Next Article in Journal
Discrete Space Deep Reinforcement Learning Algorithm Based on Support Vector Machine Recursive Feature Elimination
Previous Article in Journal
Generating Chaos in Dynamical Systems: Applications, Symmetry Results, and Stimulating Examples
Previous Article in Special Issue
A Unified Approach and Related Fixed-Point Theorems for Suzuki Contractions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions

by
Nawab Hussain
1,*,†,
Nawal Alharbi
1,2,† and
Ghada Basendwah
1,†
1
Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah 51452, Saudi Arabia
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2024, 16(8), 939; https://doi.org/10.3390/sym16080939
Submission received: 13 June 2024 / Revised: 9 July 2024 / Accepted: 15 July 2024 / Published: 23 July 2024
(This article belongs to the Special Issue Symmetry in Metric Spaces and Topology)

Abstract

:
This paper investigates the existence, uniqueness, and symmetry of solutions for Φ –Atangana–Baleanu fractional differential equations of order μ ( 1 , 2 ] under mixed nonlocal boundary conditions. This is achieved through the use of covariant and contravariant J S -contractions within a generalized framework of a sequential extended bipolar parametric metric space. As a consequence, we obtain the results on covariant and contravariant Ćirić, Chatterjea, Kannan, and Reich contractions as corollaries. Additionally, we substantiate our fixed-point findings with specific examples and derive similar results in the setting of sequential extended fuzzy bipolar metric space.

1. Introduction

The notion of a metric space has been extensively generalized in the academic literature. One of the latest advances in this domain is the concept of a parametric space, as introduced by [1], which has subsequently been generalized in various manners, such as b-parametric metric space and extended parametric b-metric space; see [2,3,4,5]. On the other hand, Mutlu and Gürdal [6] defined bipolar metric spaces that formalize different types of distance. Many authors have published articles on fixed points in generalizations of bipolar metrics; see [7,8,9]. In this paper, we define a sequential extended bipolar parametric metric space (SEBPMS), which generalizes extended bipolar parametric b-metric space. Also, we generalize the work of [10,11] by defining covariant and contravariant J S -contractions in the SEBPMS setting and proving certain fixed-point theorems and many induced corollaries. By delineating a Ω -triangular fuzzy bipolar set, we generalize our results to a new concept of sequential extended fuzzy bipolar metric spaces (SEFBMSs). Ultimately, inspired by studies of [12,13], we investigate the existence and uniqueness of solutions for fractional derivatives (FDs) of Φ - A B C of order 1 < μ 2 in the framework of non-local mixed boundary conditions (NMBCs).
Definition 1
([14]). Let P and Q be two nonempty sets and let S : P × Q [ 0 , ] be a function. Define the following sets:
C L ( P , S , q ) = { { p n } P : lim n S ( p n , q ) = 0 } ; C R ( Q , S , p ) = { { q n } Q : lim n S ( p , q n ) = 0 } ,
where S meets the following criteria:
  • ( S 1) S ( p , q ) = 0 p = q P Q ;
  • ( S 2) S ( p , q ) = S ( q , p ) , p P , q Q ;
  • ( S 3)for some k > 0 , p 1 , p 2 P and q 1 , q 2 Q ; it follows that
    S ( p 1 , q 2 ) k lim sup n [ S ( p 1 , q 1 ) + S ( p n , q 1 ) ] , { p n } C L ( P , S , q 2 ) ; S ( p 1 , q 2 ) k lim sup n [ S ( p 2 , q 2 ) + S ( p 2 , q n ) ] , { q n } C R ( Q , S , p 1 ) .
Hence the triplet ( P , Q , S ) is termed as a sequential bipolar metric space.
  • Parvaneh et al., in their work [10], defined Θ as the set of control functions Θ : ( 0 , ) ( 1 , ) that meet the criteria:
    • ( Θ 1)  Θ is continuous and strictly increasing;
    • ( Θ 2) for each sequence { ϱ n } ( 0 , ) , lim n Θ ( ϱ n ) = 1 lim n ϱ n = 0 .
  • Parvaneh and Ghoncheh in [15] delineated Ω ˜ as the class of functions Ω : [ 0 , ) [ 0 , ) that are strictly increasing and continuous, satisfying the condition Ω 1 ( s ) s Ω ( s ) .
Definition 2.
Assume that P and Q are two nonempty sets, Ω Ω ˜ and ϱ : P × Q × ( 0 , ) [ 0 , ) is said to be an extended parametric bipolar b-metric space on P Q provided that τ > 0 :
  • ( ϱ 1) ϱ ( p , q , τ ) = 0 p = q ;
  • ( ϱ 2) ϱ ( p , q , τ ) = ϱ ( q , p , τ ) , ( p , q ) P Q ;
  • ( ϱ 3) ϱ ( p 1 , q 2 , τ ) Ω ϱ ( p 1 , q 1 , τ ) + ϱ ( p 2 , q 1 , τ ) + ϱ ( p 2 , q 2 , τ ) , ( p 1 , q 2 ) ( p 2 , q 1 ) P × Q .
Thus the quadruple ( P , Q , ϱ , Ω ) defines what is known as an extended parametric bipolar b-metric space, (abbreviated as EPBbMS), governed by the control function Ω.
Remark 1.
It is important to mention the following remarks:
  • If Ω ( p ) = s p , the EPBbMS becomes parametric bipolar b-metric spaces (to sum up, PBbMSs).
  • If Ω ( p ) = p , it will revert back to a parametric bipolar metric space (abbreviated as PBMS).

2. Main Results

In this section, we present the concept of sequential extended bipolar parametric metric spaces (SEBPMSs), establish several fixed point theorems through J S -contractions, and obtain as corollaries the results on covariant and contravariant Ćirić, Chatterjea, Kannan, and Reich contractions. Additionally, we articulate and demonstrate fixed-point theorems within two categories of generalized metric spaces. Consider P and Q as two nonempty sets and define S ˘ : P × Q × ( 0 , ) [ 0 , ) as a function. Given p P and q Q , we proceed to define the following sets:
C ˜ L ( P , S ˘ , q ) = { { p n } P : lim n S ˘ ( p n , q , τ ) = 0 , τ > 0 } , C ˜ R ( Q , S ˘ , p ) = { { q n } Q : lim n S ˘ ( p , q n , τ ) = 0 , τ > 0 } .
Definition 3.
Let P and Q be two nonempty sets and S ˘ : P × Q × ( 0 , ) [ 0 , ) be a function satisfying the following conditions for all τ > 0 :
  • ( S ˘ 1) S ˘ ( p , q , τ ) = 0 implies p = q P Q ;
  • ( S ˘ 2) S ˘ ( p , q , τ ) = S ˘ ( q , p , τ ) , p , q P Q ;
  • ( S ˘ 3)if there exists Ω Ω ˜ , such that for every distinct ( p 1 , q 1 ) , ( p 2 , q 2 ) P × Q ,
    S ˘ ( p 1 , q 2 , τ ) Ω ( lim sup n [ S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) ] ) , { p n } C ˜ L ( P , S ˘ , q 2 ) ; S ˘ ( p 1 , q 2 , τ ) Ω ( lim sup n [ S ˘ ( p 2 , q 2 , τ ) + S ˘ ( p 2 , q n , τ ) ] ) , { q n } C ˜ R ( Q , S ˘ , p 1 ) .
Then S ˘ is referred to as a sequential extended bipolar parametric metric, and the triple ( P , Q , S ˘ , Ω ) is termed as a sequential extended bipolar parametric metric space (SEBPMS).
Definition 4.
Let Y be a function from ( P 1 Q 1 , S ˘ 1 ) to ( P 2 , Q 2 , S ˘ 2 ) ; if Y ( P 1 ) P 2 and Y ( Q 1 ) Q 2 , then Y is called covariant mapping, and we denote this as Y : ( P 1 , Q 1 , S ˘ 1 ) ( P 2 , Q 2 , S ˘ 2 ) . In contrast, if Y ( P 1 ) Q 2 and Y ( Q 1 ) P 2 , then Y is called contravariant mapping, and we denote this as Y : ( P 1 , Q 1 , S ˘ ) ( P 2 , Q 2 , S ˘ 2 ) .
Definition 5.
Let ( P , Q , S ˘ , Ω ) be an SEBPMS.
(i) 
The points of P , Q , and P Q are said to be left points, right points, and central points, respectively, and sequences of left points, right points, and central points are called left sequences, right sequences, and bisequences, respectively;
(ii) 
If both { p n } and { q n } converge to the same central point, then { ( p n , q n ) } is said to be a biconvergent;
(iii) 
(a)A bisequence { ( p n , q n ) } is termed as a Cauchy bisequence if there exists N N such that lim n , m S ˘ ( p n , q m , τ ) = 0 , m , n N , τ > 0 ;
(b) 
If every Cauchy bisequence is biconvergent, then SEBPM is said to be complete.
Proposition 1.
Every extended parametric bipolar b-metric space ( P , Q , ϱ , Ω ) is a sequential extended bipolar parametric metric space.
Proof. 
It is evident that conditions ( S ˘ 1 ) and ( S ˘ 2 ) as specified in Definition 3 are met. Let p 1 , p 2 P , q 1 , q 2 Q , { p n } C ˜ L ( P , S ˘ , q 2 ) and { q n } C ˜ R ( Q , S ˘ , p 1 ) .
S ˘ ( p 1 , q 2 , τ ) Ω S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) + S ˘ ( p n , q 2 , τ ) Ω lim sup n S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) + S ˘ ( p n , q 2 , τ ) Ω ( lim sup n S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) ) ,
and
S ˘ ( p 1 , q 2 , τ ) Ω S ˘ ( p 1 , q n , τ ) + S ˘ ( p 2 , q n , τ ) + S ˘ ( p 2 , q 2 , τ ) Ω ( lim sup n S ˘ ( p 1 , q n , τ ) + S ˘ ( p 2 , q n , τ ) + S ˘ ( p 2 , q 2 , τ ) ) = Ω ( lim sup n [ S ˘ ( p 2 , q n , τ ) + S ˘ ( p 2 , q 2 , τ ) ] ) .
for all n 1 , τ > 0 . Hence, ( S ˘ 3 ) is satisfied. □
Example 1.
Let S : P × Q [ 0 , ) be an SBM function and S ˘ ( p , q , τ ) = e τ S ( p , q ) 1 . We show that S ˘ is an SEBPMS with Ω ( σ ) = e k σ 1 , for some k > 0 . Obviously, conditions ( S ˘ 1 ) and ( S ˘ 2 ) of Definition 3 are satisfied. On the other hand, for p 1 , p 2 P , q 1 , q 2 Q , and τ > 0 ,
S ˘ ( p 1 , q 2 , t ) = e τ S b ( p 1 , q 2 ) 1 e τ k lim sup n [ S ( p 1 , q 1 ) + S b ( p n , q 1 ) ] 1 , e e k lim sup n [ τ S ( p 1 , q 1 ) 1 + τ S ( p n , q 1 ) 1 ] 1 = e k lim sup n [ S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) ] 1 = Ω ( lim sup n [ S ˘ ( p 1 , q 1 , τ ) + S ˘ ( p n , q 1 , τ ) ] ) ,
{ p n } C L ( P , S , q 2 ) { p n } C ˜ L ( P , S ˘ , q 2 ) .
  • Similarly,
S ˘ ( p 1 , q 2 , t ) = e τ S ( p 1 , q 2 ) 1 e τ k lim sup n [ S ( p 2 , q n ) + S ( p 2 , q 2 ) ] 1 , e e k lim sup n [ τ S ( p 2 , q n ) 1 + τ S ( p 2 , q 2 ) 1 ] 1 = e k lim sup n [ S ˘ ( p 2 , q n , τ ) + S ˘ ( p 2 , q 2 , τ ) ] 1 = Ω ( lim sup n [ S ˘ ( p 2 , q n , τ ) + S ˘ ( p 2 , q 2 , τ ) ] ) ,
{ q n } C R ( Q , S , p 1 ) { q n } C ˜ R ( Q , S ˘ , q 2 ) . Thus, condition ( S ˘ 3 ) from Definition 3 is fulfilled, confirming that ( P , Q , S ˘ , Ω ) qualifies as an SEBPMS.
Proposition 2.
Let ( P , Q , S ˘ , Ω ) be an SEBPMS. If a central point p is a limit of a (right or left) sequence { p n } such that S ˘ ( p , p , τ ) = 0 , τ > 0 , then it is the unique limit of this sequence.
Proof. 
Let { p n } P be a left sequence converging to p in P Q , with S ˘ ( p , p , τ ) = 0 for every τ > 0 . Assuming that q Q is another limit point of this sequence, the following is established.
S ˘ ( p , q , τ ) Ω ( lim sup n [ S ˘ ( p , p , τ ) + S ˘ ( p n , p , τ ) ] ) , = Ω ( 0 ) = 0 .
Hence, p = q . Therefore, p is the unique limit of { q n } . Analogously, { p n } P is a right sequence converging to q in P Q , where S ˘ ( q , q , τ ) = 0 , τ > 0 .
Proposition 3.
In an SEBPMS ( P , Q , S ˘ , Ω ) , every convergent Cauchy bisequence { ( p n , q n ) } is biconvergent to a central limit p with S ˘ ( p , p , τ ) = 0 .
Proof. 
Let { ( p n , q n ) } be a Cauchy bisequence that converges to ( p , q ) P × Q that p n q and q n p as n . Then,
S ˘ ( p , q , τ ) Ω ( lim sup m [ S ˘ ( p , q m , τ ) + S ˘ ( p m , q m , τ ) ] ) = Ω ( 0 ) = 0 .
As m tends to infinity on the right-hand side of Equation (2); it can be deduced that S ˘ ( p , q , τ ) = 0 , thereby indicating that p is a central limit. Consequently, the bisequence { ( p n , q n ) } is biconvergent to p with S ˘ ( p , p , τ ) = 0 . □
Definition 6.
Let ( P , Q , S ˘ , Ω ) be an SEBPMS. Then, Y : P Q P Q is called covariant J S -contraction if there are Θ Θ and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 , such that the following inequality holds:
Θ ( S ˘ ( Y p , Y q , τ ) ) ( Θ ( S ˘ ( p , q , τ ) ) ) a 1 × ( Θ ( S ˘ ( Y p , q , τ ) ) ) a 2 × ( Θ ( S ˘ ( p , Y q , τ ) ) ) a 3 × Θ S ˘ ( Y p , q , τ ) + S ˘ ( p , Y q , τ ) 2 a 4 ,
p P , q Q , τ > 0 .
Theorem 1.
Let ( P , Q , S ˘ , Ω ) denote a complete SEBPMS, and let Y : P Q P Q be a covariant J S -contraction. Assume the existence of ( p 0 , q 0 ) P × Q such that Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) = sup { S ˘ ( p i , q j , τ ) : i , j = 1 , 2 , : q n = Y q n 1 , p n = Y p n 1 , τ > 0 } < . Then, Y has a unique fixed point in P Q .
Proof. 
Consider ( p 0 , q 0 ) P × Q ; we subsequently define
Δ ( S ˘ , Y n , ( p 0 , q 0 ) ) = sup { S ˘ ( p n 1 + i , q n 1 + j , τ ) : i , j = 1 , 2 , , τ > 0 } , n 1 .
Then, for i , j N , we obtain
Θ ( S ˘ ( p n + i , q n + j , τ ) ) = Θ ( S ˘ ( Y p n 1 + i , Y q n 1 + j , τ ) ) ( Θ ( S ˘ ( p n 1 + i , q n 1 + i , τ ) ) ) a 1 × ( Θ ( S ˘ ( Y p n 1 + i , q n + j , τ ) ) ) a 2 × ( Θ ( S ˘ ( p n 1 + i , Y q n 1 + j , τ ) ) ) a 3 × Θ S ( Y p n 1 + i , q n + j , τ ) + S ˘ ( p n 1 + i , Y q n 1 + j , τ ) 2 a 4 = ( Θ ( S ˘ ( p n 1 + i , q n 1 + i , τ ) ) ) a 1 × ( Θ ( S ˘ ( p n + i , q n + j , τ ) ) ) a 2 × ( Θ ( S ˘ ( p n 1 + i , q n + j , τ ) ) ) a 3 × Θ S ˘ ( p n + i , q n + j , τ ) + S ˘ ( p n 1 + i , q n + j , τ ) 2 a 4 ( Θ ( Δ ( S ˘ , Y n , ( p 0 , q 0 ) ) ) ) a 1 + a 2 + a 3 + a 4 for any n N .
As Δ ( S ˘ , Y n , ( p 0 , q 0 ) ) Δ ( S ˘ , Y , ( p 0 , q 0 ) ) < , from (4), it follows that n 1 ,
Θ ( Δ ( S ˘ , Y n + 1 , ( p 0 , q 0 ) ) = Θ ( sup S ˘ ( Y n + i p 0 , Y n + j q 0 , τ ) ) Θ ( Δ ( S ˘ , Y n , ( p 0 , q 0 ) ) ) a 1 + a 2 + a 3 + a 4 Θ ( Δ ( S ˘ , Y n 1 , ( p 0 , q 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) 2 Θ ( Δ ( S ˘ , Y , ( p 0 , q 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) n .
Then, for any m > n 1 , it follows that
Θ S ˘ ( p n , q m , τ ) = Θ S ˘ ( Y n p 0 , Y m q 0 , τ ) = Θ S ˘ ( Y ( n 1 ) + 1 p 0 , Y ( n 1 ) + ( m n ) q 0 , τ ) Θ ( Δ ( S ˘ , Y n , ( p 0 , q 0 ) ) ) Θ ( Δ ( S ˘ , Y , ( p 0 , q 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) n 1 as n .
Hence, by ( Θ 2 ) , the bisequence { ( p n , q n ) } forms a Cauchy sequence within a complete SEBPMS; this pair sequence converges and, according to Proposition 3, biconverges to a unique limit ζ in P Q , for which S ˘ ( ζ , ζ , τ ) = 0 . Moreover,
Θ ( S ˘ ( p n , Y ζ , τ ) ) = Θ ( S ˘ ( Y p n 1 , Y ζ , τ ) ) ( Θ ( S ˘ ( p n 1 , ζ , τ ) ) ) a 1 × ( Θ ( S ˘ ( p n , ζ , τ ) ) ) a 2 × ( Θ ( S ˘ ( Y p n 1 , Y ζ , τ ) ) ) a 3 × Θ S ˘ ( p n , ζ , τ ) + S ˘ ( p n 1 , Y ζ , τ ) 2 a 4 .
Taking n and using ( Θ 1 ) , we obtain the following result:
Θ ( S ˘ ( ζ , Y ζ , τ ) ) ( Θ ( S ˘ ( ζ , Y ζ , τ ) ) ) a 3 + a 4 .
We deduce that Y ζ = ζ . Now, let μ P be a fixed point of Y such that S ˘ ( μ , ζ , τ ) < ; then,
1 < Θ ( S ˘ ( μ , ζ , τ ) ) = Θ ( S ˘ ( Y μ , Y ζ , τ ) ) ( Θ ( S ˘ ( μ , ζ , τ ) ) ) a 1 × ( Θ ( S ˘ ( μ , Y ζ , τ ) ) ) a 2 × ( Θ ( S ˘ ( Y μ , ζ , τ ) ) ) a 3 × Θ S ˘ ( μ , Y ζ , τ ) + S ˘ ( Y μ , ζ , τ ) 2 a 4 = ( Θ ( S ˘ ( μ , ζ , τ ) ) ) a 1 × ( Θ ( S ˘ ( μ , ζ , τ ) ) ) a 2 × ( Θ ( S ˘ ( μ , ζ , τ ) ) ) a 3 × Θ S ˘ ( μ , ζ , τ ) + S ˘ ( μ , ζ , τ ) 2 a 4 = ( Θ ( S ˘ ( μ , ζ , τ ) ) ) a 1 + a 2 + a 3 + a 4 < Θ ( S ˘ ( μ , ζ , τ ) ) ,
which is a contradiction. So, S ˘ ( μ , ζ , τ ) = 0 , i.e., ζ = μ . A similar conclusion holds whenever ζ Q . □
Corollary 1.
Let ( P , Q , S ˘ , Ω ) denote a complete SEBPMS and let Y : P Q P Q be a covariant function satisfying the following:
S ˘ ( Y p , Y q , τ ) a 1 S ˘ ( p , q , τ ) + a 2 S ˘ ( Y p , q , τ ) + a 3 S ˘ ( p , Y q , τ ) + a 4 S ˘ ( Y p , q , τ ) + ( S ˘ ( p , Y q , τ ) 2 ,
p P , q Q , τ > 0 and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 . Assume the existence of ( p 0 , q 0 ) P × Q such that Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) = sup { S ˘ ( p i , q j , τ ) : i , j = 1 , 2 , : q n = Y q n 1 , p n = Y p n 1 , τ > 0 } < . Then, Y has a unique fixed point in P Q .
Proof. 
Putting Θ ( s ) = e s , where Θ Θ in Theorem 1, we then have (5). □
Remark 2.
The condition (5) is equivalent to
S ˘ ( Y p , Y q , τ ) a 1 2 S ˘ ( p , q , τ ) + a 2 2 S ˘ ( Y p , q , τ ) + a 3 2 S ˘ ( p , Y q , τ ) + a 4 2 S ˘ ( Y p , q , τ ) + S ˘ ( p , Y q , τ ) 2 + 2 a 1 a 2 S ˘ ( p , q , τ ) S ˘ ( Y p , q , τ ) + 2 a 1 a 3 S ˘ ( p , q , τ ) S ˘ ( p , Y q , τ ) + 2 a 1 a 4 S ˘ ( p , q , τ ) [ S ˘ ( Y p , q , τ ) + S ˘ ( p , Y q , τ ) ] 2 + 2 a 2 a 3 S ˘ ( Y p , q , τ ) S ˘ ( p , Y q , τ ) + 2 a 2 a 4 S ˘ ( Y p , q , τ ) S ˘ ( Y p , q , τ ) + S ˘ ( p , Y q , τ ) 2 + 2 a 3 a 4 S ˘ ( p , Y q , τ ) S ˘ ( Y p , q , τ ) + ( S ˘ ( p , Y q , τ ) 2 ,
p P , q Q , τ > 0 and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 .
Remark 3.
From Corollary 1 and Remark 2, we obtain the following results:
  • A covariant extension of a Kannan result by taking a 1 = a 4 = 0 ;
  • A covariant Chatterjea-type result by taking a 1 = a 2 = a 3 = 0 , a 4 [ 0 , 1 2 ) ;
  • A covariant extension of a Reich result by taking a 4 = 0 ;
  • A covariant Ćirića-type result by taking a 1 + a 2 + a 3 + 2 a 4 < 1 and Θ ( s ) = e s , where Θ Θ , in Theorem 1.
Example 2.
Consider P = { ( ξ , η ) R 2 : ξ 2 + η 2 4 } , Q = { ( ξ , η ) R 2 : ( ξ 1 2 ) 2 η 2 1 4 } and S ˘ ( ( a 1 , b 1 ) , ( c 1 , d 1 ) , τ ) = e τ | b 1 d 1 | 1 , ( a 1 , b 1 ) P , ( c 1 , d 1 ) Q and τ > 0 . Then, S ˘ is a complete SEBPMS on P Q with Ω ( σ ) = exp ( σ ) 1 , σ 0 . Define Y : P Q P Q by
Y ( ξ , η ) = ( 0 , sin ξ 2 ) , ( ξ , η ) P Q
Clearly, Y is a covariant J S -contraction. For any ( p , q ) = : ( ( a , b ) , ( c , d ) ) P × Q , it follows that
Δ ( S ˘ , Y , ( p , q ) ) = sup { S ˘ ( p i , q j , τ ) ; i , j N , τ > 0 } = sup { S ˘ ( Y p i 1 , Y q j 1 , τ ) ; i , j N , τ > 0 } = sup exp ( τ | sin c j 2 sin d j 2 | ) 1 < .
Let Θ = e σ , σ > 0 ; this implies that
Θ ( S ˘ ( Y p , Y q , τ ) ) = e S ˘ ( Y p , Y q , τ ) = e ( exp ( τ | sin c j 2 sin d j 2 | ) 1 ) e ( exp ( τ | c j 2 d j 2 | ) 1 ) e ( exp ( τ | d j b i | ) 1 ) 1 2 = ( Θ ( S ˘ ( p , q , τ ) ) ) 1 2 .
We conclude that a 1 = 1 2 , a 2 = a 3 = a 4 = 0 . Therefore, the conditions of Theorem 1 are satisfied and Y has a unique fixed point ( 0 , 0 ) P Q .
Definition 7.
Let ( P , Q , S ˘ , Ω ) be an SEBPMS. Then, Y : P Q P Q is called contravariant J S -contraction, whenever there are Θ Θ and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 such that the following inequality holds:
Θ ( S ˘ ( Y q , Y p , τ ) ) ( Θ ( S ˘ ( p , q , τ ) ) ) a 1 × ( Θ ( S ˘ ( p , Y p , τ ) ) ) a 2 × ( Θ ( S ˘ ( Y q , q , τ ) ) ) a 3 × Θ S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) 2 a 4 ,
p P , q Q , τ > 0 .
Theorem 2.
Let ( P , Q , S ˘ , Ω ) be a complete SEBPMS; Y : P Q P Q is a continuous contravariant J S -contraction such that there exists ( p 0 , Y p 0 ) P × Q with Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) = sup { S ˘ ( p i , q j , τ ) : i , j = 1 , 2 , : q n = Y p n , p n + 1 = Y q n , τ > 0 } < . Then, Y has a unique fixed point in P Q .
Proof. 
Let ( p 0 , Y p 0 ) P × Q ; subsequently, we define
Δ ( S ˘ , Y n , ( p 0 , Y p 0 ) ) = sup { S ˘ ( p n 1 + i , q n 1 + j , τ ) : i , j = 1 , 2 , , τ > 0 } , n 1 .
Then, i , j N , we obtain
Θ ( S ˘ ( p n + i , q n + j , τ ) ) = Θ ( S ˘ ( Y q n 1 + i , Y p n + j , τ ) ) ( Θ ( S ˘ ( p n + j , q n 1 + i , τ ) ) ) a 1 × ( Θ ( S ˘ ( p n + j , Y p n + j , τ ) ) ) a 2 × ( Θ ( S ˘ ( Y q n 1 + i , q n 1 + i , τ ) ) ) a 3 × Θ S ˘ ( p n + j , Y p n + j , τ ) + S ˘ ( Y q n 1 + j , q n 1 + j , τ ) 2 a 4 ( Θ ( S ˘ ( p n + j , q n 1 + i , τ ) ) ) a 1 ( Θ ( S ˘ ( p n + j , q n + j , τ ) ) ) a 2 × ( Θ ( S ˘ ( p n + j , q n 1 + i , τ ) ) ) a 3 × Θ S ˘ ( p n + j , q n + j , τ ) + S ˘ ( p n + j , q n 1 + i , τ ) 2 a 4 Θ ( Δ ( S ˘ , Y n , ( p 0 , Y p 0 ) ) ) a 1 + a 2 + a 3 + a 4 , n 1 .
As Δ ( S ˘ , Y n , ( p 0 , Y p 0 ) ) Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) < , n 1 , then from (8), it follows that
Θ ( Δ ( S ˘ , Y n + 1 , ( p 0 , Y p 0 ) ) ) = Θ ( sup S ˘ ( Y n + i p 0 , Y n + j q 0 , τ ) ) Θ ( Δ ( S ˘ , Y n , ( p 0 , Y p 0 ) ) ) a 1 + a 2 + a 3 + a 4 Θ ( Δ ( S ˘ , Y n 1 , ( p 0 , Y p 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) 2 Θ ( Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) n .
m > n 1 , it follows that:
Θ S ˘ ( p n , q m , τ ) = Θ S ˘ ( Y n p 0 , Y m p 0 , τ ) = Θ S ˘ ( Y ( n 1 ) + 1 p 0 , Y ( n 1 ) + ( m n ) p 0 , τ ) Θ ( Δ ( S ˘ , Y n 1 , ( p 0 , Y p 0 ) ) ) Θ ( Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) ) ( a 1 + a 2 + a 3 + a 4 ) n 1 as n .
Hence, the sequence { ( p n , q n ) } forms a Cauchy sequence within P Q . Given the completeness of P Q , this sequence converges, and according to Proposition 3, it biconverges to a certain ζ in P Q for which S ˘ ( ζ , ζ , τ ) = 0 . Furthermore,
Θ ( S ˘ ( q n , Y ζ , τ ) ) = Θ ( S ˘ ( Y q n 1 , Y ζ , τ ) ) ( Θ ( S ˘ ( ζ , q n 1 , τ ) ) ) a 1 × ( Θ ( S ˘ ( q n 1 , Y q n 1 , τ ) ) ) a 2 × ( Θ ( S ˘ ( ζ , Y ζ , τ ) ) ) a 3 × Θ S ˘ ( q n 1 , Y q n 1 , τ ) + S ˘ ( ζ , Y ζ , τ ) 2 a 4 = ( Θ ( S ˘ ( ζ , q n 1 , τ ) ) ) a 1 × ( Θ ( S ˘ ( q n 1 , p n , τ ) ) ) a 2 × ( Θ ( S ˘ ( ζ , Y ζ , τ ) ) ) a 3 × Θ S ˘ ( q n 1 , p n , τ ) + S ˘ ( ζ , Y ζ , τ ) 2 a 4 .
Taking n and using ( Θ 1 ) , we obtain
Θ ( S ˘ ( ζ , Y ζ , τ ) ) ( Θ ( S ˘ ( ζ , Y ζ , τ ) ) ) a 3 + a 4 ,
We deduce that Y ζ = ζ .
Now, if μ P Q is a fixed point of Y such that S ˘ ( μ , ζ , τ ) < , then
Θ ( S ˘ ( μ , ζ , τ ) ) = Θ ( S ˘ ( Y μ , Y ζ , τ ) ) ( Θ ( S ˘ ( ζ , μ , τ ) ) ) a 1 × ( Θ ( S ˘ ( ζ , Y ζ , τ ) ) ) a 2 × ( Θ ( S ˘ ( Y μ , μ , τ ) ) ) a 3 × Θ S ˘ ( ζ , Y ζ , τ ) + S ˘ ( Y μ , μ , τ ) 2 a 4 = ( Θ ( S ˘ ( ζ , μ , τ ) ) ) a 1 × ( Θ ( S ˘ ( ζ , ζ , τ ) ) ) a 2 × ( Θ ( S ˘ ( μ , μ , τ ) ) ) a 3 × Θ S ˘ ( ζ , ζ , τ ) + S ˘ ( μ , μ , τ ) 2 a 4 = ( Θ ( S ˘ ( ζ , μ , τ ) ) ) a 1 < Θ ( S ˘ ( ζ , μ , τ ) ) = Θ ( S ˘ ( μ , ζ , τ ) ) ,
which is a contradiction. So, S ˘ ( μ , ζ , τ ) = 0 , i.e., ζ = μ . A similar conclusion holds whenever ζ Q . □
Corollary 2.
Let ( P , Q , S ˘ , Ω ) denote a complete SEBPMS, and let Y : P Q P Q be a continuous contravariant satisfying the following:
S ˘ ( Y p , Y q , τ ) a 1 S ˘ ( p , q , τ ) + a 2 S ˘ ( p , Y p , τ ) + a 3 S ˘ ( Y q , q , τ ) + a 4 S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) 2 ,
p P , q Q , τ > 0 and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 . Assume the existence of ( p 0 , q 0 ) P × Q such that Δ ( S ˘ , Y , ( p 0 , Y p 0 ) ) = sup { S ˘ ( p i , q j , τ ) : i , j = 1 , 2 , : q n = Y q n 1 , p n = Y p n 1 , τ > 0 } < . Then, Y has a unique fixed point in P Q .
Proof. 
Putting Θ ( s ) = e s , where Θ Θ in Theorem 2, we then have (9). □
Remark 4.
Condition (9) is equivalent to
S ˘ ( Y p , Y q , τ ) a 1 2 S ˘ ( p , q , τ ) + a 2 2 S ˘ ( p , Y p , τ ) + a 3 2 S ˘ ( Y q , q , τ ) + a 4 2 S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) 2 + 2 a 1 a 2 S ˘ ( p , q , τ ) S ˘ ( p , Y p , τ ) + 2 a 1 a 3 S ˘ ( p , q , τ ) S ˘ ( Y q , q , τ ) + 2 a 1 a 4 S ˘ ( p , q , τ ) [ S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) ] 2 + 2 a 2 a 3 S ˘ ( p , Y p , τ ) S ˘ ( q , q , τ ) + 2 a 2 a 4 S ˘ ( Y q , q , τ ) S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) 2 + 2 a 3 a 4 S ˘ ( Y q , q , τ ) S ˘ ( p , Y p , τ ) + S ˘ ( Y q , q , τ ) 2 ,
p P , q Q , τ > 0 and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 .
Remark 5.
From Corollary 2 and Remark 4, we obtain the following results:
  • A contravariant extension of a Kannan result by taking a 1 = a 4 = 0 ;
  • A contravariant Chatterjea-type result by taking a 1 = a 2 = a 3 = 0 , a 4 [ 0 , 1 2 ) ;
  • A contravariant extension of a Reich result by taking a 4 = 0 ;
  • A contravariant Ćirića-type result by taking a 1 + a 2 + a 3 + 2 a 4 < 1 and Θ ( s ) = e s , where Θ Θ , in Theorem 2.
Example 3.
Consider P = [ 16 , 0 ] , Q = [ 0 , 16 ] and S ˘ ( p , q , τ ) = e τ | p q | 1 , p P , q Q and τ > 0 . Then, S ˘ is a complete SEBPMS on P Q with Ω ( σ ) = e σ 1 , σ 0 . Define Y : P Q P Q by Y ( u ) = u 4 . For any ( p 0 , q 0 ) P × Q , it follows that
Δ ( S ˘ , Y , ( p 0 , q 0 ) ) = sup { S ˘ ( p i , q j , τ ) ; i , j N , τ > 0 } = sup { S ˘ ( Y q i 1 , Y p j , τ ) ; i , j N , τ > 0 } = sup { e τ | q i 1 4 ( p j 4 ) | 1 } < ,
Y is a contravariant J S -contraction as Y ( [ 16 , 0 ] ) = [ 0 , 4 ] [ 0 , 16 ] and Y ( [ 16 , 0 ] ) = [ 4 , 0 ] [ 16 , 0 ] . Further, for Θ = e σ e σ , σ > 0 , we obtain
Θ ( S ˘ ( Y p , Y q , τ ) ) = e S ˘ ( Y p , Y q , τ ) e S ˘ ( Y p , Y q , τ ) = e exp { τ | p 4 ( q 4 ) | 1 } e exp { τ | p 4 ( q 4 ) | 1 } e exp { τ | p q | 1 } e exp { τ | p q | 1 } 1 4 = ( Θ ( S ˘ ( p , q , τ ) ) ) 1 4 ( Θ ( S ˘ ( p , q , τ ) ) ) 1 4 × ( Θ ( S ˘ ( Y p , q , τ ) ) ) 1 12 × ( Θ ( S ˘ ( p , Y q , τ ) ) ) 1 2 × Θ S ˘ ( Y p , q , τ ) + S ˘ ( p , Y q , τ ) 2 1 8 .
Taking a 1 = 1 4 , a 2 = 1 12 , a 3 = 1 2 , a 4 = 1 8 , the conditions of Theorem 2 are satisfied, and Y has a unique fixed point 0 P Q .

3. SEBPMSs to SEFMSs

In this section, we establish a linkage lemma, which can be applied to obtain fixed-point outcomes in Ω -triangular sequential extended fuzzy bipolar metric spaces (SEFMSs). Let P and Q be two non-empty sets and let B : P × Q × ( 0 , ) [ 0 , 1 ] be a function. For p P and q Q , let us define the following sets:
C L ( P , B , q ) = { { p n } P : lim n B ( p n , q , t ) = 1 , t > 0 } , C R ( Q , B , p ) = { { q n } Q : lim n B ( p , q n , t ) = 1 , t > 0 } .
Definition 8.
Let P and Q be two non-empty sets and B : P × Q × ( 0 , ) [ 0 , 1 ] , t , s > 0 satisfy the following conditions:
  • ( B 1) B ( p , q , t ) > 0 ;
  • ( B 2) B ( p , q , t ) = 1 implies p = q P Q ;
  • ( B 3) B ( p , q , t ) = B ( q , p , t ) , p , q P Q ;
  • ( B 4)if there exists a function Ω Ω ˜ , such that p 1 , p 2 P and q 1 , q 2 Q , it follows that
    B ( p 1 , q 2 , Ω ( t + s ) ) lim sup n [ B ( p 1 , q 1 , t ) B ( p n , q 1 , s ) ] , { p n } C L ( P , B , q 2 ) ;
    B ( p 1 , q 2 , Ω ( t + s ) ) lim sup n [ B ( p 2 , q 2 , s ) B ( p 2 , q n , t ) ] , { q n } C R ( Q , B , p 1 ) ;
  • ( B 5) B ( p , q , . ) : ( 0 , ) [ 0 , 1 ] is left continuous and lim t B ( p , q , t ) = 1 .
Then, B is called a sequential extended bipolar fuzzy metric and the quintuple ( P , Q , B , Ω , ) is called a sequential fuzzy bipolar metric space.
Definition 9.
Let ( P , Q , B , Ω , ) be an SEFBMS
(a) 
A bisequence { ( p n , q n ) } is termed a Cauchy bisequence if there exists N N such that lim n , m B ( p n , q m , t ) = 1 , m , n N , N , τ > 0 ;
(b) 
If every Cauchy bisequence is biconvergent, then ( P , Q , B , Ω , ) is said to be a complete SEFBPM
Definition 10.
Let ( P , Q , B , Ω , ) , be an SEFBMS. It is called a Ω -triangular whenever p 1 , p 2 P and q 1 , q 2 Q , t > 0
1 B ( p 1 , q 2 , t ) 1 Ω 1 B ( p 1 , q 1 , t ) 1 + 1 lim sup n B ( p n , q 1 , t ) 1 ;
{ p n } C L ( P , B , q 2 ) ,and
1 B ( p 1 , q 2 , t ) 1 Ω 1 B ( p 2 , q 2 , t ) ] 1 + 1 lim sup n [ B ( p 2 , q n , t ) 1 ;
{ q n } C R ( Q , B , p 1 ) .
Example 4.
Let ( P , Q , S ) be a sequential bipolar metric space with constant k = 1 . Let B : P × Q × ( 0 , ) [ 0 , 1 ] be defined by
B ( p , q , t ) = Ω 1 ( t ) Ω 1 ( t ) + S ( p , q ) ,
where Ω Ω ˜ , with product t-norm. We show that B is an SEFBMS.
Proof. 
We check only ( B 4 ), because verifying the other conditions is standard. Given that Ω is a strictly increasing continuous function, it follows that p 1 , p 2 P , q 1 , q 2 Q is arbitrary such that { p n } C L ( P , B , q 2 ) and { q n } C R ( Q , B , p 1 ) . We can see by (11) that B ( p n , q , t ) = 1 , which implies S ( p n , q ) = 0 , so we conclude that { p n } C L ( P , S , q 2 ) . Similarly, it is established that { q n } C R ( Q , S , p 1 ) . Next, we demonstrate that, t , s > 0
B ( p 1 , q 2 , Ω ( t + s ) ) = Ω 1 Ω ( t + s ) Ω 1 Ω ( t + s ) + S ( p 1 , q 2 ) t + s t + s + lim sup n [ S ( p 1 , q 1 ) + S ( p n , q 1 ) ] lim sup n t + s t + s + [ S ( p 1 , q 1 ) + S ( p n , q 1 ) ] = lim sup n 1 1 + [ S ( p 1 , q 1 ) + S ( p n , q 1 ) ] s + t lim sup n 1 1 + S ( p 1 , q 1 ) s · 1 1 + S b ( p n , q 1 ) t = lim sup n s s + S ( p 1 , q 1 ) · t t + S ( p n , q 1 ) lim sup n Ω 1 ( s ) Ω 1 ( s ) + S ( p 1 , q 1 ) · Ω 1 ( t ) Ω 1 ( t ) + S ( p n , q 1 ) = lim sup n [ B ( p 1 , q 1 , t ) B ( p n , q 1 , s ) ] .
Similarly, we can prove
B ( p 1 , q 2 , Ω ( t + s ) ) lim sup n [ B ( p 2 , q n , t ) B ( p 2 , q 2 , s ) ] , { q n } C R ( Q , B , p 1 ) .
Lemma 1.
Given that B is an Ω-triangular SEFBMS, it follows that S ˘ ( p , q , t ) = Ω 1 B ( p , q , t ) 1 constitutes an SEBMS.
As an application of the Lemma 1 and the results recognized in Section 2, we can deduce the subsequent results in SEFBPMSs.
Definition 11.
Let ( P , Q , S ˘ , Ω ) be an SEFBPMS and Y : P Q P Q be a Θ -contravariant mapping whenever there are Θ Θ and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 , such that the following conditions hold
Θ ( Ω 1 B ( Y p , Y q , t ) 1 ) ( Θ ( Ω 1 B ( p , q , t ) 1 ) ) a 1 × ( Θ ( Ω 1 B ( Y p , q , t ) 1 ) ) a 2 × ( Θ ( Ω 1 B ( p , Y q , t ) 1 ) ) a 3 × Θ Ω 1 B ( Y p , q , t ) 1 + Ω 1 B ( p , Y q , t ) 1 2 a 4 ,
p P , q Q , t > 0 .
Theorem 3.
Let ( P , Q , B , Ω , ) be a complete SEFBMS and Y : P Q P Q be a Θ -contravariant such that there exists ( p 0 , q 0 ) P × Q such that Δ ( B , Y , ( p 0 , Y p 0 ) ) = sup { Ω 1 B ( p i , q j , t ) 1 : i , j = 1 , 2 , : q n = Y q n 1 , p n = Y p n 1 , t > 0 } < . Then, Y has a unique fixed point in P Q .
Proof. 
We define S ˘ ( p , q , t ) = Ω 1 B ( p , q , t ) 1 , ( p , q ) P × Q , t > 0 . Then, by Remark 1 B , it is a Ω -triangular SEFBMS, and by Theorem 1, the proof is complete. □
Definition 12.
Let ( P , Q , B ) be an SEFBMS and Y : P Q P Q be a contravariant J S -contraction whenever there are Θ Θ and a 1 , a 2 , a 3 , a 4 0 with i = 1 4 a i < 1 such that the following conditions hold:
Θ ( S ˘ ( Y q , Y p , τ ) ( Θ ( Ω 1 B ( p , q , t ) 1 ) ) a 1 × ( Θ ( Ω 1 B ( p , Y p , t ) 1 ) ) a 2 × ( Θ ( Ω 1 B ( Y q , q , t ) 1 ) ) a 3 × Θ Ω 1 B ( p , Y Ξ , t ) 1 + Ω 1 B ( Y q , q , t ) 1 2 a 4 ,
p P , q Q , t > 0 .
Theorem 4.
Let ( P , Q , B , Ω , ) be a complete SEFBPMS and Y : P Q P Q be a contravariant J S -contraction such that there exists ( p 0 , Y p 0 ) P × Q such that Δ ( B , Y , ( p 0 , Y p 0 ) ) = sup { Ω 1 B ( p i , q j , t ) 1 : i , j = 1 , 2 , : q n = Y p n , p n + 1 = Y q n , τ > 0 } < . Then, Y has at least one fixed point in P Q . Furthermore, if p and q are two fixed points of Y in P Q with B ( p , q , t ) < 1 , then p = q .
Proof. 
We define S ˘ ( p , q , t ) = Ω 1 B ( p , q , t ) 1 ( p , q ) P × Q , t > 0 . Then, by Remark 1 B , it is an Ω -triangular SEFBMS and by Theorem 2, the proof is complete. □

4. Φ - A B C Fractional Differential Equations of Order 1 < μ 2 with NMB Conditions

In fractional calculus, two main categories of nonlocal operators have emerged. The first category includes operators with singular kernels, such as Caputo [16], Riemann–Liouville [16], Katugampola [17], Hadamard [16], and Hilfer [18] operators. Additionally, these operators have been extended to incorporate weighted fractional operators with respect to a different function [19,20,21]. In fact, the singularity of kernels sometimes caused problems in numerical analysis. For this reason, a second type of nonlocal operators appeared, which created a new fractional operator with a nonsingular kernel, introduced by Caputo and Fabrizio [22] in 2015. Subsequently, Atangana and Baleanu ( AB ) [23] proposed a novel nonsingular fractional operator through a Mittag-Leffler function. These operators have garnered significant interest from researchers for investigating diverse problems and their applications [24]. Later on, Fernandez and Baleanu [25] expanded the AB operator to differentiation and integration concerning an alternative function, naming it Φ - A B C in the Caputo framework. Recently, Abdeljawad and collaborators [12] have generalized this concept to encompass higher-order fractional derivatives. Inspired by the preceding discussion, this section examines the existence and uniqueness of solutions for the Φ - A B C fractional differential equation of order 1 < μ 2 under nonlocal mixed boundary conditions, as presented below.
D a + μ ; Φ ABC u ( t ) = H ( t , u ( t ) ) , t J = [ a , b ] , u ( a ) = 0 , K = i = 1 m γ i u ( q i ) + j = 1 n λ j D a + β j ; Φ ABC u ( p j ) + r = 1 k σ r I a + δ r ; Φ AB u ( ζ r )
where u C 1 ( J , R ) is a continuous function, D 0 + μ ; Φ ABC ( . ) , D a + β j ; Φ ABC denotes the Φ - A B C fractional derivative of order μ , β j , respectively; ( 1 < β j < μ 2 ) , j = 1 , 2 , , n , 1 < μ 2 , I a + δ r AB is the Φ - A B C fractional integral of order δ r > 1 for r = 1 , 2 , , k , for the given constant γ i , λ j , σ r , K R ; the points q j , p j , ζ r [ a , b ] , i , 1 , 2 , , m and H : [ a , b ] × R R are a continuous function. We encourage the reader to review the following studies [26,27,28,29,30].
Remark 6.
Diverse symmetric configurations of the function Φ and the parameter μ give rise to symmetric systems; refer to [31]. For example:
1. 
If Φ ( s ) = s , then the system (14) reduces to the following form:
D a + μ ; s ABC u ( t ) = H ( t , u ( t ) ) , t J = [ a , b ] , u ( a ) = 0 , K = i = 1 m γ i u ( q i ) + j = 1 n λ j D a + β j ; s ABC u ( p j ) + r = 1 k σ r I a + δ r ; s AB u ( ζ r )
2. 
When Φ ( s ) = log s , the system (14) simplifies to the form below:
D a + μ ; log s ABC u ( t ) = H ( t , u ( t ) ) , t J = [ a , b ] , u ( a ) = 0 , K = i = 1 m γ i u ( q i ) + j = 1 n λ j D a + β j ; log s ABC u ( p j ) + r = 1 k σ r I a + δ r ; log s AB u ( ζ r )
3. 
If Φ ( s ) = s q with q > 0 , then the system in Equation (14) simplifies to the form below:
D a + μ ; s q ABC u ( t ) = H ( t , u ( t ) ) , t J = [ a , b ] , u ( a ) = 0 , K = i = 1 m γ i u ( q i ) + j = 1 n λ j D a + β j ; s q ABC u ( p j ) + r = 1 k σ r I a + δ r ; s q AB u ( ζ r ) .
Definition 13
([12]). Consider Φ : [ a , b ] R + to be an increasing function with Φ ( t ) 0 , t [ a , b ] , g ( n ) H 1 ( a , b ) and μ ( n , n + 1 ] , θ = μ n , n = 0 , 1 , 2 , . Thus, the μth left-sided Φ - A B C fractional derivative can be expressed as:
D a μ ; Φ ABC g ( t ) = D a μ ; Φ ABC g Φ ( n ) ( t ) = N ( θ ) 1 θ a t Φ ( s ) E θ θ θ 1 ( Φ ( t ) Φ ( s ) ) θ g Φ ( n + 1 ) ( s ) d s = N ( μ n ) n + 1 μ a t Φ ( s ) E μ n μ n μ n 1 ( Φ ( t ) Φ ( s ) ) μ n g Φ ( n + 1 ) ( s ) d s ,
where g Φ ( n ) ( t ) = ( 1 Φ ( t ) d d t ) n g ( t ) and g Φ ( 0 ) ( t ) = g ( t ) . If μ = m N , then ( D a μ ; Φ ABC g ) ( t ) = g Φ ( m ) ( t ) , and N ( μ ) is a normalization function with N ( 0 ) = N ( 1 ) = 1 and E μ is called the Mittag-Leffler function, defined by
E μ ( s ) = i = 0 r i Γ ( μ i + 1 ) ,
where R e ( μ ) > 0 , r C .
Definition 14
([12]). Consider g H 1 ( a , b ) and μ ( n , n + 1 ] , θ = μ n , n = 0 , 1 , 2 , . Thus, the μth left-sided Φ - A B C fractional integral can be expressed as
I a μ ; Φ AB g ( t ) = I a n ; Φ RL I a μ ; Φ AB g ( t ) = I a μ ; Φ AB I a n ; Φ RL g ( t ) = n + 1 μ N ( μ n ) I a n ; Φ RL g ( t ) + μ n N ( μ n ) I a μ ; Φ RL g ( t )
where I a n ; Φ RL is defined as:
I a n ; Φ RL g ( t ) = 1 Γ ( n ) a b Φ ( s ) ( Φ ( t ) Φ ( s ) ) n 1 g ( s ) d s , t > a ,
where Γ ( n ) = 0 + e s s n 1 d s , n > 0 .
Proposition 4
([12]). Let g C ˜ n ( [ a , b ] , R ) and Φ C ˜ n ( [ a , b ] , R + ) . For μ ( n , n + 1 ] , β n + 1 , θ = μ n , n = 0 , 1 , , the subsequent relationships are established:
1. 
( D a + μ ; Φ ABC I a + μ ; Φ AB g ) ( t ) = g ( t ) g ( a ) E μ n ( μ n μ n 1 ( Φ ( t ) Φ ( a ) ) μ n ) ;
2. 
( I a + μ ; Φ AB D a + μ ; Φ ABC g ) ( t ) = g ( t ) k = 0 n g Φ ( k ) ( a ) k ! ( Φ ( t ) Φ ( a ) ) k .
Proposition 5
([12]). Let Φ C ˜ n ( [ a , b ] , R + ) , Φ ( t ) 0 . For μ ( n , n + 1 ] , β n + 1 , σ > 0 , θ = μ n , n = 0 , 1 , , the subsequent relationships are established:
1. 
D a + μ ; Φ ABC [ Φ ( t ) Φ ( a ) ] β = N ( μ n ) n + 1 μ i = 0 ( μ n μ n 1 ) i Γ ( β + 1 ) [ Φ ( t ) Φ ( a ) i ( μ n ) + β n ] Γ ( i ( μ n ) + β n + 1 ) if β n + 1 0 if β n ;
2. 
( I a + μ ; Φ AB 1 ) u = ( n + 1 μ ) [ Φ ( u ) Φ ( a ) ] n N ( μ n ) Γ ( n + 1 ) + ( μ n ) [ Φ ( u ) Φ ( a ) ] μ N ( μ n ) Γ ( n + 1 ) ;
3. 
( I a + μ ; Φ AB [ Φ ( u ) Φ ( a ) ] σ = ( n + 1 μ ) Γ ( σ + 1 ) [ Φ ( u ) Φ ( a ) ] σ + n N ( μ n ) Γ ( n + σ + 1 ) + ( μ n ) Γ ( σ + 1 ) [ Φ ( u ) Φ ( a ) ] σ + μ N ( μ n ) Γ ( σ + 1 + μ ) .
Lemma 2.
Suppose H : [ a , b ] × R R is continuous and Ξ = i = 1 m γ i ( Φ ( q i ) Φ ( a ) ) + r = 1 k σ r I a + δ r ; Φ AB ( Φ ( ζ r ) Φ ( a ) ) 0 . Then, the corresponding fractional integral equation of (14) is given by:
u ( t ) = 1 Ξ [ K i = 1 m γ i I a + μ ; Φ AB H ( q i , u ( q i ) ) j = 1 n λ j I a + μ β j ; Φ AB H ( p j , u ( p j ) ) r = 1 k σ r I a + δ r + μ ; Φ AB H ( ζ r , u ( ζ r ) ) ] ( Φ ( t ) Φ ( a ) ) + I a + μ ; Φ AB H ( t , u ( t ) ) .
Proof. 
Utilizing the operator I a + μ ; Φ AB on both sides of Equation (14) and referencing the relevant Proposition 4, we obtain
u ( t ) = a 0 + c 1 ( Φ ( t ) Φ ( c ) ) + I a + μ ; Φ AB H ( t , u ( t ) )
where c 0 , c 1 are arbitrary constants. Then, the boundary condition u ( a ) = 0 in (20) yields c 0 = 0 . As a result, Equation (20) is rewritten as follows:
u ( t ) = c 1 ( Φ ( t ) Φ ( a ) ) + I a + μ ; Φ AB H ( t , u ( t ) ) .
Now, we substitute Equation (21) into the second boundary condition:
K = i = 1 m γ i u ( q i ) + j = 1 n λ j D a + β j ; Φ ABC u ( p j ) + r = 1 k σ r I a + δ r ; Φ AB u ( ζ r ) ,
we obtain the following:
K = i = 1 m γ i [ c 1 ( Φ ( q i ) Φ ( a ) ) + I a + μ ; Φ AB H ( q i , u ( q i ) ) ] + j = 1 n λ j D a + β j ; Φ ABC [ c 1 ( Φ ( p j ) Φ ( a ) ) + I a + μ ; Φ AB H ( p j , u ( p j ) ) ] + r = 1 k σ r I a + δ r ; Φ AB [ c 1 ( Φ ( ζ r ) Φ ( a ) ) + I a + μ ; Φ AB H ( ζ r , u ( ζ r ) ) ] = i = 1 m γ i c 1 ( Φ ( q i ) Φ ( a ) ) + i = 1 m γ i I a + μ ; Φ AB H ( q i , u ( q i ) ) + j = 1 n λ j D a + β j ; Φ ABC c 1 ( Φ ( p j ) Φ ( a ) ) + j = 1 n λ j D a + β j ; Φ ABC I a + μ ; Φ AB H ( p j , u ( p j ) ) + r = 1 k σ r I a + δ r ; Φ AB c 1 ( Φ ( ζ r ) Φ ( a ) ) + r = 1 k σ r I a + δ r ; Φ AB I a + μ ; Φ AB H ( ζ r , u ( ζ r ) ) = c 1 [ i = 1 m γ i ( Φ ( q i ) Φ ( a ) ) + r = 1 k σ r I a + δ r ; Φ AB ( Φ ( ζ r ) Φ ( a ) ) ] + i = 1 m γ i I a + μ ; Φ AB H ( q i , u ( q i ) ) + j = 1 n λ j I a + μ β j ; Φ AB H ( p j , u ( p j ) ) + r = 1 k σ r I a + δ r + μ ; Φ AB H ( ζ r , u ( ζ r ) ) ,
which implies that
c 1 = 1 Ξ [ K i = 1 m γ i I a + μ ; Φ AB H ( q i , u ( q i ) ) j = 1 n λ j I a + μ β j ; Φ AB H ( p j , u ( p j ) ) r = 1 k σ r I a + δ r + μ ; Φ AB H ( ζ r , u ( ζ r ) ) ] .
Substituting the constant c 1 into (21), we obtain the integral Equation (19). □
Using Lemma 2, we define the operator Y : U U by
Y u ( t ) = 1 Ξ [ K i = 1 m γ i I a + μ ; Φ AB H ( q i , u ( q i ) ) j = 1 n λ j I a + μ β j ; Φ AB H ( p j , u ( p j ) ) r = 1 k σ r I a + δ r + μ ; Φ AB H ( ζ r , u ( ζ r ) ) ] ( Φ ( t ) Φ ( a ) ) + I a + μ ; Φ AB H ( t , u ( t ) ) .
Furthermore, to simplify calculations, we assume
Ξ * = [ i = 1 m | γ i | I a + μ ; Φ AB + j = 1 n | λ j | I a + μ β j ; Φ AB + r = 1 k | σ r | I a + δ r + μ ; Φ AB ] | Φ ( t ) Φ ( a ) | + | Ξ | ( 2 μ ) [ Φ ( b ) Φ ( a ) ] N ( μ 1 ) Γ ( 2 ) + ( μ 1 ) [ Φ ( b ) Φ ( a ) ] μ N ( μ 1 ) Γ ( 2 ) .
Theorem 5.
Let H : J × R R be a continuous function. Suppose that
| H ( t , u ( t ) ) H ( t , v ( t ) ) | L | u v | , u , v C 1 ( J , R ) , L > 0 .
If Ξ * L Ξ < 1 , then the problem (14) has a unique solution in P Q .
Proof. 
Let U = C 1 ( J , R ) be a Banach space of all continuous functions p : J R endowed with the supnorm p = sup t [ 0 , Y ] { | p ( t ) | : t [ 0 , Y ] } . Let P = { p U : p r 1 , r 1 > 0 } and Q = { p U : p r 2 , r 2 r 1 > 0 } , with K | Φ ( b ) Φ ( a ) | + M Ξ * | Ξ | L Ξ * r i , i = 1 , 2 , ) and M = sup { | H ( t , 0 ) | : t J } . Then, triplet ( P , Q , S ˘ , Ω ) is a complete SEBPMS with respect to the SEBPM S ˘ : P × Q [ 0 , ) , defined by
S ˘ ( p , q , τ ) = e τ sup t [ 0 , 1 ] | p ( t ) q ( t ) | 1 , ( p ( t ) , q ( t ) ) P × Q , τ > 0 ,
  • for Ω ( σ ) = e σ 1 , σ 0 , Θ ( t ) : = e t .
  • Let u ( t ) P :
| Y u ( t ) | 1 | Ξ | [ | K | + i = 1 m | γ i | I a + μ ; Φ AB | H ( q i , u ( q i ) ) | + j = 1 n | λ j | I a + μ β j ; Φ AB | H ( p j , u ( p j ) ) | + r = 1 k | σ r | I a + δ r + μ ; Φ AB | H ( ζ r , u ( ζ r ) ) | ] | Φ ( t ) Φ ( a ) | + I a + μ ; Φ AB | H ( t , u ( t ) ) | 1 | Ξ | [ | K | + i = 1 m | γ i | I a + μ ; Φ AB ( | H ( q i , u ( q i ) ) H ( q i , 0 ) | + | H ( q i , 0 ) | ) + j = 1 n | λ j | I a + μ β j ; Φ AB ( | H ( p j , u ( p j ) ) H ( p j , 0 ) | + | H ( p j , 0 ) | ) + r = 1 k | σ r | I a + δ r + μ ; Φ AB ( | H ( ζ r , u ( ζ r ) ) H ( ζ r , 0 ) | + | H ( ζ r , 0 ) | ) ] | Φ ( t ) Φ ( a ) | + I a + μ ; Φ AB ( | H ( t , u ( t ) ) H ( t , 0 ) | + | H ( t , 0 ) | ) K | Φ ( b ) Φ ( a ) | | Ξ | + L r 1 + M | Ξ | ( [ i = 1 m | γ i | I a + μ ; Φ AB ( q i ) + j = 1 n | λ j | I a + μ β j ; Φ AB ( p j ) + r = 1 k | σ r | I a + δ r + μ ; Φ AB ( ζ r ) ] | Φ ( t ) Φ ( a ) | ) + ( L r 1 + M ) I a + μ ; Φ AB ( Y ) K | Φ ( b ) Φ ( a ) | | Ξ | + ( L r 1 + M | Ξ | ) Ξ * r 1 ,
by taking the norm on [ a , b ] , we obtain Y u ( t ) r 1 , i.e., Y ( P ) P . Similarly, we prove Y ( Q ) Q . Now,
| Y u ( t ) Y v ( t ) | 1 | Ξ | [ i = 1 m | γ i | I a + μ ; Φ AB | H ( q i , u ( q i ) ) H ( q i , v ( q i ) ) | + j = 1 n λ j I a + μ β j ; Φ AB | H ( p j , u ( p j ) ) H ( p j , v ( p j ) ) | + r = 1 k | σ r | I a + δ r + μ ; Φ AB | H ( ζ r , u ( ζ r ) ) H ( ζ r , v ( ζ r ) ) | ] | Φ ( t ) Φ ( a ) | + I a + μ ; Φ AB | H ( t , u ( t ) ) H ( t , v ( t ) ) | L | u v | | Ξ | [ i = 1 m | γ i | I a + μ ; Φ AB + j = 1 n | λ j | AB I a + μ β j ; Φ + r = 1 k | σ r | I a + δ r + μ ; Φ AB ] | Φ ( t ) Φ ( a ) | + L | u v | AB I a + μ ; Φ Ξ * L | u v | Ξ , α = Ξ * L Ξ < 1 ,
therefore,
Θ [ e sup t [ a , b ] ( τ | Y u ( t ) Y v ( t ) | ) 1 ] Θ [ e sup t [ a , b ] ( Ξ * L | u ( t ) v ( t ) | Ξ ) 1 ] = Θ [ e sup t [ a , b ] ( α | u ( t ) v ( t ) | ) 1 ] , α < 1 Θ [ e sup t [ a , b ] | u ( t ) v ( t ) | 1 ] α = ( Θ ( S ˘ ( p , q , τ ) ) ) a 1 , a 1 = α < 1 .
by Corollary 2, where a 2 = a 3 = a 4 = 0 . Hence, Y has exactly one solution. □
Example 5.
Consider the following problem:
D a + 1.8 ; log ( t ) ABC u ( t ) = sin ( t 2 ) t cos ( t ) u ( t ) 36 ( 1 + u ( t ) ) , t J = [ 1 2 , 3 ] , u ( 1 2 ) = 0 , 3.75 = 1 3 u ( 5 2 ) + 1 4 D a + 7 4 ; u 3 ABC u ( 8 3 ) + 1 2 I a + 5 3 ; u 3 AB u ( 3 2 ) ,
here β 1 = 7 4 , δ 1 = 5 3 , 2 , q 1 = 5 2 , p 1 = 8 3 , ζ 1 = 3 2 , γ 1 = 1 3 , λ 1 = 1 4 , σ 1 = 1 2 , H ( t , u ( t ) ) = sin ( t 2 ) t cos ( t ) u ( t ) 36 ( 1 + u ( t ) ) .
Now, we check the conditions of Theorem 5 as follows:
| H ( t , u ( t ) ) H ( t , v ( t ) ) | = | sin ( t 2 ) t cos ( t ) u ( t ) 36 ( 1 + u ( t ) ) sin ( t 2 ) t cos ( t ) v ( t ) 36 ( 1 + v ( t ) ) | 1 12 | u ( t ) v ( t ) | ,
then, L = 1 3 ; by taking N ( μ 1 ) = 1 we find Ξ * 0.363 , Ξ 0.23305 . Hence, in view of Theorem 5, the system (29) possesses a unique solution in [ 1 2 , 3 ] .

5. Conclusions

This research was devoted to introduce and study SEBPMSs that generalize EBPMSs and established the existence and uniqueness of fixed points through covariant and contravariant J S -contractions. Furthermore, we demonstrate the applicability of theorems in SEBPMS to derive new fixed point outcomes in Ω -triangular SEFBMSs. The practical relevance of our results was highlighted by detailed examples, a clarification of the implications, and an application to Φ - A B C fractional differential equations of order 1 < μ 2 under NMB conditions (14) and their symmetric cases. Our study provides significant insights into the essential theories and uses of fixed-point theory in various metric spaces, such as Menger probabilistic bipolar metric spaces [32]. Indeed, regarding a different function Φ employed in this research, the Φ - A B C fractional operator is more generalized, making our framework broader and addressing numerous new and existing issues in the field. It would be intriguing to explore the problem with an integral term for future work, considering NMB conditions.

Author Contributions

Conceptualization, N.H. and N.A.; methodology, N.A.; software, N.H.; formal analysis, N.H.; investigation, N.A.; resources, N.A.; writing—review and editing N.A., N.H. and G.B.; supervision, N.H.; project administration, N.H.; funding acquisition, N.A. All authors have read and agreed to the published version of the manuscript.

Funding

Qassim University Researchers Supporting Project number (QU-APC-2024-9/1), Qassim University, Buraydah, Saudi Arabia.

Data Availability Statement

Data are contained within the article.

Acknowledgments

Nawal Alharbi would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Hussain, N.; Khaleghizadeh, S.; Salimi, P.; Abdou, A.A. A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces. Abstr. Appl. Anal. 2014, 2014, 690139. [Google Scholar] [CrossRef]
  2. Parvaneh, V.; Hussain, N.; Kutbi, M.; Khorshidi, M. Some fixed point results in extended parametric b-metric spaces with application to integral equations. J. Math. Anal. 2019, 10, 14–33. Available online: http://www.ilirias.com/jma (accessed on 12 June 2024).
  3. Mani, N.; Beniwal, S.; Shukla, R.; Pingale, M. Fixed Point Theory in Extended Parametric Sb-Metric Spaces and Its Applications. Symmetry 2023, 15, 2136. [Google Scholar] [CrossRef]
  4. Paunović, M.V.; Bonab, S.H.; Parvaneh, V.; Golkarmanesh, F. Extended Parametric and Sequential Extended Fuzzy b-Metrics with an Application in Integral Equations. In Soft Computing; CRC Press: Boca Raton, FL, USA, 2023; pp. 15–28. [Google Scholar] [CrossRef]
  5. Das, A.; Bag, T. A generalization to parametric metric spaces. Int. J. Nonlinear Anal. Appl. 2023, 14, 229–244. [Google Scholar] [CrossRef]
  6. Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
  7. Bartwal, A.; Dimri, R.; Prasad, G. Some fixed point theorems in fuzzy bipolar metric spaces. J. Nonlinear Sci. Appl. 2020, 13, 196–204. [Google Scholar] [CrossRef]
  8. Ramaswamy, R.; Mani, G.; Gnanaprakasam, A.J.; Abdelnaby, O.A.A.; Stojiljković, V.; Radojevic, S.; Radenović, S. Fixed Points on Covariant and Contravariant Maps with an Application. Mathematics 2022, 10, 4385. [Google Scholar] [CrossRef]
  9. Mani, G.; Gnanaprakasam, A.J.; Kumar, S.; Ege, O.; De la Sen, M. Fixed-Point Theorems for Nonlinear Contraction in Fuzzy-Controlled Bipolar Metric Spaces. Axioms 2023, 12, 396. [Google Scholar] [CrossRef]
  10. Parvaneh, V.; Hussain, N.; Mukheimer, A.; Aydi, H. On fixed point results for modified JS-contractions with applications. Axioms 2019, 8, 84. [Google Scholar] [CrossRef]
  11. Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
  12. Abdeljawad, T.; Thabet, S.T.; Kedim, I.; Ayari, M.I.; Khan, A. A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality. Bound. Value Probl. 2023, 2023, 49. [Google Scholar] [CrossRef]
  13. Asawasamrit, S.; Nithiarayaphaks, W.; Ntouyas, S.K.; Tariboon, J. Existence and stability analysis for fractional differential equations with mixed nonlocal conditions. Mathematics 2019, 7, 117. [Google Scholar] [CrossRef]
  14. Roy, K.; Saha, M. Sequential bipolar metric space and well-posedness of fixed point problems. Int. J. Nonlinear Anal. Appl. 2021, 12, 387–398. [Google Scholar] [CrossRef]
  15. Parvaneh, V.; Hosseini Ghoncheh, S.J. Fixed points of (Ψ, Φ) Ω-contractive mappings in ordered P-metric spaces. Glob. Anal. Discret. Math. 2019, 4, 15–29. [Google Scholar] [CrossRef]
  16. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. Available online: https://lccn.loc.gov/2005044764 (accessed on 12 June 2024).
  17. Katugampola, U.N. A new approach to generalized fractional derivatives. arXiv 2011, arXiv:1106.0965. [Google Scholar]
  18. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
  19. Da Vanterler, J.; Sousa, C. Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  20. Liu, J.G.; Yang, X.J.; Feng, Y.Y.; Geng, L.L. Fundamental results to the weighted Caputo-type differential operator. Appl. Math. Lett. 2021, 121, 107421. [Google Scholar] [CrossRef]
  21. Jarad, F.; Abdeljawad, T.; Shah, K. On the weighted fractional operators of a function with respect to another function. Fractals 2020, 28, 2040011. [Google Scholar] [CrossRef]
  22. Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar] [CrossRef]
  23. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. arXiv 2016, arXiv:1602.03408. [Google Scholar] [CrossRef]
  24. Ayari, M.I.; Thabet, S.T. Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator. Arab. J. Math. Sci. 2023, 30, 197–217. [Google Scholar] [CrossRef]
  25. Fernandez, A.; Baleanu, D. Differintegration with respect to functions in fractional models involving Mittag-Leffler functions. In Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA), Amman, Jordan, 16–18 July 2018. [Google Scholar] [CrossRef]
  26. Thabet, S.T.; Vivas-Cortez, M.; Kedim, I. Analytical study of ABC-fractional pantograph implicit differential equation with respect to another function. AIMS Math. 2023, 8, 23635–23654. [Google Scholar] [CrossRef]
  27. Thabet, S.T.; Abdeljawad, T.; Kedim, I.; Ayari, M.I. A new weighted fractional operator with respect to another function via a new modified generalized Mittag–Leffler law. Bound. Value Probl. 2023, 2023, 100. [Google Scholar] [CrossRef]
  28. Hammad, H.A.; Zayed, M. Solving systems of coupled nonlinear Atangana–Baleanu-type fractional differential equations. Bound. Value Probl. 2022, 2022, 101. [Google Scholar] [CrossRef]
  29. Al Nuwairan, M.; Ibrahim, A.G. Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order ζ ( 1 , 2 ) in infinite dimensional Banach spaces. AIMS Math. 2024, 9, 10386–10415. [Google Scholar] [CrossRef]
  30. Turan, N.; Basarır, M.; Sahin, A. On the solutions of the second-order (p, q)-difference equation with an application to the fixed-point theory. AIMS Math. 2024, 9, 10679–10697. [Google Scholar] [CrossRef]
  31. Aldwoah, K.; Almalahi, M.A.; Shah, K.; Awadalla, M.; Egami, R.H.; Abuasbeh, K. Symmetry analysis for nonlinear fractional terminal system under w-Hilfer fractional derivative in different weighted Banach spaces. AIMS Math. 2024, 9, 11762–11788. [Google Scholar] [CrossRef]
  32. Mani, G.; Ramalingam, B.; Etemad, S.; Avcı, İ.; Rezapour, S. On the Menger Probabilistic Bipolar Metric Spaces: Fixed Point Theorems and Applications. Qual. Theory Dyn. Syst. 2024, 23, 99. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hussain, N.; Alharbi, N.; Basendwah, G. Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions. Symmetry 2024, 16, 939. https://doi.org/10.3390/sym16080939

AMA Style

Hussain N, Alharbi N, Basendwah G. Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions. Symmetry. 2024; 16(8):939. https://doi.org/10.3390/sym16080939

Chicago/Turabian Style

Hussain, Nawab, Nawal Alharbi, and Ghada Basendwah. 2024. "Solving Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions Using Covariant JS-Contractions" Symmetry 16, no. 8: 939. https://doi.org/10.3390/sym16080939

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop