The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions
Abstract
1. Introduction
2. Preliminaries
3. An Iterative Algorithm for Solving the Problems 1.1 and 1.2
Algorithm 1 BiCG-BTF method for solving Equation (2). |
Input: , . Output: The norm and the solutions , . Initialization: ;
|
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Beik, F.P.; Jbilou, K.; Najafi-Kalyani, M.; Reichel, L. Golub–Kahan bidiagonalization for ill-conditioned tensor equations with applications. Numer. Algorithms 2020, 84, 1535–1563. [Google Scholar] [CrossRef]
- Duan, X.F.; Zhang, Y.S.; Wang, Q.W. An efficient iterative method for solving a class of constrained tensor least squares problem. Appl. Numer. Math. 2024, 196, 104–117. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, D. Numerical computation for orthogonal low-rank approximation of tensors. SIAM J. Matrix Anal. Appl. 2019, 40, 1047–1065. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, M.T.; Chu, D. Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 2018, 555, 53–69. [Google Scholar] [CrossRef]
- Guan, Y.; Chu, M.T.; Chu, D. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. 2018, 39, 1095–1115. [Google Scholar] [CrossRef]
- Hu, J.; Ke, Y.; Ma, C. Efficient iterative method for generalized Sylvester quaternion tensor equation. Comput. Appl. Math. 2023, 42, 237. [Google Scholar] [CrossRef]
- Ke, Y. Finite iterative algorithm for the complex generalized Sylvester tensor equations. J. Appl. Anal. Comput. 2020, 10, 972–985. [Google Scholar] [CrossRef]
- Kolda, T.G. Multilinear Operators for Higher-Order Decompositions; Sandia National Laboratory (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2006. [Google Scholar]
- Li, B.W.; Tian, S.; Sun, Y.S.; Hu, Z.M. Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method. J. Comput. Phys. 2010, 229, 1198–1212. [Google Scholar] [CrossRef]
- Li, T.; Wang, Q.-W.; Duan, X.-F. Numerical algorithms for solving discrete Lyapunov tensor equation. J. Comput. Appl. Math. 2020, 370, 112676. [Google Scholar] [CrossRef]
- Li, T.; Wang, Q.-W.; Zhang, X.-F. Gradient based iterative methods for solving symmetric tensor equations. Numer. Linear Algebra Appl. 2022, 29, e2414. [Google Scholar] [CrossRef]
- Li, T.; Wang, Q.-W.; Zhang, X.-F. A Modified conjugate residual method and nearest kronecker product preconditioner for the generalized coupled Sylvester tensor equations. Mathematics 2022, 10, 1730. [Google Scholar] [CrossRef]
- Li, X.; Ng, M.K. Solving sparse non-negative tensor equations: Algorithms and applications. Front. Math. China 2015, 10, 649–680. [Google Scholar] [CrossRef]
- Liang, Y.; Silva, S.D.; Zhang, Y. The tensor rank problem over the quaternions. Linear Algebra Appl. 2021, 620, 37–60. [Google Scholar] [CrossRef]
- Lv, C.; Ma, C. A modified CG algorithm for solving generalized coupled Sylvester tensor equations. Appl. Math. Comput. 2020, 365, 124699. [Google Scholar] [CrossRef]
- Malek, A.; Momeni-Masuleh, S.H. A mixed collocation–finite difference method for 3D microscopic heat transport problems. J. Comput. Appl. Math. 2008, 217, 137–147. [Google Scholar] [CrossRef]
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef]
- Qi, L. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 2013, 439, 228–238. [Google Scholar] [CrossRef]
- Qi, L.; Chen, H.; Chen, Y. Tensor Eigenvalues and Their Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Zhang, X.-F.; Li, T.; Ou, Y.-G. Iterative solutions of generalized Sylvester quaternion tensor equations. Linear Multilinear Algebra 2024, 72, 1259–1278. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Wang, Q.-W. On RGI Algorithms for Solving Sylvester Tensor Equations. Taiwan. J. Math. 2022, 26, 501–519. [Google Scholar] [CrossRef]
- Kyrchei, I. Cramer’s rules for Sylvester quaternion matrix equation and its special cases. Adv. Appl. Clifford Algebras 2018, 28, 1–26. [Google Scholar] [CrossRef]
- Heyouni, M.; Saberi-Movahed, F.; Tajaddini, A. On global Hessenberg based methods for solving Sylvester matrix equations. Comput. Math. Appl. 2019, 77, 77–92. [Google Scholar] [CrossRef]
- Zhang, X. A system of generalized Sylvester quaternion matrix equations and its applications. Appl. Math. Comput. 2016, 273, 74–81. [Google Scholar] [CrossRef]
- Beik, F.; Ahmadi-Asl, S. An iterative algorithmfor η-(anti)-Hermitian least-squares solutions of quaternion matrix equations. Electron. J. Linear Algebra 2015, 30, 372–401. [Google Scholar] [CrossRef]
- Ahmadi-Asl, S.; Beik, F.P.A. An efficient iterative algorithm for quaternionic least-squares problems over the generalized η-(anti-)bi-Hermitian matrices. Linear Multilinear Algebra 2017, 65, 1743–1769. [Google Scholar] [CrossRef]
- Ahmadi-Asl, S.; Beik, F.P.A. Iterative algorithms for least-squares solutions of a quaternion matrix equation. J. Appl. Math. Comput. 2017, 53, 95–127. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q.-W.; Yu, S. Cramer’s rule for a system of quaternion matrix equations with applications. Appl. Math. Comput. 2018, 336, 490–499. [Google Scholar] [CrossRef]
- Wang, Q.-W.; He, Z.-H.; Zhang, Y. Constrained two-sided coupled Sylvester-type quaternion matrix equations. Automatica 2019, 101, 207–213. [Google Scholar] [CrossRef]
- Zhang, F.; Mu, W.; Li, Y.; Zhao, J. Special least squares solutions of the quaternion matrix equation AXB + CXD = E. Comput. Math. Appl. 2016, 72, 1426–1435. [Google Scholar] [CrossRef]
- Huang, N.; Ma, C.-F. Modified conjugate gradient method for obtaining the minimum-norm solution of the generalized coupled Sylvester-conjugate matrix equations. Appl. Math. Model. 2016, 40, 1260–1275. [Google Scholar] [CrossRef]
- Gao, Z.-H.; Wang, Q.-W.; Xie, L. The (anti-)η-Hermitian solution to a novel system of matrix equations over the split quaternion algebra. Math. Meth. Appl. Sci. 2024, 1–18. [Google Scholar] [CrossRef]
- He, Z.-H.; Wang, X.-X.; Zhao, Y.-F. Eigenvalues of quaternion tensors with applications to color video processing. J. Sci. Comput. 2023, 94, 1. [Google Scholar] [CrossRef]
- Jia, Z.; Wei, M.; Zhao, M.X.; Chen, Y. A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 2018, 343, 26–48. [Google Scholar] [CrossRef]
- Li, Y.; Wei, M.; Zhang, F.; Zhao, J. Real structure-preserving algorithms of Householder based transformations for quaternion matrices. J. Comput. Appl. Math. 2016, 305, 82–91. [Google Scholar] [CrossRef]
- Mehany, M.S.; Wang, Q.-W.; Liu, L. A System of Sylvester-like quaternion tensor equations with an application. Front. Math. 2024, 19, 749–768. [Google Scholar] [CrossRef]
- Xie, M.; Wang, Q.-W. Reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- Xie, M.Y.; Wang, Q.W.; He, Z.H.; Saad, M.M. A system of Sylvester-type quaternion matrix equations with ten variables. Acta Math. Sin. (Engl. Ser.) 2022, 38, 1399–1420. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Tajaddini, A.; Heyouni, M.; Elbouyahyaoui, L. Some iterative approaches for Sylvester tensor equations, Part I: A tensor format of truncated Loose Simpler GMRES. Appl. Numer. Math. 2022, 172, 428–445. [Google Scholar] [CrossRef]
- Saberi-Movahed, F.; Tajaddini, A.; Heyouni, M.; Elbouyahyaoui, L. Some iterative approaches for Sylvester tensor equations, Part II: A tensor format of Simpler variant of GCRO-based methods. Appl. Numer. Math. 2022, 172, 413–427. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Xu, X.; Duan, X. Least squares solution of the quaternion Sylvester tensor equation. Linear Multilinear Algebra 2021, 69, 104–130. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Wang, Q.-W. Developing iterative algorithms to solve Sylvester tensor equations. Appl. Math. Comput. 2021, 409, 126403. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, L. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 2012, 55, 1281–1292. [Google Scholar] [CrossRef]
- Karimi, S.; Dehghan, M. Global least squares method based on tensor form to solve linear systems in Kronecker format. Trans. Inst. Measure. Control 2018, 40, 2378–2386. [Google Scholar] [CrossRef]
- Najafi-Kalyani, M.; Beik, F.P.A.; Jbilou, K. On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations. J. Comput. Appl. Math. 2020, 373, 112216. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Golub, G.H.; Ng, M.K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 2003, 24, 603–626. [Google Scholar] [CrossRef]
- Grasedyck, L. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure. Computing 2004, 72, 247–265. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, X.; Zhang, L. An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB = C. Appl. Math. Comput. 2005, 160, 763–777. [Google Scholar] [CrossRef]
- Bank, R.E.; Chan, T.-F. An analysis of the composite step biconjugate gradient method. Numer. Math. 1993, 66, 295–319. [Google Scholar] [CrossRef]
- Bank, R.E.; Chan, T.-F. A composite step bi-conjugate gradient algorithm for nonsymmetric linear systems. Numer. Algorithms 1994, 7, 1–16. [Google Scholar] [CrossRef]
- Freund, R.W.; Golub, G.H.; Nachtigal, N.M. Iterative solution of linear systems. Acta Numer. 1992, 1, 44. [Google Scholar] [CrossRef]
- Hajarian, M. Developing Bi-CG and Bi-CR methods to solve generalized Sylvester-transpose matrix equations. Int. J. Auto. Comput. 2014, 11, 25–29. [Google Scholar] [CrossRef]
- Beik, F.; Panjeh, F.; Movahed, F.; Ahmadi-Asl, S. On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations. Numer. Linear Algebra Appl. 2016, 23, 444–466. [Google Scholar] [CrossRef]
- Ballani, J.; Grasedyck, L. A projection method to solve linear systems in tensor format. Numer. Linear Algebra Appl. 2013, 20, 27–43. [Google Scholar] [CrossRef]
IT | The Number of Iterations |
---|---|
CPU time | The CPU time elapsed, measured in seconds |
Res | is the residual at kth iteration |
The third-order tensor with pseudo-random values | |
sampled from a uniform distribution over the unit interval | |
The upper triangular part of Hilbert matrix | |
The upper triangular part of matrix with all 1 | |
Identity matrix with size | |
Zero matrix with size | |
The tridiagonal matrix with |
n | IT | CPU Time | Res |
---|---|---|---|
20 | 82 | 8.3272 | |
40 | 156 | 24.8187 | |
60 | 288 | 91.4387 |
l = 10 | l = 25 | l = 30 | |
---|---|---|---|
Algorithm 1 | 25.6884(320) | 140.8233(1270) | 202.7709(1580) |
CGLS [43] | 15.5685(219) | 144.3166(1266) | 230.7340(1832) |
l = 10 | l = 15 | l = 20 | |
---|---|---|---|
Algorithm 1 | 45.4157(576) | 104.4370(1095) | 163.6110(1700) |
CGLS [43] | 44.0701(579) | 118.2419(1296) | 230.7978(2298) |
Algorithm 1 | (248) | (188) | (248) |
CGLS [43] | (106) | (178) | (167) |
Algorithm([r,s]) | Algorithm 1(PSNR/RE) | CGLS(PSNR/RE) |
---|---|---|
[3,3] | 38.6181(0.0235) | 13.8404(0.3769) |
[6,6] | 37.3721(0.0300) | 14.0529(0.3694) |
[8,8] | 33.8073(0.0338) | 14.7958(0.3551) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Wang, Q.-W.; Zhang, Y. The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions. Symmetry 2024, 16, 1167. https://doi.org/10.3390/sym16091167
Xie M, Wang Q-W, Zhang Y. The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions. Symmetry. 2024; 16(9):1167. https://doi.org/10.3390/sym16091167
Chicago/Turabian StyleXie, Mengyan, Qing-Wen Wang, and Yang Zhang. 2024. "The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions" Symmetry 16, no. 9: 1167. https://doi.org/10.3390/sym16091167
APA StyleXie, M., Wang, Q.-W., & Zhang, Y. (2024). The BiCG Algorithm for Solving the Minimal Frobenius Norm Solution of Generalized Sylvester Tensor Equation over the Quaternions. Symmetry, 16(9), 1167. https://doi.org/10.3390/sym16091167