Symmetry in Genetic Distance Metrics: Quantifying Variability in Neurological Disorders for Personalized Treatment of Alzheimer’s and Dementia
Abstract
:1. Introduction
2. Theoretical Foundations
2.1. Genetic Distance
- Modified Euclidean Distance: incorporates weights for features, allowing adjustments based on their importance [8].
- Mahalanobis Distance: accounts for correlations between variables, which is useful for multivariate datasets [9].
- Entropy-based Distance: quantifies the divergence between probability distributions using Shannon entropy [10].
- Evolutionary Model-based Distances: These account for the variation caused by mutation and genetic drift, assuming that the markers are not influenced by natural selection. Distances based on the infinite allele model treat each mutation as creating a new allele, making all allelic states equally related.
2.2. Relevant Characteristics of Biomedical Signals
- Frequency bands. Specific intervals within the EEG frequency spectrum, such as Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), Beta (13–30 Hz), and Gamma (>30 Hz) [19]. Analyzing the power distribution in these bands provides insights into brain states and cognitive processes, offering crucial features for neurological analysis.
- Entropy. A measure of signal complexity or variability, used in EEG analysis to differentiate between chaotic and organized patterns, providing insights into neural dynamics [20].
- Dominant Frequency. The frequency with the highest amplitude in a signal, indicative of specific cognitive or pathological states, serving as a key feature in brain activity assessment [21].
2.3. Biomedical Signal Processing Techniques Relevant to the Study
- Electroencephalography (EEG). Biomedical signal processing plays a critical role in the early diagnosis and monitoring of neurodegenerative diseases like Alzheimer’s and dementia, enabling the analysis and identification of anomalous brain activity patterns indicative of these conditions [24].
- Magnetic Resonance Imaging (MRI). Produces detailed brain images to identify structural changes like hippocampal atrophy, commonly observed in Alzheimer’s. It supports hippocampal volumetry and functional connectivity analysis.
- Positron Emission Tomography (PET). Measures glucose metabolism and detects abnormal protein deposits (beta-amyloid, tau) to differentiate Alzheimer’s from other dementias.
- Evoked Potential Signal Analysis. Evaluates the brain responses to stimuli, revealing cognitive impairments and aiding in the early detection of mild cognitive impairment (MCI).
- Heart Rate Variability (HRV) Analysis. Monitors autonomic dysfunction and its link to dementia progression by analyzing the variability in heartbeat intervals.
- Voice and Language Analysis. Detects cognitive decline through changes in speech patterns, including verbal coherence and language complexity, offering a non-invasive diagnostic tool.
- Machine Learning and Deep Learning techniques. Process biomedical data to classify brain images and predict disease progression, leveraging patterns in EEG and fMRI data.
2.4. Relationship Between Genetic Variability and Patterns in Brain Signals
2.5. Subtypes of Alzheimer’s Disease
- Late-onset Alzheimer’s disease (LOAD). The most common form of Alzheimer’s disease, affecting individuals over 65 years of age. Understanding factors influencing LOAD progression is increasingly critical due to global ageing trends.
- Atypical presentations of Alzheimer’s disease (AD). Include variants like primary progressive aphasia (PPA), posterior cortical atrophy (PCA), and corticobasal syndrome (CBS). These atypical forms require tailored diagnostic and management strategies due to distinct neuroanatomical and neuropsychological profiles [40,41,42].
- Neuroanatomical subtypes. Neuroanatomical subtypes, identified through MRI and PET imaging, highlight the distinct patterns of brain atrophy linked to clinical symptoms, enhancing the diagnostic accuracy and intervention planning [51].
- Clinical subtypes. Clinical subtypes, based on cognitive profiles, biomarkers, and imaging findings, offer a nuanced framework for understanding Alzheimer’s, as proposed by the Dubois criteria [52].
- Biomarker subtypes. Biomarker-based subtypes leverage the advancements in molecular imaging and fluid biomarkers to categorize Alzheimer’s, enhancing our understanding of its pathophysiology.
- Brain wave pattern subtypes. Subtypes identified through EEG analysis reveal the differences in brain wave patterns (Alpha, Beta, Theta, Delta), correlating with cognitive states and Alzheimer’s progression.
- 5.
- The preclinical stage of Alzheimer’s disease (AD). The preclinical stage occurs before clinical symptoms manifest, marked by beta-amyloid and tau accumulation detectable via biomarkers and imaging.
- 6.
3. Methodology
3.1. Data Collection
3.2. Data Preprocessing
- Artefact Removal. Non-neural artefacts, such as eye blinks, muscle noise, and electrical interference, were addressed using the established preprocessing techniques. Independent Component Analysis (ICA) and notch filters were applied to remove these artefacts effectively.
- Signal Filtering. The EEG signals were band-pass filtered to retain frequencies between 1 and 40 Hz, which are relevant for capturing the neural activity associated with cognitive and neurological processes. This step eliminates low-frequency drifts and high-frequency noise, ensuring that the signal contains meaningful neural activity.
- Raw Data Extraction. The filtered EEG data were extracted in a matrix format, where rows represented individual channels (electrodes) and columns represented time samples. This structure allowed for channel-specific analysis across the entire signal duration.
- Feature Extraction. Several features were computed from the preprocessed EEG data to characterize the signal for subsequent analysis:
- (a)
- Power in Specific Frequency Bands: The average power within Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), and Beta (13–30 Hz) bands was calculated using Welch’s method. This method estimates the power spectral density by segmenting the signal into overlapping windows and applying a smoothing function.
- (b)
- Basic Signal Statistics: for each channel, we computed the mean, standard deviation, and range to summarize the overall signal variability and amplitude characteristics.
- (c)
- Entropy: Shannon entropy was computed to quantify the signal complexity and predictability.
- (d)
- Dominant Frequency: the frequency with the highest power within the spectrum was identified as the dominant frequency for each channel.
- Normalization. Each extracted feature (power in frequency bands, entropy, dominant frequency) was normalized to ensure that all the features contributed equally to the subsequent genetic distance calculation. This step balanced the impact of features with different scales or magnitudes.
- Multidimensional Representation. The extracted features were organized into a multidimensional space, where each dimension corresponded to a specific signal feature. Each participant’s EEG data were represented as a point in this space, facilitating the computation of genetic distances between signals.
- Data Storage. The processed data, including feature matrices and computed statistics, were stored in structured formats for integration with the genetic distance metric and subsequent clustering analysis.
3.3. Genetic Distance Calculation
- -
- D (i, j) represents the genetic distance between participants i and j.
- -
- wk is the weight assigned to feature k based on its biological relevance.
- -
- xik and xjk are the values of feature k for participants i and j.
- -
- Frequency band powers: Delta (0.5–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz), and Beta (13–30 Hz). These bands are well-established indicators of cognitive states and neurological dysfunctions.
- -
- Statistical metrics: Mean, standard deviation, and amplitude variability, which capture the dynamic and temporal characteristics of EEG signals.
3.4. Variability Analysis
3.5. Disease Subtyping
4. Results
5. Conclusions
- Amyloid-beta levels, associated with the accumulation of amyloid plaques, which are a hallmark of Alzheimer’s disease.
- Tau protein levels, indicative of neurofibrillary tangles and neuronal degradation.
- Markers of neuroinflammation, such as cytokines, which are increasingly recognized as key players in neurological diseases.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginsburg, G.S.; McCarthy, J.J. Personalized medicine: Revolutionizing drug discovery and patient care. Trends Biotechnol. 2001, 19, 491–496. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Pérez-Ortega, J.; Pazos, R.A.; Ruiz-Vanoye, J.A.; Frausto-Solís, J.; González-Barbosa, J.; Fraire-Huacuja, H.; Díaz-Parra, O. A genetic distance metric to discriminate the selection of algorithms for the general ATSP problem. J. Intell. Fuzzy Syst. 2010, 21, 57–64. [Google Scholar] [CrossRef]
- Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Ashley, E.A. The precision medicine initiative: A new era of medicine. J. Am. Med. Assoc. 2016, 316, 1357–1358. [Google Scholar]
- Kahn, J.P.; Mastroianni, A.C. The ethics of precision medicine. Am. J. Bioeth. 2016, 16, 3–12. [Google Scholar]
- Zhang, Y.; Zhou, X. A modified Euclidean distance for feature weighting in pattern recognition. Pattern Recognit. Lett. 2015, 42, 80–86. [Google Scholar]
- Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India. 1936, 2, 49–55. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cavalli-Sforza, L.L.; Edwards, A.W.F. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Genet. 1967, 19, 233–257. [Google Scholar]
- Rogers, J.S. Measures of genetic similarity and genetic distances. Stud. Genet. VII 1972, 7213, 145–153. [Google Scholar]
- Relethford, J.H. Genetic drift can obscure population history: Problem and solution. Hum. Biol. 1996, 68, 29–44. [Google Scholar] [PubMed]
- Harpending, H.C.; Jenkins, T. Genetic distance among southern African populations. In Methods and Theories of Anthropological Genetics; Crawford, M.H., Workman, P.L., Eds.; University of New Mexico Press: Albuquerque, NC, USA, 1973; pp. 177–199. [Google Scholar]
- Takezaki, N.; Nei, M. Empirical tests of the reliability of phylogenetic trees constructed with microsatellite DNA. Genetics 1996, 178, 385–392. [Google Scholar] [CrossRef]
- Belle, E.M.; Barbujani, G. Worldwide analysis of multiple microsatellites: Language diversity has a detectable influence on DNA diversity. Am. J. Phys. Anthropol. 2007, 133, 1137–1146. [Google Scholar] [CrossRef]
- Paixão, T.; Phadke, S.; Azevedo, R.; Zufall, R. Sex ratio evolution under probabilistic sex determination. Evolution 2011, 65, 2050–2060. [Google Scholar] [CrossRef]
- Engelsma, K.A.; Calus, M.P.; Bijma, P.; Windig, J.J. Estimating genetic diversity across the neutral genome with the use of dense marker maps. Genet. Sel. Evol. 2010, 42, 12. [Google Scholar] [CrossRef]
- Liu, C.; Yu, D.; Ma, X.; Xie, S.; Zhang, H. Neural evidence for image quality perception based on algebraic topology. PLoS ONE 2021, 16, e0261223. [Google Scholar] [CrossRef]
- Simons, S.; Espino, P.; Abásolo, D. Fuzzy entropy analysis of the electroencephalogram in patients with Alzheimer’s disease: Is the method superior to sample entropy? Entropy 2018, 20, 21. [Google Scholar] [CrossRef]
- Groppe, D.M.; Bickel, S.; Keller, C.J.; Jain, S.K.; Hwang, S.T.; Harden, C.; Mehta, A.D. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. NeuroImage 2013, 79, 223–233. [Google Scholar] [CrossRef]
- Zhao, L.; Wei, S.; Tang, H.; Liu, C. Multivariable fuzzy measure entropy analysis for heart rate variability and heart sound amplitude variability. Entropy 2016, 18, 430. [Google Scholar] [CrossRef]
- Nieto-del-Amor, F.; Beskhani, R.; Ye-Lin, Y.; Garcia-Casado, J.; Diaz-Martinez, A.; Monfort-Ortiz, R.; Diago-Almela, V.J.; Hao, D.; Prats-Boluda, G. Assessment of dispersion and bubble entropy measures for enhancing preterm birth prediction based on electrohysterographic signals. Sensors 2021, 21, 6071. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.P.; Ayre, G.; Perry, E.; Wesnes, K.; McKeith, I.; Tovee, M.; Edwardson, J.; Ballard, C. Quantification and characterisation of fluctuating cognition in dementia with Lewy bodies and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2000, 11, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Zieselman, A.L.; Fisher, J.; Hu, T.; Andrews, P.C.; Greene, C.S.; Shen, L.; Saykin, A.J.; Moore, J.H.; for the Alzheimer’s Disease Neuroimaging Initiative. Computational genetics analysis of grey matter density in Alzheimer’s disease. BioData Min. 2014, 7, 17. [Google Scholar] [CrossRef]
- Qiang, Z.; Duan, K.; Miao, Y.; Tan, J. Identification of genetic markers and immune infiltration characteristics of Alzheimer’s disease through weighted gene co-expression network analysis. Front. Neurol. 2022, 13, 947781. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, L.; Wu, L.; Wu, Q.; Zhu, L.; Yang, X.; Li, D. Key genes associated with Alzheimer’s disease and periodontitis. Preprint 2022. [Google Scholar] [CrossRef]
- Pluta, R.; Ułamek-Kozioł, M.; Januszewski, S.; Czuczwar, S.J. From brain ischemia to Alzheimer-like neurodegeneration. Neuropsychiatry 2018, 8, 1000510. [Google Scholar] [CrossRef]
- Weiner, M.W.; Veitch, D.P.; Aisen, P.S.; Beckett, L.A.; Cairns, N.J.; Green, R.C.; Harvey, D.; Jack, C.R.; Jagust, W.; Liu, E.; et al. The Alzheimer’s Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimer’s Dement. 2022, 18, e63–e73. [Google Scholar]
- Kim, H.; Jung, S.; Kim, J.; Jang, H.; Kang, S.H.; Hwangbo, S.; Kim, J.P.; Kim, S.Y.; Kim, B.; Kim, S.; et al. Identifying novel genetic variants for brain amyloid deposition: A genome-wide association study in the Korean population. Alzheimer’s Res. Ther. 2021, 13, e854. [Google Scholar] [CrossRef]
- Johansen, M.; Joensen, S.; Restorff, M.; Stórá, T.; Christy, D.; Gustavsson, E.K.; Bian, J.; Guo, Y.; Farrer, M.J.; Petersen, M.S. Polygenic risk of Alzheimer’s disease in the Faroe Islands. Eur. J. Neurol. 2022, 29, 2192–2200. [Google Scholar] [CrossRef]
- Lumsden, A.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Apolipoprotein E (APOE) genotype-associated disease risks: A phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine 2020, 59, e102954. [Google Scholar] [CrossRef]
- Law, Z.K.; Todd, C.; Mehraram, R.; Schumacher, J.; Baker, M.R.; LeBeau, F.E.N.; Yarnall, A.; Onofrj, M.; Bonanni, L.; Thomas, A.; et al. The role of EEG in the diagnosis, prognosis and clinical correlations of dementia with Lewy bodies: A systematic review. Diagnostics 2020, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.M.; Ahmed, K.A.H.M.; Omer, M.E.A.; Siddig, A.A. Incidence of epilepsy among elderly Sudanese patients with Alzheimer’s disease: A prospective cohort study on 480 patients, Khartoum, Sudan. Preprint 2021. [Google Scholar] [CrossRef]
- Miltiadous, A.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Grigoriadis, N.; Tsalikakis, D.G.; Angelidis, P.; Tsipouras, M.G.; Glavas, E.; Giannakeas, N.; et al. A dataset of scalp EEG recordings of Alzheimer’s disease, frontotemporal dementia and healthy subjects from routine EEG. Data 2023, 8, 95. [Google Scholar] [CrossRef]
- Wan, K.; Ma, Z.; Zhou, X.; Zhang, Y.-M.; Yu, X.-F.; You, M.-Z.; Huang, C.-J.; Zhang, W.; Sun, Z.-W. A novel probable pathogenic PSEN2 mutation p.Phe369Ser associated with early-onset Alzheimer’s disease in a Chinese Han family: A case report. Front. Aging Neurosci. 2021, 13, e710075. [Google Scholar] [CrossRef]
- Mendez, M.F. Early-onset Alzheimer’s disease. Neurol. Clin. 2017, 35, 263–281. [Google Scholar] [CrossRef]
- Tort-Merino, A.; Falgàs, N.; Allen, I.E.; Balasa, M.; Olives, J.; Contador, J.; Castellví, M.; Juncà-Parella, J.; Guillén, N.; Borrego-Écija, S.; et al. Early-onset Alzheimer’s disease shows a distinct neuropsychological profile and more aggressive trajectories of cognitive decline than late-onset. Ann. Clin. Transl. Neurol. 2022, 9, 1962–1973. [Google Scholar] [CrossRef]
- Falgàs, N.; Allen, I.E.; Spina, S.; Grant, H.; Escudero, S.D.P.; Merrilees, J.; Gearhart, R.; Rosen, H.J.; Kramer, J.H.; Seeley, W.W.; et al. The severity of neuropsychiatric symptoms is higher in early-onset than late-onset Alzheimer’s disease. Eur. J. Neurol. 2021, 29, 957–967. [Google Scholar] [CrossRef]
- Wolk, D.A. Amyloid imaging in atypical presentations of Alzheimer’s disease. Curr. Neurol. Neurosci. Rep. 2013, 13, e412. [Google Scholar] [CrossRef]
- Tsantzali, I.; Paraskevas, P.; Paraskevas, S.; Paraskevas, S.G.; Efthimiopoulos, S.; Tsivgoulis, G. Atypical presentations of Alzheimer’s disease: Beyond amnestic dementia. Clin. Exp. Investig. 2020, 1–4. [Google Scholar]
- Sakae, N.; Josephs, K.; Litvan, I.; Murray, M.E.; Duara, R.; Uitti, R.J.; Wszolek, Z.K.; van Gerpen, J.; Graff-Radford, N.R.; Dickson, D.W. Clinicopathologic subtype of Alzheimer’s disease presenting as corticobasal syndrome. Alzheimer’s Dement. 2019, 15, 1218–1228. [Google Scholar] [CrossRef]
- Ferrari-Souza, J.; Brum, W.; Hauschild, L.; Da Ros, L.U.; Ferreira, P.C.L.; Bellaver, B.; Leffa, D.T.; Bieger, A.; Tissot, C.; Lussier, F.Z.; et al. Vascular risk burden is a key player in the early progression of Alzheimer’s disease. Neurobiol. Aging 2024, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Bangen, K.J.; Nation, D.A.; Delano-Wood, L.; Da Ros, L.U.; Ferreira, P.C.L.; Bellaver, B.; Leffa, D.T.; Bieger, A.; Tissot, C.; Lussier, F.Z.; et al. Aggregate effects of vascular risk factors on cerebrovascular changes in autopsy-confirmed Alzheimer’s disease. Alzheimer’s Dement. 2014, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Ewers, M.; Mielke, M.M.; Hampel, H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp. Gerontol. 2010, 45, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Pruchnik-Wolińska, D.; Florczak, J.; Modestowicz, R.; Szczech, J.; Kozubski, W.; Rossa, G.; Wender, M. Genetic study of familial cases of Alzheimer’s disease. Acta Biochim. Pol. 2004, 51, 245–252. [Google Scholar] [CrossRef]
- Finckh, U.; Kuschel, C.; Anagnostouli, M.; Patsouris, E.; Pantes, G.V.; Gatzonis, S.; Kapaki, E.; Davaki, P.; Lamszus, K.; Stavrou, D.; et al. Novel mutations and repeated findings of mutations in familial Alzheimer disease. Neurogenetics 2005, 6, 85–89. [Google Scholar] [CrossRef]
- Rosenthal, S.L.; Kamboh, M.I. Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr. Genet. Med. Rep. 2014, 2, 85–101. [Google Scholar] [CrossRef]
- Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375, 754–760. [Google Scholar] [CrossRef]
- Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349, 704–706. [Google Scholar] [CrossRef]
- Selkoe, D.J. The genetics and molecular pathology of Alzheimer’s disease: Roles of amyloid and the presenilins. Neuron 1997, 19, 1151–1154. [Google Scholar]
- Murray, M.E.; Graff-Radford, N.R.; Ross, O.A.; Petersen, R.C.; Duara, R.; Dickson, D.W. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: A retrospective study. Lancet Neurol. 2011, 10, 785–796. [Google Scholar] [CrossRef]
- Arriagada, J.; Villalobos, R. Proteína tau como biomarcador en Alzheimer preclínico. ARS Medica Rev. Cienc. Médicas 2022, 47, 56–67. [Google Scholar] [CrossRef]
- Reiman, E.M.; Quiroz, Y.T.; Fleisher, A.S.; Chen, K.; Velez-Pardo, C.; Jimenez-Del-Rio, M.; Fagan, A.M.; Shah, A.R.; Alvarez, S.; Arbelaez, A.; et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the Presenilin 1 E280A kindred: A case-control study. Lancet Neurol. 2012, 11, 1048–1056. [Google Scholar] [CrossRef]
- OpenNeuro. A Dataset of EEG Recordings from: Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects. Available online: https://github.com/OpenNeuroDatasets/ds004504. (accessed on 26 November 2024).
Metric | Strengths | Limitations | Novelty of Genetic Similarity Metric |
---|---|---|---|
Modified Euclidean Distance | Effective for weighted analysis. | Lacks the ability to incorporate correlations or account for dynamic signal interactions, which are critical in EEG analysis. | Combines weighted analysis with the ability to capture dynamic interactions in signal features. |
Mahalanobis Distance | Accounts for correlations in multivariate data. | Less sensitive to non-linear dynamics, which are often present in biomedical signals. | Extends correlation analysis to capture non-linear and temporal dynamics in physiological signals. |
Entropy-based Distance | Excels in analyzing probability distributions | Does not explicitly quantify signal similarity in terms of variability across key features such as amplitude and frequency. | Integrates variability analysis across multiple features while maintaining the sensitivity to signal patterns. |
Genetic Similarity Metric | Combines principles of geometric distances and evolutionary models for signal pattern analysis. | Enables the detection of subtle signal variations related to disease states, improving sensitivity and specificity. | Designed for EEG applications, linking physiological signals with pathological and genetic variability. |
Aspect | Mahalanobis Distance | Genetic Distance |
---|---|---|
Basic Concept | Covariance-based statistical distance. | A measure of similarity or divergence adapted from genetics. |
Assumptions | Assumes a Gaussian distribution and linear relationships. | Not dependent on a specific distribution; more flexible. |
Use in Biomedical Signals | More limited to clustering analysis or outlier detection. | Tailored to capture intrinsic and subtle variability. |
Variables Considered | All are normalized on the basis of covariance. | Specific variables selected for their biological relevance. |
Participant | Group | Delta | Theta | Alpha | Beta | Mean | Standard Deviation | Range |
---|---|---|---|---|---|---|---|---|
sub-001 | A | 1.28E−10 | 1.14E−11 | 2.46E−12 | 6.16E−13 | 2.10E−08 | 2.43E−05 | 0.000203 |
sub-002 | A | 1.15E−10 | 1.04E−11 | 6.49E−12 | 7.56E−13 | 1.01E−08 | 2.36E−05 | 0.000234 |
sub-003 | A | 9.78E−11 | 1.36E−11 | 8.63E−12 | 6.06E−13 | −3.51E−08 | 2.23E−05 | 0.000179 |
sub-004 | A | 1.30E−10 | 1.11E−11 | 2.50E−12 | 7.98E−13 | −2.15E−09 | 2.47E−05 | 0.000251 |
sub-005 | A | 1.27E−10 | 1.05E−11 | 2.82E−12 | 7.57E−13 | 4.48E−09 | 2.43E−05 | 0.000259 |
sub-006 | A | 1.28E−10 | 9.52E−12 | 1.04E−11 | 9.77E−13 | 8.78E−09 | 2.55E−05 | 0.000204 |
sub-007 | A | 1.24E−10 | 1.18E−11 | 2.83E−12 | 6.47E−13 | −1.15E−08 | 2.42E−05 | 0.000196 |
sub-008 | A | 1.72E−10 | 1.29E−11 | 3.27E−12 | 8.27E−13 | 4.27E−08 | 2.76E−05 | 0.000508 |
sub-009 | A | 1.14E−10 | 1.05E−11 | 6.29E−12 | 1.01E−12 | −2.29E−08 | 2.38E−05 | 0.000224 |
sub-010 | A | 1.05E−10 | 8.48E−12 | 2.98E−12 | 6.93E−13 | −4.93E−09 | 2.23E−05 | 0.000191 |
sub-011 | A | 1.30E−10 | 1.46E−11 | 5.85E−12 | 1.05E−12 | −7.26E−10 | 2.54E−05 | 0.000491 |
sub-012 | A | 1.43E−10 | 1.22E−11 | 4.15E−12 | 8.36E−13 | 7.35E−09 | 2.58E−05 | 0.000496 |
sub-013 | A | 1.46E−10 | 1.28E−11 | 3.23E−12 | 6.95E−13 | 6.89E−10 | 2.59E−05 | 0.000371 |
sub-014 | A | 1.51E−10 | 1.24E−11 | 2.83E−12 | 1.03E−12 | 1.92E−08 | 2.65E−05 | 0.000383 |
sub-015 | A | 1.39E−10 | 1.08E−11 | 5.50E−12 | 6.71E−13 | −4.44E−09 | 2.55E−05 | 0.000278 |
sub-016 | A | 1.44E−10 | 1.21E−11 | 2.64E−12 | 5.93E−13 | −1.52E−09 | 2.56E−05 | 0.000487 |
sub-017 | A | 1.52E−10 | 1.39E−11 | 3.32E−12 | 6.87E−13 | 8.51E−09 | 2.65E−05 | 0.000323 |
sub-018 | A | 1.51E−10 | 1.70E−11 | 6.21E−12 | 1.32E−12 | −1.16E−09 | 2.72E−05 | 0.000237 |
sub-019 | A | 1.27E−10 | 9.78E−12 | 2.87E−12 | 8.30E−13 | −1.10E−08 | 2.46E−05 | 0.000228 |
sub-020 | A | 1.52E−10 | 1.12E−11 | 2.67E−12 | 6.50E−13 | −6.46E−09 | 2.63E−05 | 0.000241 |
sub-021 | A | 1.41E−10 | 1.11E−11 | 3.03E−12 | 9.87E−13 | −2.68E−09 | 2.55E−05 | 0.000281 |
sub-022 | A | 1.52E−10 | 1.64E−11 | 5.12E−12 | 1.20E−12 | 9.05E−09 | 2.71E−05 | 0.000561 |
sub-023 | A | 1.33E−10 | 1.29E−11 | 4.31E−12 | 1.03E−12 | −1.10E−08 | 2.53E−05 | 0.000394 |
sub-024 | A | 1.31E−10 | 1.47E−11 | 3.63E−12 | 6.83E−13 | −3.30E−09 | 2.48E−05 | 0.000225 |
sub-025 | A | 1.35E−10 | 1.18E−11 | 8.59E−12 | 1.21E−12 | −9.52E−09 | 2.57E−05 | 0.000284 |
sub-026 | A | 1.40E−10 | 1.33E−11 | 3.33E−12 | 2.08E−12 | −3.39E−10 | 2.67E−05 | 0.00031 |
sub-027 | A | 1.66E−10 | 2.36E−11 | 3.92E−12 | 1.33E−12 | 1.77E−08 | 2.83E−05 | 0.000483 |
sub-028 | A | 1.16E−10 | 1.28E−11 | 3.10E−12 | 6.38E−13 | −1.96E−08 | 2.37E−05 | 0.000228 |
sub-029 | A | 1.41E−10 | 1.56E−11 | 3.39E−12 | 8.01E−13 | −5.63E−09 | 2.57E−05 | 0.000345 |
sub-030 | A | 2.22E−10 | 2.59E−11 | 6.19E−12 | 1.40E−12 | 8.01E−09 | 3.16E−05 | 0.000518 |
sub-031 | A | 1.37E−10 | 1.12E−11 | 4.90E−12 | 9.06E−13 | 5.12E−09 | 2.55E−05 | 0.000512 |
sub-032 | A | 1.60E−10 | 2.16E−11 | 7.22E−12 | 1.80E−12 | −2.53E−08 | 2.80E−05 | 0.00066 |
sub-033 | A | 1.20E−10 | 1.05E−11 | 4.15E−12 | 1.19E−12 | −1.15E−08 | 2.42E−05 | 0.000203 |
sub-034 | A | 1.29E−10 | 1.11E−11 | 2.57E−12 | 6.50E−13 | 1.03E−09 | 2.44E−05 | 0.000219 |
sub-035 | A | 1.18E−10 | 1.10E−11 | 2.93E−12 | 6.79E−13 | 8.55E−09 | 2.35E−05 | 0.000212 |
sub-036 | A | 1.19E−10 | 1.16E−11 | 9.01E−12 | 1.90E−12 | −1.00E−08 | 2.47E−05 | 0.00022 |
sub-037 | C | 1.40E−10 | 1.22E−11 | 1.07E−11 | 8.14E−13 | 2.79E−08 | 2.64E−05 | 0.000237 |
sub-038 | C | 1.16E−10 | 9.85E−12 | 4.20E−12 | 8.92E−13 | −1.17E−08 | 2.35E−05 | 0.000352 |
sub-039 | C | 1.23E−10 | 1.18E−11 | 1.94E−11 | 1.18E−12 | 1.83E−09 | 2.60E−05 | 0.000269 |
sub-040 | C | 1.38E−10 | 1.08E−11 | 8.06E−12 | 9.48E−13 | −8.10E−09 | 2.61E−05 | 0.000518 |
sub-041 | C | 1.32E−10 | 9.77E−12 | 4.50E−12 | 1.03E−12 | 7.84E−10 | 2.51E−05 | 0.000339 |
sub-042 | C | 1.35E−10 | 1.03E−11 | 6.69E−12 | 9.77E−13 | −1.60E−10 | 2.53E−05 | 0.000308 |
sub-043 | C | 1.28E−10 | 9.98E−12 | 2.89E−12 | 6.85E−13 | 1.48E−08 | 2.45E−05 | 0.000232 |
sub-044 | C | 1.43E−10 | 1.10E−11 | 1.01E−11 | 8.95E−13 | −2.00E−09 | 2.62E−05 | 0.000229 |
sub-045 | C | 1.35E−10 | 1.11E−11 | 3.61E−12 | 7.75E−13 | −1.01E−08 | 2.49E−05 | 0.000285 |
sub-046 | C | 1.26E−10 | 1.35E−11 | 1.04E−11 | 1.70E−12 | 5.90E−10 | 2.55E−05 | 0.000292 |
sub-047 | C | 1.36E−10 | 1.16E−11 | 7.54E−12 | 9.54E−13 | 4.48E−09 | 2.56E−05 | 0.000399 |
sub-048 | C | 1.46E−10 | 1.17E−11 | 6.65E−12 | 1.14E−12 | 9.56E−09 | 2.63E−05 | 0.000379 |
sub-049 | C | 1.30E−10 | 1.06E−11 | 8.55E−12 | 9.99E−13 | 2.41E−08 | 2.52E−05 | 0.000223 |
sub-050 | C | 1.32E−10 | 1.14E−11 | 5.22E−12 | 8.79E−13 | −5.36E−09 | 2.52E−05 | 0.000287 |
sub-051 | C | 1.42E−10 | 1.04E−11 | 4.36E−12 | 8.16E−13 | −3.97E−10 | 2.59E−05 | 0.00027 |
sub-052 | C | 1.32E−10 | 1.10E−11 | 6.45E−12 | 1.13E−12 | 5.05E−09 | 2.52E−05 | 0.000211 |
sub-053 | C | 1.38E−10 | 1.27E−11 | 9.55E−12 | 1.15E−12 | 1.28E−09 | 2.65E−05 | 0.000287 |
sub-054 | C | 1.34E−10 | 1.18E−11 | 1.00E−11 | 1.12E−12 | 1.17E−08 | 2.59E−05 | 0.000243 |
sub-055 | C | 1.29E−10 | 1.06E−11 | 6.65E−12 | 1.50E−12 | 1.24E−08 | 2.53E−05 | 0.000213 |
sub-056 | C | 1.59E−10 | 3.59E−11 | 2.18E−11 | 5.08E−12 | 2.82E−08 | 3.16E−05 | 0.000938 |
sub-057 | C | 1.28E−10 | 1.03E−11 | 5.90E−12 | 8.79E−13 | −4.01E−09 | 2.48E−05 | 0.000206 |
sub-058 | C | 1.28E−10 | 1.02E−11 | 7.03E−12 | 1.19E−12 | −2.03E−08 | 2.51E−05 | 0.000219 |
sub-059 | C | 1.35E−10 | 1.01E−11 | 2.74E−12 | 7.48E−13 | −5.20E−09 | 2.49E−05 | 0.000221 |
sub-060 | C | 1.35E−10 | 1.05E−11 | 2.71E−12 | 9.39E−13 | −6.95E−10 | 2.52E−05 | 0.000263 |
sub-061 | C | 1.30E−10 | 1.03E−11 | 4.29E−12 | 6.32E−13 | 2.44E−08 | 2.50E−05 | 0.000312 |
sub-062 | C | 1.28E−10 | 1.05E−11 | 1.07E−11 | 8.27E−13 | −2.78E−09 | 2.53E−05 | 0.000247 |
sub-063 | C | 1.14E−10 | 1.02E−11 | 3.57E−12 | 7.77E−13 | 7.32E−09 | 2.30E−05 | 0.000205 |
sub-064 | C | 1.50E−10 | 1.29E−11 | 2.47E−11 | 1.74E−12 | −4.49E−09 | 2.86E−05 | 0.000284 |
sub-065 | C | 1.30E−10 | 9.76E−12 | 3.35E−12 | 8.18E−13 | −5.36E−09 | 2.45E−05 | 0.000215 |
sub-066 | F | 1.29E−10 | 1.34E−11 | 4.81E−12 | 7.59E−13 | −1.02E−09 | 2.48E−05 | 0.000232 |
sub-067 | F | 1.23E−10 | 1.03E−11 | 5.23E−12 | 4.07E−12 | −5.98E−09 | 2.58E−05 | 0.000345 |
sub-068 | F | 1.26E−10 | 9.88E−12 | 3.94E−12 | 6.35E−13 | −1.65E−08 | 2.40E−05 | 0.000222 |
sub-069 | F | 1.11E−10 | 2.40E−11 | 9.48E−12 | 1.14E−12 | 7.83E−09 | 2.48E−05 | 0.000239 |
sub-070 | F | 1.18E−10 | 9.23E−12 | 2.63E−12 | 8.01E−13 | −2.88E−08 | 2.34E−05 | 0.000206 |
sub-071 | F | 1.10E−10 | 9.56E−12 | 5.07E−12 | 1.15E−12 | −2.12E−08 | 2.33E−05 | 0.000184 |
sub-072 | F | 1.24E−10 | 1.30E−11 | 3.20E−12 | 7.11E−13 | −3.71E−09 | 2.44E−05 | 0.000214 |
sub-073 | F | 1.27E−10 | 1.04E−11 | 3.56E−12 | 5.60E−13 | −6.67E−09 | 2.43E−05 | 0.000255 |
sub-074 | F | 1.38E−10 | 1.26E−11 | 4.29E−12 | 7.40E−13 | −2.05E−09 | 2.56E−05 | 0.000599 |
sub-075 | F | 1.29E−10 | 1.17E−11 | 7.78E−12 | 1.77E−12 | −2.04E−09 | 2.57E−05 | 0.000255 |
sub-076 | F | 1.38E−10 | 1.16E−11 | 3.20E−12 | 1.23E−12 | 4.67E−09 | 2.54E−05 | 0.000351 |
sub-077 | F | 1.41E−10 | 9.92E−12 | 2.56E−12 | 7.59E−13 | 9.05E−09 | 2.56E−05 | 0.000271 |
sub-078 | F | 1.41E−10 | 1.00E−11 | 2.62E−12 | 7.90E−13 | −1.15E−08 | 2.54E−05 | 0.000261 |
sub-079 | F | 1.28E−10 | 1.01E−11 | 4.65E−12 | 1.42E−12 | −3.98E−09 | 2.48E−05 | 0.000278 |
sub-080 | F | 1.25E−10 | 1.07E−11 | 1.17E−11 | 1.14E−12 | −1.65E−08 | 2.54E−05 | 0.000305 |
sub-081 | F | 1.29E−10 | 1.05E−11 | 2.84E−12 | 5.34E−13 | 1.38E−08 | 2.43E−05 | 0.000236 |
sub-082 | F | 1.34E−10 | 1.05E−11 | 4.59E−12 | 7.28E−13 | 9.02E−09 | 2.53E−05 | 0.000223 |
sub-083 | F | 1.29E−10 | 9.84E−12 | 2.35E−12 | 5.86E−13 | −1.02E−08 | 2.44E−05 | 0.000231 |
sub-084 | F | 9.57E−11 | 1.09E−11 | 2.65E−12 | 7.45E−13 | 1.01E−09 | 2.14E−05 | 0.000195 |
sub-085 | F | 1.45E−10 | 1.42E−11 | 3.10E−12 | 1.70E−12 | 2.54E−08 | 2.67E−05 | 0.00046 |
sub-086 | F | 2.92E−10 | 1.65E−11 | 7.11E−12 | 5.23E−12 | −1.45E−08 | 3.81E−05 | 0.000504 |
sub-087 | F | 1.36E−10 | 1.10E−11 | 3.46E−12 | 6.98E−13 | −2.13E−08 | 2.51E−05 | 0.000214 |
sub-088 | F | 1.22E−10 | 1.11E−11 | 6.09E−12 | 1.01E−12 | 1.24E−08 | 2.42E−05 | 0.000227 |
Group | Subtype | Numbers |
---|---|---|
A | 0 | 6 |
A | 1 | 21 |
A | 2 | 9 |
C | 0 | 5 |
C | 1 | 23 |
C | 2 | 1 |
F | 0 | 3 |
F | 1 | 17 |
F | 2 | 3 |
Band | Group | F-Statistic | p-Value |
---|---|---|---|
Delta | A | 11.6066 | 0.000152 |
Delta | C | 5.31791 | 0.011584 |
Delta | F | 6.485153 | 0.006746 |
Theta | A | 9.028632 | 0.000746 |
Theta | C | 291.7518 | 1.55 × 10−18 |
Theta | F | 1.310354 | 0.291903 |
Alpha | A | 1.018933 | 0.372056 |
Alpha | C | 4.228093 | 0.025715 |
Alpha | F | 1.412392 | 0.266829 |
Beta | A | 1.516316 | 0.234421 |
Beta | C | 103.664 | 4.08 × 10−13 |
Beta | F | 5.409132 | 0.01325 |
Group | Subtype | Delta Band | Theta Band | Alpha Band | Beta Band |
---|---|---|---|---|---|
Alzheimer (A) | Subtype 0 | Low Delta Powers. Represents early or less progressive stages of the disease. | Low Theta powers. Corresponds to less affected disease states. | Low Alpha powers. Represents a significant decline in the advanced stages of the disease. | Low Beta powers. Associated with loss of cognitive and motor activity. |
Subtype 1 | Intermediate Delta powers. Moderate cases with progressive neuronal disconnection. | Intermediate Theta powers. Associated with moderate functional disconnection. | Intermediate Alpha powers. Suggest moderate progression of neuronal disconnection. | Intermediate Beta powers. Moderate stages of functional impairment. | |
Subtype 2 | Higher Delta powers. Advanced stages with greater cortical dysfunction. | Higher Theta powers. Reflect the advanced stages of the disease. | Very low Alpha powers. Associated with severe damage and loss of synchronized activity. | Very low Beta powers. Represent severe damage to cortical activity. | |
Control (C) | Subtype 0 | Delta powers low and consistent. Reflect stable and unaltered brain activity. | Low and stable Theta powers. Represent the typical brain activity of healthy subjects. | High and consistent Alpha powers. Reflect stable and normal brain activity. | High and stable Beta powers. Reflect normal brain connectivity and function. |
Subtype 1 | Delta powers intermediate, but within normal range, slight variations possible. | Intermediate Theta powers. Within normal range, may reflect slight variations. | Intermediate Alpha powers, within normal range, but with less consistency. | Intermediate Beta powers. Within normal range, with slight variability. | |
Subtype 2 | Low Delta powers with minimal variations. Subtypes with little or no cerebral alteration. | Low and consistent Theta powers. Subjects with normal brain activity. | Alpha powers low, but still within the range expected in healthy subjects. | Low Beta powers. Reflect healthy subjects with lower activity in this band. | |
Frontotemporal Dementia (F) | Subtype 0 | Low Delta Powers. Represent initial or limited states of cortical disconnection. | Low Theta powers. Associated with initial dysfunction in neural activity. | Low Alpha powers. Suggest dysfunction in early cortical synchronization. | Low Beta power. Suggests initial disconnection in motor and cognitive networks. |
Subtype 1 | Intermediate Delta powers. They reflect moderate neuronal disconnection. | Intermediate Theta powers. Represent an intermediate stage of progression. | Intermediate Alpha powers. Associated with intermediate functional disconnection. | Intermediate Alpha powers. Associated with intermediate functional disconnection. | |
Subtype 2 | Significantly higher Delta powers. Advanced stages or severe variants. | Higher Theta powers. Possible correlation with advanced stages or aggressive variants. | Significantly lower Alpha potencies. Correlated with further disease progression. | Significantly lower Alpha potencies. Correlated with further disease progression. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Vanoye, J.A.; Díaz-Parra, O.; Márquez-Vera, M.A.; Barrera-Cámara, R.A.; Fuentes-Penna, A.; Simancas-Acevedo, E.; Ruiz-Jaimes, M.A.; Xicoténcatl-Pérez, J.M.; Ramos-Fernández, J.C. Symmetry in Genetic Distance Metrics: Quantifying Variability in Neurological Disorders for Personalized Treatment of Alzheimer’s and Dementia. Symmetry 2025, 17, 172. https://doi.org/10.3390/sym17020172
Ruiz-Vanoye JA, Díaz-Parra O, Márquez-Vera MA, Barrera-Cámara RA, Fuentes-Penna A, Simancas-Acevedo E, Ruiz-Jaimes MA, Xicoténcatl-Pérez JM, Ramos-Fernández JC. Symmetry in Genetic Distance Metrics: Quantifying Variability in Neurological Disorders for Personalized Treatment of Alzheimer’s and Dementia. Symmetry. 2025; 17(2):172. https://doi.org/10.3390/sym17020172
Chicago/Turabian StyleRuiz-Vanoye, Jorge A., Ocotlán Díaz-Parra, Marco Antonio Márquez-Vera, Ricardo A. Barrera-Cámara, Alejandro Fuentes-Penna, Eric Simancas-Acevedo, Miguel A. Ruiz-Jaimes, Juan M. Xicoténcatl-Pérez, and Julio Cesar Ramos-Fernández. 2025. "Symmetry in Genetic Distance Metrics: Quantifying Variability in Neurological Disorders for Personalized Treatment of Alzheimer’s and Dementia" Symmetry 17, no. 2: 172. https://doi.org/10.3390/sym17020172
APA StyleRuiz-Vanoye, J. A., Díaz-Parra, O., Márquez-Vera, M. A., Barrera-Cámara, R. A., Fuentes-Penna, A., Simancas-Acevedo, E., Ruiz-Jaimes, M. A., Xicoténcatl-Pérez, J. M., & Ramos-Fernández, J. C. (2025). Symmetry in Genetic Distance Metrics: Quantifying Variability in Neurological Disorders for Personalized Treatment of Alzheimer’s and Dementia. Symmetry, 17(2), 172. https://doi.org/10.3390/sym17020172