n + 1 = P s n for  n N 0 ,  induced by function  P  with initial point  s 0 S  with  α s 0 , P s 0 1 . From the theorem above, it is concluded that the sequence s n  is a b -Cauchy sequence such that lim n , m b s n , s m = 0 . And there is  s * S , such that
b s * , s * = lim n b s n , s * = lim n , m b s n , s m = 0 .
In the same, we can show that
1 2 v b s n , P s n < b s n , s * o r 1 2 v b P s n , P 2 s n < b P s n , s *
Since S is regular, there exists a subsequence  s n k  of  s n such that  α s n k , s 1  for all k ∈ N. Similarly holds
1 2 v b s n k , P s n k < b s n k , s * o r 1 2 v b P s n k , P 2 s n k < b P s n k , s * .
Therefore, applying (1), we have
F v 3 b s n k + 1 , P s * + τ < α s n k , P s n k α s * , P s * F v 3 b P s n k , P s * + τ F κ b s n k , s * , b s n k , P s n k , b s * , P s * , b s n k , P s * + b s * , P s n k 4 s = F κ b s n k , s * , b s n k , s n k + 1 , b s * , P s * , b s n k , P s * + b s * , s n k + 1 4 v .
Taking limit superior in Inequality (22) and keeping in mind lemma 3, we obtain
F v 2 b s * , P s * + τ F κ 0 , 0 , b s * , P s * , v b s * , P s * + 0 4 v F κ b s * , P s * , b s * , P s * , b s * , P s * , b s * , P s * F b s * , P s * ,
which implies
F v 2 b s * , P s * + τ F b s * , P s * .
Inequality (23) leads to a contradiction, so  b s * , P s * = 0 ,  and  s * S is a fixed point of function  P . □
Let be two different fixed points named  u , s  with  α u , s 1 .
and
u s i m p l i e s 0 < b u , s = b P u , P s ,
also
u s i m p l i e s 0 = 1 2 v b u , P u < b u , s
Hence, Inequality (1) can be written as
F v 3 b u , s + τ < α u , P u α s , P s F v 3 b P u , P s + τ F κ b u , s , b u , P u , b s , P s , b u , P s + b s , P u 4 v = F κ b u , s , b u , u , b s , s , b u , s + b s , u 4 v = F κ b u , s , 0 , 0 , b u , s 2 v F κ b u , s , b u , s , b u , s , b u , s .
From (24), we obtain
F v 3 b u , s + τ F κ b u , s , b u , s , b u , s , b u , s ,
that is
F v 3 b u , s F κ b u , s , b u , s , b u , s , b u , s τ < F κ b u , s , b u , s , b u , s , b u , s ,
which implies  b u , s < κ b u , s , b u , s , b u , s , b u , s  that is a contradiction due to property of  κ . Therefore, the fixed point is unique.
Corollary 1.
Let  S , b  be a complete  b -m.l.s with parameter  v 1  and  P : S S .  If there exist  F F , τ > 0  such that
1 2 v b s , P s < b s , u
implies
F v 3 b P s , P u + τ F Ω s , u ,
for all   s , u S ,   b P s , P u > 0  where
  • Ω s , u = κ b s , u , b s , P s , b u , P u , b s , P u + b u , P s 4 v  for some  κ W 4 ,
  • then  P  has a unique fixed point in  S .
Proof. 
Corollary can be obtained from Theorem 1 by taking  α s , u = 1 .
Now we will propose some new results belonging to the class of Suzuki  α , F -contractions.
Theorem 3.
Let we have  S , b  a  b -m.l.s with parameter  v 1 ,  P : S S , and  α : S × S 0 , + .  If  P  is an Hardy–Rogers Suzuki- type interpolative  α , F -contraction, satisfying conditions  J 1 , J 2 , then  P  has a fixed point in  S . And it is unique if  α s , P s 1 , for all  s F i x P .
Proof. 
It is a consequence of Theorem 1 by taking  κ W 4 as  κ ( γ 1 , γ 2 , γ 3 , γ 4 ) = γ 1 a 1 γ 2 a 2 γ 3 a 3 γ 4 1 a 1 a 2 a 3 ; where  a 1 , a 2 , a 3 0 , 1 and  a 1 + a 2 + a 3 < 1 .  □
Theorem 4.
