Object Skill Advantage in Infants with a Hand Preference
Abstract
:1. Introduction
1.1. Handedness in Infants
1.2. Lateralization and Object Skills in Infants
1.3. The Current Study
2. Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. The Touwen Infant Neurological Examination (TINE) [33]
2.2.2. The Hand Preference Assessment [6,9] and Classification
- R is the number of right-hand contacts,
- and L is the number of left-hand contacts.
2.3. The Analytic Plan
3. Results
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herzberg, O.; Fletcher, K.K.; Schatz, J.L.; Adolph, K.E.; Tamis-LeMonda, C.S. Infant exuberant object play at home: Immense amounts of time-distributed, variable practice. Child Dev. 2022, 93, 150–164. [Google Scholar] [CrossRef] [PubMed]
- Swirbul, M.S.; Herzberg, O.; Tamis-LeMonda, C.S. Object play in the everyday home environment generates rich opportunities for infant learning. Infant Behav. Dev. 2022, 67, 101712. [Google Scholar] [CrossRef] [PubMed]
- Needham, A.W. Learning about Objects in Infancy; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Needham, A.W.; Nelson, E.L. How babies use their hands to learn about objects: Exploration, reach-to-grasp, manipulation, and tool use. WIREs Cogn. Sci. 2023, 14, e1661. [Google Scholar] [CrossRef] [PubMed]
- Berthier, N.E.; Keen, R. Development of reaching in infancy. Exp. Brain Res. 2006, 169, 507–518. [Google Scholar] [CrossRef]
- Michel, G.F.; Ovrut, M.R.; Harkins, D.A. Hand-Use Preference for Reaching and Object Manipulation in 6-Month-Old through 13-Month-Old Infants. Genet. Soc. Gen. Psych. 1985, 111, 407–427. [Google Scholar]
- Michel, G.F.; Babik, I.; Sheu, C.F.; Campbell, J.M. Latent classes in the developmental trajectories of infant handedness. Dev. Psychol. 2014, 50, 349–359. [Google Scholar] [CrossRef]
- Campbell, J.M.; Marcinowski, E.C.; Michel, G.F. The development of neuromotor skills and hand preference during infancy. Dev. Psychobiol. 2018, 60, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Marcinowski, E.C.; Latta, J.; Michel, G.F. Different assessment tasks produce different estimates of handedness stability during the eight to 14 month age period. Infant. Behav. Dev. 2015, 39, 67–80. [Google Scholar] [CrossRef]
- Papadatou-Pastou, M.; Ntolka, E.; Schmitz, J.; Martin, M.; Munafo, M.R.; Ocklenburg, S.; Paracchini, S. Human handedness: A meta-analysis. Psychol. Bull. 2020, 146, 481–524. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Fagard, J. The nature and nurture of human infant hand preference. Ann. N. Y. Acad. Sci. 2013, 1288, 114–123. [Google Scholar] [CrossRef]
- Jacobsohn, L.; Rodrigues, P.; Vasconcelos, O.; Corbetta, D.; Barreiros, J. Lateral manual asymmetries: A longitudinal study from birth to 24 months. Dev. Psychobiol. 2014, 56, 58–72. [Google Scholar] [CrossRef]
- Nelson, E.L.; Campbell, J.M.; Michel, G.F. Unimanual to bimanual: Tracking the development of handedness from 6 to 24 months. Infant. Behav. Dev. 2013, 36, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.F. Development of infant handedness. In Conceptions of Development: Lessons from the Laboratory; Lewkowicz, D.J., Lickliter, R., Eds.; Psychology Press: New York, NY, USA, 2002; pp. 165–186. [Google Scholar]
- Michel, G.F. Handedness Development: A Model for Investigating the Development of Hemispheric Specialization and Interhemispheric Coordination. Symmetry 2021, 13, 992. [Google Scholar] [CrossRef]
- Michel, G.F.; Nelson, E.L.; Babik, I.; Campbell, J.M.; Marcinowski, E.C. Multiple trajectories in the developmental psychobiology of human handedness. Adv. Child. Dev. Behav. 2013, 45, 227–260. [Google Scholar] [CrossRef]
- Nelson, E.L. Developmental cascades as a framework for primate handedness. Front. Behav. Neurosci. 2022, 16, 1063348. [Google Scholar] [CrossRef]
- Nelson, E.L. Insights into Human and Nonhuman Primate Handedness from Measuring Both Hands. Curr. Dir. Psychol. Sci. 2022, 31, 154–161. [Google Scholar] [CrossRef]
- Michel, G.F.; Goodwin, R. Intrauterine birth position predicts newborn supine head position preferences. Infant Behav. Dev. 1979, 2, 29–38. [Google Scholar] [CrossRef]
- Michel, G.F. Right-handedness: A consequence of infant supine head-orientation preference? Science 1981, 212, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Michel, G.F.; Harkins, D.A. Postural and lateral asymmetries in the ontogeny of handedness during infancy. Dev. Psychobiol. 1986, 19, 247–258. [Google Scholar] [CrossRef]
- Konishi, Y.; Kuriyama, M.; Mikawa, H.; Suzuki, J. Effect of body position on later postural and functional lateralities of preterm infants. Dev. Med. Child Neurol. 1987, 29, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Hinojosa, T.; Sheu, C.F.; Michel, G.F. Infant hand-use preferences for grasping objects contributes to the development of a hand-use preference for manipulating objects. Dev. Psychobiol. 2003, 43, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Marcinowski, E.C.; Babik, I.; Michel, G.F. The influence of a hand preference for acquiring objects on the development of a hand preference for unimanual manipulation from 6 to 14 months. Infant Behav. Dev. 2015, 39, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Babik, I.; Michel, G.F. Development of role-differentiated bimanual manipulation in infancy: Part 2. Hand preferences for object acquisition and RDBM—Continuity or discontinuity? Dev. Psychobiol. 2016, 58, 257–267. [Google Scholar] [CrossRef]
- Marcinowski, E.C.; Campbell, J.M.; Faldowski, R.A.; Michel, G.F. Do hand preferences predict stacking skill during infancy? Dev. Psychobiol. 2016, 58, 958–967. [Google Scholar] [CrossRef]
- Marcinowski, E.C.; Nelson, E.L.; Campbell, J.M.; Michel, G.F. Early, concurrent, and consistent hand preferences predict stacking in toddlerhood. Dev. Psychobiol. 2023, 65, e22397. [Google Scholar] [CrossRef]
- Campbell, J.M.; Marcinowski, E.C. Sleight of hand: Role-differentiated bimanual manipulation speed across infancy. Laterality 2024, 29, 199–219. [Google Scholar] [CrossRef]
- Babik, I.; Llamas, K.; Michel, G.F. The Relation between Infants’ Manual Lateralization and Their Performance of Object Manipulation and Tool Use. Symmetry 2024, 16, 434. [Google Scholar] [CrossRef]
- Bruner, J.S. Organization of early skilled action. Child Dev. 1973, 44, 1–11. [Google Scholar] [CrossRef]
- Kotwica, K.A.; Ferre, C.L.; Michel, G.F. Relation of stable hand-use preferences to the development of skill for managing multiple objects from 7 to 13 months of age. Dev. Psychobiol. 2008, 50, 519–529. [Google Scholar] [CrossRef]
- Touwen, B.C. Neurological Development in Infancy; Heinemann: London, UK, 1976. [Google Scholar]
- Flowers, K. Handedness and controlled movement. Br. J. Psychol. 1975, 66, 39–52. [Google Scholar] [CrossRef]
- Michel, G.F. A lateral bias in the neuropsychological functioning of human infants. Dev. Neuropsychol. 1998, 14, 445–469. [Google Scholar] [CrossRef]
- Hadders-Algra, M.; Heineman, K.R.; Bos, A.F.; Middelburg, K.J. The assessment of minor neurological dysfunction in infancy using the Touwen Infant Neurological Examination: Strengths and limitations. Dev. Med. Child Neurol. 2010, 52, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Heineman, K.R.; Hadders-Algra, M. Evaluation of neuromotor function in infancy–a systematic review of available methods. J. Dev. Behav. Pediatr. 2008, 29, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Thurman, S.L.; Corbetta, D. Changes in Posture and Interactive Behaviors as Infants Progress from Sitting to Walking: A Longitudinal Study. Front. Psychol. 2019, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.A.; Coxe, S.; Nelson, E.L. Early Object Skill Supports Growth in Role-Differentiated Bimanual Manipulation in Infants. Infant Behav. Dev. 2024, 74, 101925. [Google Scholar] [CrossRef]
- Jones, B.L.; Nagin, D.S.; Roeder, K. A SAS procedure based on mixture models for estimating developmental trajectories. Sociol. Methods Res. 2001, 29, 374–393. [Google Scholar] [CrossRef]
- Babik, I.; Campbell, J.M.; Michel, G.F. Postural influences on the development of infant lateralized and symmetric hand-use. Child Dev. 2014, 85, 294–307. [Google Scholar] [CrossRef]
- Haviland, A.; Nagin, D.S.; Rosenbaum, P.R.; Tremblay, R.E. Combining group-based trajectory modeling and propensity score matching for causal inferences in nonexperimental longitudinal data. Dev. Psychol. 2008, 44, 422. [Google Scholar] [CrossRef]
- Michel, G.F.; Sheu, C.F.; Brumley, M.R. Evidence of a right-shift factor affecting infant hand-use preferences from 7 to 11 months of age as revealed by latent class analysis. Dev. Psychobiol. 2002, 40, 1–13. [Google Scholar] [CrossRef]
- Raudenbush, S.W.; Bryk, A.S. Hierarchical Linear Models: Applications and Data Analysis Methods; Sage: Newbury Park, CA, USA, 2002. [Google Scholar]
- Raudenbush, S.W.; Bryk, A.S.; Congdon, R. HLM 6 for Windows [Computer Software]; Scientific Software International: Skokie, IL, USA, 2004. [Google Scholar]
- Singer, J.D.; Willett, J.B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Cheon, Y.M.; Ip, P.S.; Yip, T. Adolescent profiles of ethnicity/race and socioeconomic status: Implications for sleep and the role of discrimination and ethnic/racial identity. In Advances in Child Development and Behavior; Elsevier: Philadelphia, PA, USA, 2019; Volume 57, pp. 195–233. [Google Scholar]
- Cuellar-Partida, G.; Tung, J.Y.; Eriksson, N.; Albrecht, E.; Aliev, F.; Andreassen, O.A.; Barroso, I.; Beckmann, J.S.; Boks, M.P.; Boomsma, D.I. Genome-wide association study identifies 48 common genetic variants associated with handedness. Nat. Hum. Behav. 2021, 5, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Schijven, D.; van den Heuvel, O.; Hoogman, M.; van Rooij, D.; Stein, D.; Buitelaar, J.; Bölte, S.; Auzias, G.; Kushki, A. Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents. Hum. Brain Mapp. 2024, 45, e26754. [Google Scholar] [CrossRef] [PubMed]
- Zubler, J.M.; Wiggins, L.D.; Macias, M.M.; Whitaker, T.M.; Shaw, J.S.; Squires, J.K.; Pajek, J.A.; Wolf, R.B.; Slaughter, K.S.; Broughton, A.S.; et al. Evidence-Informed Milestones for Developmental Surveillance Tools. Pediatrics 2022, 149, e2021052138. [Google Scholar] [CrossRef] [PubMed]
- Ertem, I.O.; Krishnamurthy, V.; Mulaudzi, M.C.; Sguassero, Y.; Balta, H.; Gulumser, O.; Bilik, B.; Srinivasan, R.; Johnson, B.; Gan, G. Similarities and differences in child development from birth to age 3 years by sex and across four countries: A cross-sectional, observational study. Lancet Glob. Health 2018, 6, e279–e291. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, M.; Lancaster, G.A.; Umar, E.; Nyirenda, M.; Kayira, E.; van den Broek, N.R.; Smyth, R.L. The Malawi Developmental Assessment Tool (MDAT): The creation, validation, and reliability of a tool to assess child development in rural African settings. PLoS Med. 2010, 7, e1000273. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, R.C.; Perrin, E.C. Evidence-based milestones for surveillance of cognitive, language, and motor development. Acad. Pediatr. 2013, 13, 577–586. [Google Scholar] [CrossRef]
- Accardo, P.J.; Capute, A.J. The Capute Scales: Cognitive Adaptive Test/Clinical Linguistic & Auditory Milestone Scale (CAT/CLAMS); Brookes Pub: Baltimore, MD, USA, 2005. [Google Scholar]
- Carruth, B.R.; Skinner, J.D. Feeding behaviors and other motor development in healthy children (2–24 months). J. Am. Coll. Nutr. 2002, 21, 88–96. [Google Scholar] [CrossRef]
- Cox, C.; Zinkin, P.; Grimsley, M. Aspects of the six-month developmental examination in a longitudinal study. Dev. Med. Child Neurol. 1977, 19, 149–159. [Google Scholar] [CrossRef]
- Den Ouden, L.; Rijken, M.; Brand, R.; Verloove-Vanhorick, S.P.; Ruys, J.H. Is it correct to correct? Developmental milestones in 555 “normal” preterm infants compared with term infants. J. Pediatr. 1991, 118, 399–404. [Google Scholar] [CrossRef]
- Kitsao-Wekulo, P.; Holding, P.; Abubakar, A.; Kvalsvig, J.; Taylor, H.G.; King, C.L. Describing normal development in an African setting: The utility of the Kilifi Developmental Inventory among young children at the Kenyan coast. Learn. Individ. Differ. 2016, 46, 3–10. [Google Scholar] [CrossRef]
- Lancaster, G.A.; McCray, G.; Kariger, P.; Dua, T.; Titman, A.; Chandna, J.; McCoy, D.; Abubakar, A.; Hamadani, J.D.; Fink, G. Creation of the WHO Indicators of Infant and Young Child Development (IYCD): Metadata synthesis across 10 countries. BMJ Glob. Health 2018, 3, e000747. [Google Scholar] [CrossRef]
- Lejarraga, H.; Pascucci, M.C.; Krupitzky, S.; Kelmansky, D.; Bianco, A.; Martínez, E.; Tibaldi, F.; Cameron, N. Psychomotor development in Argentinean children aged 0–5 years. Paediatr. Perinat. Epidemiol. 2002, 16, 47–60. [Google Scholar] [CrossRef]
- Thalagala, N. Windows of achievement for development milestones of Sri Lankan infants and toddlers: Estimation through statistical modelling. Child Care Health Dev. 2015, 41, 1030–1039. [Google Scholar] [CrossRef]
- Fagard, J. Changes in grasping skills and the emergence of bimanual coordination during the first year of life. In The Psychobiology of the Hand; Connolly, K.J., Ed.; Mac Keith Press: London, UK, 1998; pp. 123–143. [Google Scholar]
- Gonzalez, S.L.; Nelson, E.L. Addressing the gap: A blueprint for studying bimanual hand preference in infants. Front. Psychol 2015, 6, 560. [Google Scholar] [CrossRef] [PubMed]
- Malachowski, L.G.; Needham, A.W. Infants exploring objects: A cascades perspective. In Advances in Child Development and Behavior; Lockman, J.J., Tamis-LeMonda, C.S., Eds.; Elsevier Press: Philadelphia, PA, USA, 2023; Volume 64, pp. 39–68. [Google Scholar]
- Iverson, J.M. Developing language in a developing body, revisited: The cascading effects of motor development on the acquisition of language. Wiley Interdiscip. Rev. Cogn. Sci. 2022, 13, e1626. [Google Scholar] [CrossRef] [PubMed]
- Iverson, J.M. Developmental Variability and Developmental Cascades: Lessons from Motor and Language Development in Infancy. Curr. Dir. Psychol. Sci. 2021, 30, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Contino, K.; Campbell, J.M.; Marcinowski, E.C.; Michel, G.F.; Ramos, M.; Coxe, S.; Hayes, T.; Nelson, E.L. Hand preference trajectories as predictors of language outcomes above and beyond SES: Infant patterns explain more variance than toddler patterns at 5 years of age. Infant Child Dev. 2023, 33, e2468. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.L.; Campbell, J.M.; Marcinowski, E.C.; Michel, G.F.; Coxe, S.; Nelson, E.L. Preschool language ability is predicted by toddler hand preference trajectories. Dev. Psychol. 2020, 56, 699–709. [Google Scholar] [CrossRef]
- Nelson, E.L.; Gonzalez, S.L.; Coxe, S.; Campbell, J.M.; Marcinowski, E.C.; Michel, G.F. Toddler hand preference trajectories predict 3-year language outcome. Dev. Psychobiol. 2017, 59, 876–887. [Google Scholar] [CrossRef]
Holding Category | TINE Score and Description of Rating |
---|---|
No holding (0) | 0—No goal-directed motility of arms and hands 1—Looked at and played with hands but did not engage with the first object 2—Touched object presented but did not hold it |
Hold 1 object (1) | 4—Held one object with one hand |
Hold 2 objects (2) | 5—Held an object in each hand by grasping the second object without dropping the first |
Hold 3 objects (3) | 6—Held two objects in one hand and acquired a third without dropping one of the others |
Conditional Growth | Unconditional Growth | |
---|---|---|
Coefficient | Coefficient | |
Fixed Effects | ||
Intercept (γ00) | −1.19 ** | −1.05 ** |
Age (β10) | −1.02 ** | −1.33 ** |
Age2 (β20) | 0.03 | 0.10 ** |
Left (β01) | 0.25 | − |
Left * Age (β11) | −0.82 ** | − |
Left * Age2 (β21) | 0.17 ** | − |
Right (β02) | 0.24 | − |
Right * Age (β12) | −0.54 ** | − |
Right * Age2 (γ22) | 0.11 ** | − |
δ(1) | 2.46 ** | 2.45 ** |
δ(2) | 8.62 ** | 8.52 ** |
Random Effects | ||
Intercept (r0i) | 0.82 ** | 0.79 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinowski, E.C.; Michel, G.F.; Nelson, E.L. Object Skill Advantage in Infants with a Hand Preference. Symmetry 2024, 16, 1148. https://doi.org/10.3390/sym16091148
Marcinowski EC, Michel GF, Nelson EL. Object Skill Advantage in Infants with a Hand Preference. Symmetry. 2024; 16(9):1148. https://doi.org/10.3390/sym16091148
Chicago/Turabian StyleMarcinowski, Emily C., George F. Michel, and Eliza L. Nelson. 2024. "Object Skill Advantage in Infants with a Hand Preference" Symmetry 16, no. 9: 1148. https://doi.org/10.3390/sym16091148
APA StyleMarcinowski, E. C., Michel, G. F., & Nelson, E. L. (2024). Object Skill Advantage in Infants with a Hand Preference. Symmetry, 16(9), 1148. https://doi.org/10.3390/sym16091148