Precise Wigner–Weyl Calculus for the Honeycomb Lattice
Abstract
:1. Introduction
- Star product identity:
- First trace identity:Here, by , we understand the trace of the Weyl symbol, while is the trace of an operator itself.
- Second trace identity:
- Weyl symbol of the identity operator:
2. Statement of the Main Results
2.1. Definition of Weyl Symbol and Its Properties
- Trace property:
- Second trace identity:
- Star property:
- Weyl symbol of unity:
- Star product without differentiation:
2.2. Quantum Hall Effect in Condensed Matter System Defined on Honeycomb Lattice
- Weyl symbols and obey Groenewold equationHere, the Moyal product ∗ is defined asIt is worth mentioning that, for the complete description of the system, we need the values of the Weyl symbols defined on spatial phase space . For such values of spatial momenta and coordinates, the Weyl symbol of unity is equal to 1.
- We express the DC conductivity (in units of , averaged over the lattice area) of the two-dimensional non-interacting systems asHere, means anti-symmetrization.
- We show that the above expression for the conductivity (in units of , averaged over the system area) is reduced to the following expression in the case of the equilibrium system at zero temperature:Here, the is the Weyl symbol of the Matsubara Green function, while is the Weyl symbol of its inverse. Momentum space is a Euclidean one; its points are denoted by . is the Matsubara frequency.
- One can check that Equation (27) is a topological invariant. For that, we need the system to have been in thermal equilibrium originally, and need the thermal equilibrium to correspond to zero temperature. Moreover, we need the Hamiltonian to not depend on time. The value of the average conductivity is then robust to smooth variations of the system. The sum over x is important for the topological invariance of this quantity.
3. Wigner–Weyl Calculus of Felix Buot (1D)
3.1. The Hilbert Space
3.2. The Symbol
3.3. Moyal Product
3.4. Trace and Its Properties
3.5. The Symbol of the Identity Operator
4. Wigner–Weyl Calculus of Felix Buot in Graphene
4.1. The Hilbert Space (Physical Properties)
4.2. Symbol
4.3. Moyal Product
4.4. Trace and Its Properties
4.5. Symbol of the Identity Operator
4.6. Star Product without Differentiation
5. Precise Wigner–Weyl Calculus in Graphene
5.1. The Hilbert Space (Extended Properties)
5.2. W Symbol
5.3. Moyal Product
5.4. Trace and Its Properties
5.5. W Symbol of the Identity Operator
5.6. Star Product without Differentiation
6. Dynamics of Systems Defined on Honeycomb Lattice, and Hall Conductivity
6.1. Keldysh Technique of Field Theory
6.2. Electric Conductivity and Wigner–Weyl Calculus
6.3. Gauge Transformation of Weyl Symbol
6.4. Equilibrium Limit of Hall Conductivity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Groenewold, H.J. On the Principles of elementary quantum mechanics. Physica 1946, 12, 405–460. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Weyl, H. Quantenmechanik und Gruppentheorie. Z. Phys. 1927, 46, 1–46. [Google Scholar] [CrossRef]
- Wigner, E.P. On the quantum correction for thermodynamic equilibrium. Phys. Rev 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Ali, S.T.; Englis, M. Quantization Methods: A Guide for Physicists and Analysts. Rev. Math. Phys. 2005, 17, 391–490. [Google Scholar] [CrossRef]
- Berezin, F.A.; Shubin, M.A. Colloquia Mathematica Societatis Janos Bolyai; North-Holland: Amsterdam, The Netherland, 1972; p. 21. [Google Scholar]
- Curtright, T.L.; Zachos, C.K. Quantum Mechanics in Phase Space. Asia Pac. Phys. Newsl. 2012, 1, 37. [Google Scholar] [CrossRef]
- Zachos, C.; Fairlie, D.; Curtright, T. Quantum Mechanics in Phase Space; World Scientific: Singapore, 2005. [Google Scholar]
- Cohen, L. Generalized Phase-Space Distribution Functions. J. Math. Phys. 1966, 7, 781. [Google Scholar] [CrossRef]
- Agarwal, G.S.; Wolf, E. Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. I. Mapping Theorems and Ordering of Functions of Noncommuting Operators. Phys. Rev. D 1970, 2, 2161–2186. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Sudarshan Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and Incoherent States of the Radiation Field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar]
- Cahill, K.E.; Glauber, R.J. Glauber Ordered Expansions in Boson Amplitude Operators. Phys. Rev. 1969, 177, 1882–1902. [Google Scholar] [CrossRef]
- Buot, F.A. Nonequilibrium Quantum Transport Physics in Nanosystems; World Scientific: Singapore, 2009. [Google Scholar]
- Schwinger, J. Unitary operator bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef]
- Buot, F.A. Method for calculating TrHn in solid-state theory. Phys. Rev. B 1974, 10, 3700. [Google Scholar] [CrossRef]
- Buot, F.A. Quantum Superfield Theory and Lattice Weyl Transform in Nonequilibrium Quantum Transport Physics. Quantum Matter 2013, 2, 247–288. [Google Scholar] [CrossRef]
- Wootters, W.K. A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 1987, 176, 1–21. [Google Scholar] [CrossRef]
- Leonhardt, U. Quantum-State Tomography and Discrete Wigner Function. Phys. Rev. Lett. 1995, 74, 4101–4105. [Google Scholar] [CrossRef]
- Kasperkovitz, P.; Peev, M. Wigner–Weyl Formalisms for Toroidal Geometries. Ann. Phys. 1994, 230, 21–51. [Google Scholar] [CrossRef]
- Ligabò, M. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism. J. Math. Phys. 2016, 57, 082110. [Google Scholar] [CrossRef]
- Björk, G.; Klimov, A.B.; Sánchez-Soto, L.L. Chapter 7 The discrete Wigner function. Prog. Opt. 2008, 51, 469–516. [Google Scholar] [CrossRef]
- Galetti, D.; de Toledo Piza, A. An extended Weyl-Wigner transformation for special finite spaces. Phys. A Stat. Mech. Its Appl. 1988, 149, 267–282. [Google Scholar] [CrossRef]
- Cohendet, O.; Combe, P.; Sirugue, M.; Sirugue-Collin, M. A stochastic treatment of the dynamics of an integer spin. J. Phys. Math. Gen. 1988, 21, 2875. [Google Scholar] [CrossRef]
- Opatrný, T.; Miranowicz, A.; Bajer, J. Coherent states in finite-dimensional Hilbert space and their Wigner representation. J. Mod. Opt. 1996, 43, 417–432. [Google Scholar] [CrossRef]
- Opatrný, T.; Welsch, D.G.; Bužek, V. Parametrized discrete phase-space functions. Phys. Rev. A 1996, 53, 3822–3835. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.; De Almeida, A.O. The Weyl representation on the torus. Ann. Phys. 1999, 276, 223–256. [Google Scholar] [CrossRef]
- Mukunda, N.; Arvind, A.; Chaturvedi, S.; Simon, R. Wigner distributions and quantum mechanics on Lie groups: The case of the regular representation. J. Math. Phys. 2004, 45, 114–148. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Ercolessi, E.; Marmo, G.; Morandi, G.; Mukunda, N.; Simon, R. Wigner distributions for finite dimensional quantum systems: An algebraic approach. Pramana 2005, 65, 981–993. [Google Scholar] [CrossRef]
- Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D. Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 1978, 111, 61–110. [Google Scholar] [CrossRef]
- Kontsevich, M. Deformation Quantization of Poisson Manifolds. Lett. Math. Phys. 2003, 66, 157–216. [Google Scholar] [CrossRef]
- Felder, G.; Shoikhet, B. Deformation Quantization with Traces. Lett. Math. Phys. 2000, 53, 75–86. [Google Scholar] [CrossRef]
- Kupriyanov, V.G.; Vassilevich, D.V. Star products made (somewhat) easier. Eur. Phys. J. C 2008, 58, 627–637. [Google Scholar] [CrossRef]
- Zubkov, M.A.; Wu, X. Topological invariant in terms of the Green functions for the Quantum Hall Effect in the presence of varying magnetic field. arXiv 2019, arXiv:1901.06661. [Google Scholar] [CrossRef]
- Zubkov, M.A.; Khaidukov, Z.V. Topology of the momentum space, Wigner transformations, and a chiral anomaly in lattice models. JETP Lett. 2017, 106, 166. [Google Scholar] [CrossRef]
- Chernodub, M.N.; Zubkov, M.A. Scale magnetic effect in Quantum Electrodynamics and the Wigner–Weyl formalism. Phys. Rev. D 2017, 96, 056006. [Google Scholar] [CrossRef]
- Khaidukov, Z.V.; Zubkov, M.A. Chiral Separation Effect in lattice regularization. Phys. Rev. D 2017, 95, 074502. [Google Scholar] [CrossRef]
- Zubkov, M.A. Momentum space topology of QCD. Ann. Phys. 2018, 393, 264. [Google Scholar] [CrossRef]
- Zubkov, M.A. Absence of equilibrium chiral magnetic effect. Phys. Rev. D 2016, 93, 105036. [Google Scholar] [CrossRef]
- Zubkov, M.A. Wigner transformation, momentum space topology, and anomalous transport. Ann. Phys. 2016, 373, 298. [Google Scholar] [CrossRef]
- Chernodub, M.N. Anomalous Transport Due to the Conformal Anomaly. Phys. Rev. Lett. 2016, 117, 141601. [Google Scholar] [CrossRef]
- Fialkovsky, I.; Zubkov, M. Precise Wigner–Weyl calculus for lattice models. Nucl. Phys. B 2020, 954, 114999. [Google Scholar] [CrossRef]
- Zhang, C.; Zubkov, M. Influence of interactions on integer quantum Hall effect. Ann. Phys. 2022, 444, 169016. [Google Scholar] [CrossRef]
- Banerjee, C.; Fialkovsky, I.V.; Lewkowicz, M.; Zhang, C.X.; Zubkov, M.A. Wigner–Weyl calculus in Keldysh technique. J. Comput. Electron. 2021, 20, 2255–2283. [Google Scholar] [CrossRef]
- Thouless, D.J.; Kohmoto, M.; Nightingale, M.P.; den Nijs, M. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 1982, 49, 405–408. [Google Scholar] [CrossRef]
- Avron, J.E.; Seiler, R.; Simon, B. Homotopy and Quantization in Condensed Matter Physics. Phys. Rev. Lett. 1983, 51, 51–53. [Google Scholar] [CrossRef]
- Fradkin, E. Field Theories of Condensed Matter Physics; Addison Wesley Publishing Company: Boston, MA, USA, 1991. [Google Scholar]
- Hatsugai, Y. Topological aspects of the quantum Hall effect. J. Phys. Condens. Matter 1997, 9, 2507–2549. [Google Scholar] [CrossRef]
- Qi, X.L.; Hughes, T.L.; Zhang, S.C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424. [Google Scholar] [CrossRef]
- Kaufmann, R.M.; Li, D.; Wehefritz-Kaufmann, B. Notes on topological insulators. Rev. Math. Phys. 2016, 28, 1630003. [Google Scholar] [CrossRef]
- Tong, D. Lectures on the Quantum Hall Effect. arXiv 2016, arXiv:1606.06687. [Google Scholar]
- Ishikawa, K.; Matsuyama, T. Magnetic field induced multi component QED in three-dimensions and quantum Hall effect. Z. Phys. C 1986, 33, 41–45. [Google Scholar] [CrossRef]
- Volovik, G.E. An analog of the quantum Hall effect in a superfluid 3He film. JETP 1988, 67, 9. [Google Scholar]
- Volovik, G.E. The Universe in a Helium Droplet; Clarendon Press: Oxford, UK, 2003. [Google Scholar]
- Coleman, S.; Hill, B. No more corrections to the topological mass term in QED3. Phys. Lett. B 1985, 159, 184. [Google Scholar] [CrossRef]
- Lee, T. The absence of radiative corrections from higher-order loops to the topological mass in (2+1)-dimensional electrodynamics. Phys. Lett. B 1986, 171, 247. [Google Scholar] [CrossRef]
- Kubo, R.; Hasegawa, H.; Hashitsume, N. Quantum Theory of Galvanomagnetic Effect. I. Basic Considerations. J. Phys. Soc. Jpn. 1959, 14, 56–74. [Google Scholar] [CrossRef]
- Niu, Q.; Thouless, D.J.; Wu, Y.S. Quantized Hall conductance as a topological invariant. Phys. Rev. B 1985, 31, 3372. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Khmel’nitzkii, D.; Larkin, A.I.; Lee, P.A. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B 1980, 22, 5142. [Google Scholar] [CrossRef]
- Altshuler, B.L.; Aronov, A.G. Electron-Electron Inter-Action in Disordered Systems; Efros, A.L., Pollak, M., Eds.; Elsevier/North Holland: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Zhang, C.X.; Zubkov, M.A. Hall conductivity as the topological invariant in phase space in the presence of interactions and non-uniform magnetic field. JETP Lett. 2019, 110, 487–494. [Google Scholar] [CrossRef]
- Dean, C.R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; Moon, P.; Koshino, M.; et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 2013, 497, 598–602. [Google Scholar] [CrossRef]
- Polini, M.; Guinea, F.; Lewenstein, M.; Manoharan, H.C.; Pellegrini, V. Artificial honeycomb lattices for electrons, atoms and photons. Nat. Nanotechnol. 2013, 8, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Onoda, S.; Sugimoto, N.; Nagaosa, N. Theory of non-equilibirum states driven by constant electromagnetic fields: Non-commutative quantum mechanics in the Keldysh formalism. Theor. Phys. 2006, 116, 61. [Google Scholar] [CrossRef]
- Onoda, S.; Sugimoto, N.; Nagaosa, N. Intrinsic Versus Extrinsic Anomalous Hall Effect in Ferromagnets. Phys. Rev. Lett. 2006, 97, 2. [Google Scholar] [CrossRef]
- Sugimoto, N.; Onoda, S.; Nagaosa, N. Gauge covariant formulation of Wigner representation through deformation quantization—Application to Keldysh formalism with electromagnetic field. Prog. Theor. Phys. 2007, 117, 415. [Google Scholar] [CrossRef]
- Onoda, S.; Sugimoto, N.; Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 2008, 77, 3. [Google Scholar] [CrossRef]
- Kamenev, A. Many-body theory of non-equilibrium systems. arXiv 2004, arXiv:cond-mat/0412296. [Google Scholar]
- Kamenev, A. Field Theory of Non-Equilibrium Systems; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Miller, J.; Zubkov, M. Topological Quantization of Fractional Quantum Hall Conductivity. Symmetry 2022, 14, 2095. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chobanyan, R.; Zubkov, M.A. Precise Wigner–Weyl Calculus for the Honeycomb Lattice. Symmetry 2024, 16, 1081. https://doi.org/10.3390/sym16081081
Chobanyan R, Zubkov MA. Precise Wigner–Weyl Calculus for the Honeycomb Lattice. Symmetry. 2024; 16(8):1081. https://doi.org/10.3390/sym16081081
Chicago/Turabian StyleChobanyan, Raphael, and Mikhail A. Zubkov. 2024. "Precise Wigner–Weyl Calculus for the Honeycomb Lattice" Symmetry 16, no. 8: 1081. https://doi.org/10.3390/sym16081081
APA StyleChobanyan, R., & Zubkov, M. A. (2024). Precise Wigner–Weyl Calculus for the Honeycomb Lattice. Symmetry, 16(8), 1081. https://doi.org/10.3390/sym16081081