Let we have  S , b  a  b -m.l.s with parameter  v 1 ,  P : S S ,  and  α : S × S 0 , + .  If there exist  F F ,   τ > 0  such that hold condition  J 1 , J 2  and:
1 2 v b s , P s < b s , u
implies
α ( s , P s ) α ( u , P u ) F v 3 b P s , P u + τ F a 1 b ( s , u ) r + a 2 b ( s , P s ) r + a 3 b ( u , P u ) r + a 4 b ( s , P u ) + b ( u , P s ) 4 v r 1 r
for all  s , u S ,  α s , u 1 b P s , P u > 0  and  r > 0 .
  • Then,  P  has a fixed point in  S . And it is unique if  α s , P s 1 , for all  s F i x P .
Proof. 
It comes from Theorem 1 by taking  κ W 4  as  κ ( γ 1 , γ 2 , γ 3 , γ 4 ) = a 1 γ 1 r + a 2 γ 2 r + a 3 γ 3 r + a 4 γ 4 r 1 r , r > 0 ; where  0 < a 1 + a 2 + a 3 + a 4 < 1 .
Theorem 5.
Let  S , b  be a  b -m.l.s with parameter  v 1 , and mappings  P : S S , α : S × S 0 , + . If the following conditions are satisfied
-
There exists  s 0 S  with  α s 0 , P s 0 1 ;
-
P  is  α -admissible mapping and satisfies  A C -property;
-
P is a Hardy–Rogers Suzuki –type   r -order hybrid   α , F -contraction.
Then,  P  has a fixed point in  S . And it is unique if  α s , P s 1 , for all  s F i x P .
Proof. 
The  L a r s , u can be represented as
Ω a r s , u = κ 1 γ 1 , γ 2 , γ 3 , γ 4 = a 1 γ 1 r + a 2 γ 2 r + a 3 γ 3 r + a 4 γ 4 r 1 r f o r r > 0 , κ 2 γ 1 , γ 2 , γ 3 , γ 4 = γ 1 a 1 γ 2 a 2 γ 3 a 3 γ 4 a 4 f o r r = 0 .
where  κ 1 , κ 2 W 4 a 1 , a 2 , a 3 , a 4 0  with  0 < a 1 + a 2 + a 3 + a 4 = 1 ,   r 0 . Hence, the proof can be classified in Theorem 1. □
Corollary 2.
Let  S , b  be a  b -m.l.s with parameter  v 1 , and  P : S S . If there exist  F F ,   τ > 0  such that
1 2 v b s , P s < b s , u
implies
F v 3 b P s , P u + τ F Ω a r s , u
for all   s , u S \ F i x P ,   r 0 ,   b P s , P u > 0  and   a i 0 , i = 1 , 2 , 3 , 4  such that   0 < a 1 + a 2 + a 3 + a 4 = 1 , where
Ω a r s , u = a 1 b ( s , u ) r + a 2 b ( s , P s ) r + a 3 b ( u , P u ) r + a 4 b ( s , P u ) + b ( u , P s ) 4 v r 1 r f o r r > 0 , s u b ( s , u ) a 1 b ( s , P s ) a 2 b ( u , P u ) a 3 b ( s , P u ) + b ( u , P s ) 4 v a 4 f o r r = 0 ; s , u S \ F i x P .
Then,  P  has a fixed point in  S .
Proof. 
It can be derived from Theorem 5 by taking  α s , u = 1 .
Corollary 3.
Let  S , b  be a  b -m.l.s with parameter  v 1 , and  P : S S ,  α : S × S 0 , + . If there exist  F F ,   τ > 0  such that hold condition  J 1 , J 2  and
1 2 v b s , P s < b s , u
implies
τ + α s , P s α u , P u v 3 b P s , P u b ( s , u ) a 1 b ( s , P s ) a 2 b ( u , P u ) a 3 b ( s , P u ) + b ( u , P s ) 4 v a 4
for all  s , u S \ F i x P ,  b P s , P u > 0  and  a i 0 , i = 1 , 2 , 3 , 4  such that  0 < a 1 + a 2 + a 3 + a 4 = 1 ,
  • Then,  P  has a fixed point in  S . And it is unique if  α s , P s 1 , for all  s F i x P .
Proof. 
The proof is called done by Theorem 1, if we take  F F , as  F x = x  and
κ u 1 , u 2 , u 3 , u 4 = u 1 a 1 u 2 a 2 u 3 a 3 u 4 1 ( a 1 + a 2 + a 3 ) .
Corollary 4.
Let  S , b  be a  b -m.l.s with parameter  v 1 , and  P : S S . If there exist  F F , τ > 0  such that:
1 2 v b s , P s < b s , u
implies
τ + v 3 b P s , P u b ( s , u ) a 1 b ( s , P s ) a 2 b ( u , P u ) a 3 b ( s , P u ) + b ( u , P s ) 4 v a 4
for all  s , u S \ F i x P ,  b P s , P u > 0  and  a i 0 , i = 1 , 2 , 3 , 4  such that  0 < a 1 + a 2 + a 3 + a 4 = 1 ,
  • Then,  P  has a fixed point in  S .
Proof. 
It is generated by corollary 3 by taking α s , u = 1 .

4. Application

The study of the existence and finding of the solution of differential and integral equations is a longstanding problem, so one of the main tools of the solution is developed and consists of the application of the fixed point method. Many researchers have employed various contractions in different metric spaces to define the necessary conditions for a variety of types of linear and nonlinear integral equations
In this supported section, by employing  b -m.l.s, the purpose is to prove the existence and uniqueness of the solution for the following integral equation of the form:
x t = h t , x t + λ 0 t G t , ρ h ρ , x ρ d ρ ; t 0 , 1 ,
where  0 t 1  and given continuous functions  G : 0.1 × R 0 , + , h : 0.1 × R R .
Consider  Y = C 0 , 1 , R  the set of real continuous functions defined on 0 , 1  with the  b -metric-like  b s , u = sup t 0 , 1 s t + u t m for all s , u Y . The pair  Y , b is a complete  b -m.l.s with parameter  v = 2 m 1 .
Define the mapping  P : Y Y  for all  x C 0 , 1 , by
P x t = h t , x t + λ 0 t G t , ρ h ρ , x ρ d ρ .
Associated with the following hypotheses:
(i)
The mapping P : Y Y  is continuous;
There exists constant  A > 0  such that h : 0 , 1 × R R  satisfies  h ρ , v ρ + h ρ , u ρ A v ρ + u ρ  for  t , ρ 0 , 1 ;
(ii)
The constants λ , A and function  G  satisfy condition  λ sup 0 t G t , ρ d ρ < 1 A v 4 m 1  for  t , ρ 0 , 1 .
Theorem 6.
If for the integral Equation (26) assume the assertions: (i), (ii), (iii) then, the integral Equation (26) has a unique solution  x t  in  Y .
Proof. 
Solving Equation (26) is equivalent to find  x t Y which is a fixed point of function  P . And for all  t 0 , 1 , and x , u Y  we have
v 3 σ b P x t , P u t = v 3 P x t + P u t m = v 3 h t , x t + λ 0 t G t , ρ h ρ , x ρ d ρ + h t , u t + λ 0 t G t , ρ h ρ , u ρ d ρ m = v 3 h t , x t + h t , u t + λ 0 t G t , ρ h ρ , x ρ d ρ + 0 t G t , ρ h ρ , u ρ d ρ m = v 3 h t , x t + h t , u t + λ 0 t G t , ρ h ρ , x ρ + h ρ , u ρ d ρ m v 3 A x t + u t + λ 0 t G t , ρ A x ρ + u ρ d ρ m = v 3 A x t + u t m 1 m + λ 0 t G t , ρ A x ρ + u ρ m 1 m d ρ m = v 3 A b x , u 1 m + λ 0 t G t , ρ A b x , u 1 m d ρ m = v 3 A b x , u 1 m + λ A b x , u 1 m 0 t G t , ρ d ρ m = v 3 A b x , u 1 m 1 + λ 0 t G t , ρ d ρ m = v 3 A m b x , u 1 + λ 0 t G t , ρ d ρ m v 3 A m b x , u 1 A v 4 m m b x , u v
Further, taking  κ W 4  as  κ ( γ 1 , γ 2 , γ 3 , γ 4 ) = γ 1  we can obtain:
v 3 b P x t , P u t 1 v L ( x , u ) .
Consequently, by choosing:  F ζ = ln ζ τ = ln v  we deduce
1 2 v b x , P x b x , u i m p l i e s F v 3 b P x , P u + τ F L x , u
which implies that  P  is a generalized Suzuki-type  v , F -contraction. Thus, Corollary 1 is applicable and  x t is the fixed point of  P  which is the solution of the integral Equation (26). □

5. Conclusions

In this work, via the help of an implicit class of functions, we introduced new contractive mappings, including linear and nonlinear contractions revised under the name of Suzuki contractions. Our approach generates and resumes more well-known fixed point theorems; it shows the validity and generality of the proof of the main result for broad setting theorems. Also, it provides a further extension on the recent published work in the fixed point theory.
A future focus holds for the following:
-
A consistent improvement in the inequality condition can be considered in terms of  v ;
-
The extension of the established Suzuki results in extended  b -m.l.s; rectangular metric space; and  b -rectangular metric spaces elaborating with the notion of  α -admissible mappings.

Author Contributions

K.Z., V.T. and V.Š.-Č. designed the research and M.Z. wrote the paper. K.Z. and M.P. wrote the draft preparation and provided the methodology. S.R. co-wrote and made revisions to the paper. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Serbian Ministry of Education, Science and Technological Development, (Agreement No. 451-03-65/2024-03/200122).

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors thank the editor and the referees for their valuable comments and suggestions which greatly improved the quality of this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Wardowski, D. Fixed points of a new type of contractive mappings in complete metric space. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
  2. Wardowski, D.; Dung, N.V. Fixed points of F—weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
  3. Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Čavić, V.Š.; Radenović, S. On F—contractions: A Survey. Contamporary Math. 2022, 3, 327–342. [Google Scholar] [CrossRef]
  4. Vetro, F. F-contractions of Hardy-Rogers-type and application to multistage decision. Nonlinear Anal. Model. Control. 2016, 21, 531–546. [Google Scholar] [CrossRef]
  5. Joshi, V.; Singh, D.S.; Petrusel, A. Existence results for integral equations and boundary value problems for generalized F—contractions in b- Metric-like-Spaces. J. Funct. Spaces 2017, 2017, 1649864. [Google Scholar]
  6. Piri, H.; Kumam, P. Some fixed point theorems concerning F—contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef]
  7. Cosentino, M.; Vetro, P. Fixed point result for F—contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef]
  8. Wang, M.; Saleem, N.; Liu, X.; Ansari, A.H.; Zhou, M. Fixed Point of (α, β)-Admissible Generalized Geraghty F-Contraction with Application. Symmetry 2022, 14, 1016. [Google Scholar] [CrossRef]
  9. Lukács, A.; Kajxaxntó, S. Fixed point results for various type F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef]
  10. Shukla, S.; Radenović, S.; Kadelburg, Z. Some fixed point theorems for ordered F—generalized contractions in O-f-orbitally complete partial metric spaces. Theory Appl. Math. Comput. Sci. 2014, 4, 87–98. [Google Scholar]
  11. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α − ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
  12. Parvaneh, V.; Hussain, N.; Kadelburg, Z. Generalized Wardowski type fixed point theorems via α—admissible FG-contractions in b-metric spaces. Acta Math. Sci. 2016, 36, 1445–1456. [Google Scholar] [CrossRef]
  13. Hussain, N.; Radenovi’c, S.; Zoto, K. Common Fixed Point Results of (αψ, φ)-Contractions for a Pair of Mappings and Applications. Mathematics 2018, 6, 182. [Google Scholar] [CrossRef]
  14. Zoto, K.; Rhoades, B.E.; Radenovic, S. Some generalizations for α − ψ, ϕ contractions in b-Metric-like spaces and application. Fixed Point Theory Appl. 2017, 2017, 26. [Google Scholar] [CrossRef]
  15. Gopal, D.; Abbas, M.; Patel, D.K.; Vetro, C. Fixed point of α—type F—contractive mappings with an application to non-linear fractional differential equation. Acta Math. Sci. 2016, 36, 957–970. [Google Scholar] [CrossRef]
  16. Alghmandi, M.A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces. J. Inequal. Appl. 2013, 2013, 402. [Google Scholar] [CrossRef]
  17. Suzuki, T. A new type of fixed point theorems in metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [Google Scholar] [CrossRef]
  18. Hammad, H.A.; De la Sen, M.; Aydi, H. Analytical solution for diferential and nonlinear integral equations via Fω-Suzuki contraction in modified ω-metric-like spaces. J. Func. Spaces 2021, 2021, 6128586. [Google Scholar] [CrossRef]
  19. Arif, M.; Imdad, M. Fixed point results under nonlinear Suzuki (F, R≠)-contractions with an application. Filomat 2022, 36, 3155–3165. [Google Scholar] [CrossRef]
  20. Alsulami, H.H.; Karapinar, E.; Piri, H. Fixed points of generalized F—Suzuki type contraction in complete b-metric spaces. Discret. Dyn. Nat. Soc. 2015, 2015, 969726. [Google Scholar] [CrossRef]
  21. Chandok, L.B.; Huang, H.; Radenovic, S. Some fixed point results for the generalized F—Suzuki type contractions in b-metric spaces. Sahand Commun. Math. Anal. 2018, 11, 81–89. [Google Scholar]
  22. Shagari, M.; Shi, Q.S.; Rashid, S.; Foluke, U.I.; Khadijah, M.A. Fixed points of nonlinear contractions with applications. AIMS Math. 2021, 6, 9378–9396. [Google Scholar] [CrossRef]
  23. Karapınar, E.; Algahtani, O.; Aydi, H. On Interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
  24. Noorwali, M. Revising the Hardy-Rogers-Suzuki-type Z-contractions. Adv. Differ. Equ. 2021, 2021, 413. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zoto, K.; Šešum-Čavić, V.; Pantović, M.; Todorčević, V.; Zoto, M.; Radenović, S. A Unified Approach and Related Fixed-Point Theorems for Suzuki Contractions. Symmetry 2024, 16, 739. https://doi.org/10.3390/sym16060739

AMA Style

Zoto K, Šešum-Čavić V, Pantović M, Todorčević V, Zoto M, Radenović S. A Unified Approach and Related Fixed-Point Theorems for Suzuki Contractions. Symmetry. 2024; 16(6):739. https://doi.org/10.3390/sym16060739

Chicago/Turabian Style

Zoto, Kastriot, Vesna Šešum-Čavić, Mirjana Pantović, Vesna Todorčević, Marsela Zoto, and Stojan Radenović. 2024. "A Unified Approach and Related Fixed-Point Theorems for Suzuki Contractions" Symmetry 16, no. 6: 739. https://doi.org/10.3390/sym16060739

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop