Transgenerational Sub-Lethal Pyrethroid Exposure Affects Shape Variation and Fluctuating Asymmetry in Seed Beetles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rearing Conditions of A. obtectus and Experimental Set-Up
2.2. Digitizing Landmarks and Geometric Morphometrics
2.3. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, M.R.H.; Jørs, E.; Lander, F.; Condarco, G.; Debes, F.; Tirado Bustillos, N.; Schlünssen, V. Neurological deficits after long-term pyrethroid exposure. Environ. Health Insights 2017, 11, 1178630217700628. [Google Scholar] [CrossRef] [PubMed]
- Slater, R.; Ellis, S.; Genay, J.; Heimbach, U.; Huart, G.; Sarazin, M.; Longhurst, C.; Müller, A.; Nauen, R.; Rison, J.L. Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): A coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest Manag. Sci. 2011, 67, 633–638. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ceuppens, B.; Eeraerts, M.; Vleugels, T.; Cnops, G.; Roldan-Ruiz, I.; Smagghe, G. Effects of dietary lambda-cyhalothrin exposure on bumblebee survival, reproduction, and foraging behavior in laboratory and greenhouse. J. Pest Sci. 2015, 88, 777–783. [Google Scholar] [CrossRef]
- Guo, L.; Desneux, N.; Sonoda, S.; Liang, P.; Han, P.; Gao, X.-W. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L. Crop Prot. 2013, 48, 29–34. [Google Scholar] [CrossRef]
- Zhu, Q.; He, Y.; Yao, J.; Liu, Y.; Tao, L.; Huang, Q. Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. J. Insect Sci. 2012, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Tooming, E.; Merivee, E.; Must, A.; Sibul, I.; Williams, I. Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac® 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae). Pest Manag. Sci. 2014, 70, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Tappert, L.; Pokorny, T.; Hofferberth, J.; Ruther, J. Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp. Sci. Rep. 2017, 7, 42756. [Google Scholar] [CrossRef] [PubMed]
- Debecker, S.; Sanmartín-Villar, I.; de Guinea-Luengo, M.; Cordero-Rivera, A.; Stoks, R. Integrating the pace-of-life syndrome across species, sexes and individuals: Covariation of life history and personality under pesticide exposure. J. Anim. Ecol. 2016, 85, 726–738. [Google Scholar] [CrossRef]
- Montaño-Campaz, M.L.; Gomes-Dias, L.; Toro Restrepo, B.E.; García-Merchán, V.H. Incidence of deformities and variation in shape of mentum and wing of Chironomus columbiensis (Diptera, Chironomidae) as tools to assess aquatic contamination. PLoS ONE 2019, 14, e0210348. [Google Scholar] [CrossRef]
- Nattero, J.; Mougabure-Cueto, G.; Debat, V.; Gürtler, R.E. Phenotypic plasticity, canalisation and developmental stability of Triatoma infestans wings: Effects of a sublethal application of a pyrethroid insecticide. Parasit. Vectors 2021, 14, 355. [Google Scholar] [CrossRef] [PubMed]
- Mikac, K.M.; Lemic, D.; Benítez, H.A.; Bažok, R. Changes in corn rootworm wing morphology are related to resistance development. J. Pest Sci. 2019, 92, 443–451. [Google Scholar] [CrossRef]
- Nattero, J.; Mougabure-Cueto, G.; Gürtler, R.E. Sublethal effects of a pyrethroid insecticide on cuticle thickness, wing size and shape in the main vector Triatoma infestans. Med. Vet. Entomol. 2022, 36, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Leponiemi, M.; Schultner, E.; Dickel, F.; Freitak, D. Chronic sublethal pesticide exposure affects brood production, morphology and endosymbionts, but not immunity in the ant, Cardiocondyla obscurior. Ecol. Entomol. 2022, 47, 273–283. [Google Scholar] [CrossRef]
- Montaño-Campaz, M.L.; Dias, L.G.; Bacca, T.; Toro-Restrepo, B.; Oliveira, E.E. Exposures to deltamethrin on immature Chironomus columbiensis drive sublethal and transgenerational effects on their reproduction and wing morphology. Chemosphere 2022, 296, 134042. [Google Scholar] [CrossRef] [PubMed]
- Boukouvala, M.C.; Kavallieratos, N.G.; Žikić, V.; Stanković, S.S.; Ilić Milošević, M.; Skourti, A.; Lazarević, M. Sub-Lethal Effects of Pirimiphos-Methyl Are Expressed to Different Levels in Wings of Three Stored-Product Coleopterans: A Geometric Morphometrics Investigation. Insects 2023, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Badyaev, A.V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B: Biol. Sci. 2005, 272, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Pigliucci, M.; Murren, C.J.; Schlichting, C.D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006, 209, 2362–2367. [Google Scholar] [CrossRef] [PubMed]
- Margus, A.; Piiroinen, S.; Lehmann, P.; Tikka, S.; Karvanen, J.; Lindström, L. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci. Rep. 2019, 9, 11320. [Google Scholar] [CrossRef]
- Mpho, M.; Holloway, G.J.; Callaghan, A. A comparison of the effects of organophosphate insecticide exposure and temperature stress on fluctuating asymmetry and life history traits in Culex quinquefasciatus. Chemosphere 2001, 45, 713–720. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Clarke, G.M. Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina. Genetics 1988, 120, 213–220. [Google Scholar] [CrossRef]
- Clarke, G.M.; Yen, J.L.; McKenzie, J.A. Wings and bristles: Character specificity of the asymmetry phenotype in insecticide-resistant strains of Lucilia cuprina. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2000, 267, 1815–1818. [Google Scholar] [CrossRef]
- Müller, T.; Prosche, A.; Müller, C. Sublethal insecticide exposure affects reproduction, chemical phenotype as well as offspring development and antennae symmetry of a leaf beetle. Environ. Pollut. 2017, 230, 709–717. [Google Scholar] [CrossRef]
- Doğaç, E.; Kandemir, İ.; Taşkın, V. Geographical distribution and frequencies of organophosphate-resistant Ace alleles and morphometric variations in olive fruit fly populations. Pest Manag. Sci. 2015, 71, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- De Anna, E.B.; Bonisoli-Alquati, A.; Mousseau, T.A. The use of fluctuating asymmetry as a measure of environmentally induced developmental instability: A meta-analysis. Ecol. Indic. 2013, 30, 218–226. [Google Scholar]
- Klingenberg, C.P. Analyzing fluctuating asymmetry with geometric morphometrics: Concepts, methods, and applications. Symmetry 2015, 7, 843–934. [Google Scholar] [CrossRef]
- Hardersen, S. The role of behavioural ecology of damselflies in the use of fluctuating asymmetry as a bioindicator of water pollution. Ecol. Entomol. 2000, 25, 45–53. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Woods, R.E.; Collins, E.; Wallin, K.; White, A.; McKenzie, J.A. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Aust. J. Entomol. 2005, 44, 233–243. [Google Scholar] [CrossRef]
- McKenzie, J.A.; O’Farrell, K. Modification of developmental instability and fitness: Malathionresistance in the Australian sheep blowfly, Lucilia cuprina. In Developmental Instability: Its Origins and Evolutionary Implications; Markow, T.A., Ed.; Contemporary Issues in Genetics and Evolution; Springer: Dordrecht, The Netherlands, 1994; pp. 69–78. [Google Scholar]
- Gulzar, A.; Wright, D.J. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella. Ecotoxicology 2015, 24, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, J.A.; Game, A.Y. Diazinon resistance in Lucilia cuprina; mapping of a fitness modifier. Heredity 1987, 59, 371–381. [Google Scholar] [CrossRef]
- Nattero, J.; Piccinali, R.V.; Gaspe, M.S.; Gürtler, R.E. Fluctuating asymmetry and exposure to pyrethroid insecticides in Triatoma infestans populations in northeastern Argentina. Infect. Genet. Evol. 2019, 74, 103925. [Google Scholar] [CrossRef] [PubMed]
- Kawecki, T.J.; Lenski, R.E.; Ebert, D.; Hollis, B.; Olivieri, I.; Whitlock, M.C. Experimental evolution. Trends Ecol. Evol. 2012, 27, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Schlötterer, C.; Kofler, R.; Versace, E.; Tobler, R.; Franssen, S.U. Combining experimental evolution with next-generation sequencing: A powerful tool to study adaptation from standing genetic variation. Heredity 2015, 114, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Paul, U.V.; Lossini, J.S.; Edwards, P.J.; Hilbeck, A. Effectiveness of products from four locally grown plants for the management of Acanthoscelides obtectus (Say) and Zabrotes subfasciatus (Boheman) (both Coleoptera: Bruchidae) in stored beans under laboratory and farm conditions in Northern Tanzania. J. Stored Prod. Res. 2009, 45, 97–107. [Google Scholar] [CrossRef]
- Alvarez, N.; Mercier, L.; Hossaert-McKey, M.; Contreras-Garduño, J.; Kunstler, G.; Aebi, A.; Benrey, B. Ecological distribution and niche segregation of sibling species: The case of bean beetles, Acanthoscelides obtectus Say and A. obvelatus Bridwell. Ecol. Entomol. 2006, 31, 582–590. [Google Scholar] [CrossRef]
- Benítez, H.A.; Lemic, D.; Villalobos-Leiva, A.; Bažok, R.; Órdenes-Claveria, R.; Pajač Živković, I.; Mikac, K.M. Breaking symmetry: Fluctuating asymmetry and geometric morphometrics as tools for evaluating developmental instability under diverse agroecosystems. Symmetry 2020, 12, 1789. [Google Scholar] [CrossRef]
- Tucić, N.; Mikuljanac, S.; Stojković, O. Genetic variation and covariation among life history traits in populations of Acanthoscelides obtectus maintained on different hosts. Entomol. Exp. Appl. 1997, 85, 247–256. [Google Scholar] [CrossRef]
- Bookstein, F.L. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Med. Image Anal. 1997, 1, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Budečević, S.; Savković, U.; Đorđević, M.; Vlajnić, L.; Stojković, B. Sexual dimorphism and morphological modularity in Acanthoscelides obtectus (Say, 1831) (Coleoptera: Chrysomelidae): A geometric morphometric approach. Insects 2021, 12, 350. [Google Scholar] [CrossRef] [PubMed]
- Rohlf, F.J. tpsDig; Version 2.10; Informer Technologies Inc.: Los Angeles, CA, USA, 2006. [Google Scholar]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis: With Applications in R; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 1990, 39, 40–59. [Google Scholar] [CrossRef]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J.; Rohlf, J.F. Biometry; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Klingenberg, C.P.; Barluenga, M.; Meyer, A. Shape analysis of symmetric structures: Quantifying variation among individuals and asymmetry. Evolution 2002, 56, 1909–1920. [Google Scholar] [PubMed]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
- Daboul, A.; Ivanovska, T.; Bülow, R.; Biffar, R.; Cardini, A. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. PLoS ONE 2018, 13, e0197675. [Google Scholar] [CrossRef] [PubMed]
- Viscosi, V.; Cardini, A. Leaf morphology, taxonomy and geometric morphometrics: A simplified protocol for beginners. PLoS ONE 2011, 6, e25630. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. CH 17. Fluctuating asymmetry analyses revisited. In Developmental Instability: Causes and Consequences; Oxford University Press: Oxford, UK, 2003; pp. 279–319. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Vilaseca, C.; Méndez, M.A.; Pinto, C.F.; Benítez, H.A. Assessment of shape variation patterns in Triatoma infestans (Klug 1834) (Hemiptera: Reduviidae: Triatominae): A first report in populations from Bolivia. Insects 2020, 11, 274. [Google Scholar] [CrossRef] [PubMed]
- Giglio, A.; Giulianini, P.G.; Zetto, T.; Talarico, F. Effects of the pesticide dimethoate on a non-target generalist carabid, Pterostichus melas italicus (Dejean, 1828) (Coleoptera: Carabidae). Ital. J. Zool. 2011, 78, 471–477. [Google Scholar] [CrossRef]
- Belinato, T.A.; Martins, A.J. Insecticide resistance and fitness cost. In Insecticides Resistance; InTech: Rijeka, Croatia, 2016; pp. 243–261. [Google Scholar]
- De Oliveira, V.T.P.; da Cruz-Landim, C. Morphology and function of insect fat body cells: A review. Biociências 2003, 11, 195–205. [Google Scholar]
- Guedes, R.N.C.; Oliveira, E.E.; Guedes, N.M.P.; Ribeiro, B.; Serrão, J.E. Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiol. Entomol. 2006, 31, 30–38. [Google Scholar] [CrossRef]
- Haddi, K.; Viteri Jumbo, L.O.; Costa, M.S.; Santos, M.F.; Faroni, L.R.A.; Serrão, J.E.; Oliveira, E.E. Changes in the insecticide susceptibility and physiological trade-offs associated with a host change in the bean weevil Acanthoscelides obtectus. J. Pest Sci. 2018, 91, 459–468. [Google Scholar] [CrossRef]
- Bailey, E.L. The Effects of Urbanization on Insect Morphology: A Meta-Analysis; University of Tennessee at Chattanooga: Chattanooga, TN, USA, 2021. [Google Scholar]
- Sheikh, A.A.; Rehman, N.Z.; Kumar, R. Diverse adaptations in insects: A review. J. Entomol. Zool. Stud. 2017, 5, 343–350. [Google Scholar]
- Savković, U.; Đorđević, M.; Šešlija Jovanović, D.; Lazarević, J.; Tucić, N.; Stojković, B. Experimentally induced host-shift changes life-history strategy in a seed beetle. J. Evol. Biol. 2016, 29, 837–847. [Google Scholar] [CrossRef]
- Alves, S.N.; Pujoni, D.G.F.; Mocelin, G.; Melo, A.L.; Serrão, J.E. Evaluation of Culex quinquefasciatus wings asymmetry after exposure of larvae to sublethal concentration of ivermectin. Environ. Sci. Pollut. Res. 2020, 27, 3483–3488. [Google Scholar] [CrossRef] [PubMed]
- Ivanković Tatalović, L.; Anđelić, B.; Jelić, M.; Kos, T.; Benítez, H.A.; Šerić Jelaska, L. Fluctuating asymmetry as a method of assessing environmental stress in two predatory carabid species within mediterranean agroecosystems. Symmetry 2020, 12, 1890. [Google Scholar] [CrossRef]
- Ribeiro, B.; Guedes, R.N.C.; Corrêa, A.S.; Santos, C.T. Fluctuating asymmetry in insecticide-resistant and insecticide-susceptible strains of the maize weevil, Sitophilus zeamais (Coleoptera: Curculionidae). Arch. Environ. Contam. Toxicol. 2007, 53, 77–83. [Google Scholar] [CrossRef] [PubMed]
Sampling Generation | N | Mean | Std Dev | Variance |
---|---|---|---|---|
G0 | 240 | 7.6765 | 0.0669 | 0.0045 |
G5 | 239 | 7.9272 | 0.0622 | 0.0039 |
G10 | 240 | 7.9670 | 0.0590 | 0.0035 |
SS | MS | df | F | Variation Components | p | |
---|---|---|---|---|---|---|
G0 | ||||||
Individual (I) | 0.98835032 | 0.0002067678 | 4780 | 4.28 | 77.15% | <0.0001 |
Side (S) | 0.01137571 | 0.0005687854 | 20 | 11.78 | 0.89% | <0.0001 |
I × S | 0.23086055 | 0.0000482972 | 4780 | 9.19 | 18.02% | <0.0001 |
Error | 0.05044233 | 0.0000052544 | 9600 | 3.93% | ||
G5 | ||||||
Individual (I) | 1.04502723 | 0.0002195435 | 4760 | 5.70 | 82.26% | <0.0001 |
Side (S) | 0.00503024 | 0.0002515118 | 20 | 6.53 | 0.39% | <0.0001 |
I × S | 0.18346033 | 0.0000385421 | 4760 | 10.01 | 14.44% | <0.0001 |
Error | 0.03679463 | 0.0000038488 | 9560 | 3.89% | ||
G10 | ||||||
Individual (I) | 0.69399213 | 0.0001451866 | 4780 | 4.18 | 71.72% | <0.0001 |
Side (S) | 0.06079900 | 0.0030399500 | 20 | 87.47 | 6.28% | <0.0001 |
I × S | 0.16611616 | 0.0000347523 | 4780 | 7.15 | 17.17% | <0.0001 |
Error | 0.04666647 | 0.0000048611 | 9600 | 4.82% |
FA10a Index | df1, df2 | F | p(α = 0.05) |
---|---|---|---|
G0 vs. G5 | 3774, 3837 | 1.11 | 0.00064 |
G0 vs. G10 | 3774, 3502 | 1.20 | <0.0001 |
G5 vs. G10 | 3837, 3502 | 1.08 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budečević, S.; Predojević, D.; Đorđević, M.; Vlajnić, L.; Stojković, O.; Stojković, B.; Savković, U. Transgenerational Sub-Lethal Pyrethroid Exposure Affects Shape Variation and Fluctuating Asymmetry in Seed Beetles. Symmetry 2024, 16, 995. https://doi.org/10.3390/sym16080995
Budečević S, Predojević D, Đorđević M, Vlajnić L, Stojković O, Stojković B, Savković U. Transgenerational Sub-Lethal Pyrethroid Exposure Affects Shape Variation and Fluctuating Asymmetry in Seed Beetles. Symmetry. 2024; 16(8):995. https://doi.org/10.3390/sym16080995
Chicago/Turabian StyleBudečević, Sanja, Dragana Predojević, Mirko Đorđević, Lea Vlajnić, Oliver Stojković, Biljana Stojković, and Uroš Savković. 2024. "Transgenerational Sub-Lethal Pyrethroid Exposure Affects Shape Variation and Fluctuating Asymmetry in Seed Beetles" Symmetry 16, no. 8: 995. https://doi.org/10.3390/sym16080995
APA StyleBudečević, S., Predojević, D., Đorđević, M., Vlajnić, L., Stojković, O., Stojković, B., & Savković, U. (2024). Transgenerational Sub-Lethal Pyrethroid Exposure Affects Shape Variation and Fluctuating Asymmetry in Seed Beetles. Symmetry, 16(8), 995. https://doi.org/10.3390/sym16080995