FFICL-Net: A Fusing Symmetric Feature-Importance Ranking Contrastive-Learning Network for Multivariate Time-Series Classification
Abstract
:1. Introduction
- To address the issue of unstable feature-importance results obtained from interpretable models, we introduced contrastive-learning methods to predict time-series data. Feature fusion is performed across different temporal dimensions of the time series, which is beneficial for both the prediction and interpretation of the time series.
- We design two methods incorporating attention mechanisms, adding attention layers to the ITransformer and LSTM, respectively, to capture the feature importance of variables in time-series data.
- We propose a new loss function that combines supervised contrastive-learning loss, feature-importance contrast loss, and classifier loss.
- Experimentally, we test our methods on thirty public UEA (University of East Anglia) datasets, achieving results that surpass current state-of-the-art time-series classification models.
2. Related Works
2.1. Multivariate Time-Series Classification
2.2. Interpretable Time-Series Classification
2.3. Contrastive Learning for Time-Series Classification
3. Method
3.1. Problem Formulation
3.2. Interpretable LSTM
3.3. Interpretable ITransformer
3.4. Improved Supervised Contrastive Learning
3.5. Loss Function
4. Results
4.1. Datasets
4.2. Dataset Format and Preprocessing
4.3. Training Details
4.4. Results
4.5. Interpretability Analysis
4.6. Ablation Study
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, A.; Seborg, D.E. Clustering multivariate time-series data. J. Chemom. J. Chemom. Soc. 2005, 19, 427–438. [Google Scholar]
- Islam, F.; Shahbaz, M.; Ahmed, A.U.; Alam, M.M. Financial development and energy consumption nexus in malaysia: A multivariate time-series analysis. Econ. Model. 2013, 30, 435–441. [Google Scholar] [CrossRef]
- Mudelsee, M. Climate Time Series Analysis; Atmospheric and Oceanographic Sciences Library; Springer: Cham, Switzerland, 2010; p. 397. [Google Scholar]
- Ghassemi, M.; Pimentel, M.; Naumann, T.; Brennan, T.; Clifton, D.; Szolovits, P.; Feng, M. A multivariate timeseries modeling approach to severity of illness assessment and forecasting in icu with sparse, heterogeneous clinical data. Proc. AAAI Conf. Artif. Intell. 2015, 29, 446–453. [Google Scholar] [CrossRef]
- Chamlin, M.B.; Sanders, B.A. Social policy and crash fatalities: A multivariate time series analysis. J. Crime Justice 2018, 41, 322–333. [Google Scholar]
- Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocomputing 2020, 388, 269–279. [Google Scholar] [CrossRef]
- Miao, X.; Wu, Y.; Wang, J.; Gao, Y.; Mao, X.; Yin, J. Generative semi-supervised learning for multivariate time series imputation. Proc. AAAI Conf. Artif. Intell. 2021, 35, 8983–8991. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive-learning of visual representations. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1597–1607. [Google Scholar]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning. Adv. Neural Inf. Process. Syst. 2020, 33, 18661–18673. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. itransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
- Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Gao, J.; Zhang, H.; Lu, P.; Wang, Z. An effective lstm recurrent network to detect arrhythmia on imbalanced ecg dataset. J. Healthc. Eng. 2019, 2019, 6320651. [Google Scholar]
- Shen, F.; Liu, J.; Wu, K. Multivariate time series forecasting based on elastic net and high-order fuzzy cognitive maps: A case study on human action prediction through eeg signals. IEEE Trans. Fuzzy Syst. 2020, 29, 2336–2348. [Google Scholar] [CrossRef]
- Bagnall, A.; Dau, H.A.; Lines, J.; Flynn, M.; Large, J.; Bostrom, A.; Southam, P.; Keogh, E. The uea multivariate time series classification archive. arXiv 2018, arXiv:1811.00075. [Google Scholar]
- Hsu, C.-Y.; Liu, W.-C. Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing. J. Intell. Manuf. 2021, 32, 823–836. [Google Scholar] [CrossRef]
- Kawakami, K. Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2008. [Google Scholar]
- Zhao, L.; Mo, C.; Ma, J.; Chen, Z.; Yao, C. Lstm-mfcn: A time series classifier based on multi-scale spatial–temporal features. Comput. Commun. 2022, 182, 52–59. [Google Scholar] [CrossRef]
- Salloum, R.; Ren, Y.; Kuo, C.-C.J. Image splicing localization using a multi-task fully convolutional network (mfcn). J. Vis. Commun. Image Represent. 2018, 51, 201–209. [Google Scholar] [CrossRef]
- Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A transformer-based framework for multivariate time series representation learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 2114–2124. [Google Scholar]
- Liu, M.; Ren, S.; Ma, S.; Jiao, J.; Chen, Y.; Wang, Z.; Song, W. Gated transformer networks for multivariate time series classification. arXiv 2021, arXiv:2103.14438. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2921–2929. [Google Scholar]
- Neves, I.; Folgado, D.; Santos, S.; Barandas, M.; Campagner, A.; Ronzio, L.; Cabitza, F.; Gamboa, H. Interpretable heartbeat classification using local model-agnostic explanations on ecgs. Comput. Biol. Med. 2021, 133, 104393. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “why should i trust you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Fauvel, K.; Lin, T.; Masson, V.; Fromont, É.; Termier, A. Xcm: An explainable convolutional neural network for multivariate time series classification. Mathematics 2021, 9, 3137. [Google Scholar] [CrossRef]
- Hsieh, T.-Y.; Wang, S.; Sun, Y.; Honavar, V. Explainable multivariate time series classification: A deep neural network which learns to attend to important variables as well as time intervals. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual, 8–12 March 2021; pp. 607–615. [Google Scholar]
- Luo, D.; Cheng, W.; Wang, Y.; Xu, D.; Ni, J.; Yu, W.; Zhang, X.; Liu, Y.; Chen, Y.; Chen, H.; et al. Time series contrastive learning with information-aware augmentations. Proc. AAAI Conf. Artif. Intell. 2023, 37, 4534–4542. [Google Scholar]
- Zhang, H.; Chan, S.; Qin, S.; Dong, Z.; Chen, G. Smde: Unsupervised representation learning for time series based on signal mode decomposition and ensemble. Knowl.-Based Syst. 2024, 301, 112369. [Google Scholar]
- Rehman, M.U.; Shafique, A.; Khan, I.U.; Ghadi, Y.Y.; Ahmad, J.; Alshehri, M.S.; Al Qathrady, M.; Alhaisoni, M.; Zayyan, M.H. An efficient deep learning model for brain tumour detection with privacy preservation. CAAI Trans. Intell. Technol. 2023. [Google Scholar] [CrossRef]
- Berndt, D.J.; Clifford, J. Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 31 July–1 August 1994; pp. 359–370. [Google Scholar]
- Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Time series classification using multi-channels deep convolutional neural networks. In Web-Age Information Management, Proceedings of the 15th International Conference, WAIM 2014, Macau, China, 16–18 June 2014; Springer: Cham, Switzerland, 2014; pp. 298–310. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MA, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Zhang, Y.; Yan, J. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv 2022, arXiv:2210.02186. [Google Scholar]
- Hüsken, M.; Stagge, P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50, 223–235. [Google Scholar]
- Zhang, L.; Xiang, F. Relation classification via bilstm-cnn. In Data Mining and Big Data, Proceedings of the Third International Conference, DMBD 2018, Shanghai, China, 17–22 June 2018, Proceedings 3; Springer: Cham, Switzerland, 2018; pp. 373–382. [Google Scholar]
Dataset | Traincases | Testcases | Dimensions | Length | Classes |
---|---|---|---|---|---|
ArticularyWordRecognition | 275 | 300 | 9 | 144 | 25 |
AtrialFibrillation | 15 | 15 | 2 | 640 | 3 |
BasicMotions | 40 | 40 | 6 | 100 | 4 |
CharacterTrajectories | 1422 | 1436 | 3 | 182 | 20 |
Cricket | 108 | 72 | 6 | 1197 | 12 |
DuckDuckGeese | 60 | 40 | 1345 | 270 | 5 |
EigenWorms | 128 | 131 | 6 | 17,984 | 5 |
Epilepsy | 137 | 138 | 3 | 206 | 4 |
EthanolConcentration | 261 | 263 | 3 | 1751 | 2 |
ERing | 30 | 30 | 4 | 65 | 6 |
FaceDetection | 5890 | 3524 | 144 | 62 | 2 |
FingerMovements | 316 | 100 | 28 | 50 | 2 |
HandMovementDirection | 320 | 147 | 10 | 400 | 4 |
Handwriting | 150 | 850 | 3 | 152 | 26 |
Heartbeat | 204 | 205 | 61 | 405 | 2 |
JapaneseVowels | 270 | 370 | 12 | 29 | 9 |
Libras | 180 | 180 | 2 | 45 | 15 |
LSST | 2459 | 2466 | 6 | 36 | 14 |
InsectWingbeat | 30,000 | 20,000 | 200 | 78 | 10 |
MotorImagery | 278 | 100 | 64 | 3000 | 2 |
NATOPS | 180 | 180 | 24 | 51 | 6 |
PenDigits | 7494 | 3498 | 2 | 8 | 10 |
PEMS-SF | 267 | 173 | 963 | 144 | 7 |
Phoneme | 3315 | 3353 | 11 | 217 | 39 |
RacketSports | 151 | 152 | 6 | 30 | 4 |
SelfRegulationSCP1 | 268 | 293 | 6 | 896 | 2 |
SelfRegulationSCP2 | 200 | 280 | 7 | 1152 | 2 |
SpokenArabicDigits | 6599 | 2199 | 13 | 93 | 10 |
StandWalkJump | 12 | 15 | 4 | 2500 | 3 |
UWaveGestureLibrary | 120 | 320 | 3 | 315 | 8 |
Datasets/Models | Classical Methods | RNN | Transformers | Mixed Supervised | Ours | |||||
---|---|---|---|---|---|---|---|---|---|---|
DTW-KNN | MLP | MLSTM-FCN | FED | CrossF | ITransformer | TimesNet | TS-TCC | SMDE | ||
(1994) | (2014) | (2019) | (2022) | (2022) | (2023) | (2023) | (2022) | (2024) | ||
ArticularyWordRecognition | 93.0 | 97.3 | 97.3 | 97.7 | 98.0 | 98.0 | 96.2 | 97.3 | 96.3 | 98.0 |
AtrialFibrillation | 20.0 | 46.7 | 26.7 | 53.3 | 46.7 | 40.0 | 33.3 | 30.0 | 20.0 | 40.0 |
BasicMotions | 100.0 | 85.0 | 95.0 | 92.5 | 90.0 | 92.5 | 100.0 | 100.0 | 97.5 | 100.0 |
CharacterTrajectories | 96.1 | 98.8 | 98.5 | 99.1 | 98.2 | 99.4 | 99.2 | 99.1 | 99.2 | 99.7 |
Cricket | 97.2 | 91.7 | 91.7 | 84.7 | 84.7 | 98.6 | 87.5 | 93.8 | 100.0 | 100.0 |
DuckDuckGeese | 44.0 | 42.0 | 67.5 | 57.5 | 60.0 | 55.0 | 62.5 | 42.0 | 60.0 | 66.0 |
EigenWorms | 63.4 | 52.7 | 50.4 | 61.8 | 55.0 | 83.2 | 84.0 | 39.3 | 84.0 | 87.8 |
Epilepsy | 97.8 | 60.1 | 76.1 | 65.9 | 73.2 | 73.2 | 78.1 | 95.7 | 97.1 | 74.6 |
ERing | 91.9 | 82.6 | 94.1 | 92.9 | 84.4 | 93.3 | 91.4 | 94.4 | 90.0 | 93.7 |
EthanolConcentration | 28.9 | 33.5 | 37.3 | 28.9 | 35.0 | 31.2 | 25.1 | 27.2 | 28.9 | 32.3 |
FaceDetection | 54.9 | 67.4 | 54.5 | 68.9 | 66.2 | 66.0 | 67.8 | 54.9 | 54.9 | 70.3 |
FingerMovements | 53.0 | 64.0 | 58.0 | 62.0 | 64.0 | 60.0 | 59.0 | 47.0 | 53.0 | 62.0 |
HandMovementDirection | 24.3 | 58.1 | 36.5 | 58.1 | 58.1 | 40.0 | 50.0 | 40.0 | 37.8 | 50.0 |
Handwriting | 27.2 | 22.5 | 28.6 | 26.0 | 26.2 | 28.0 | 23.1 | 39.2 | 41.9 | 32.0 |
Heartbeat | 69.3 | 73.2 | 66.3 | 76.6 | 76.6 | 73.7 | 75.1 | 69.5 | 74.6 | 78.5 |
InsectWingbeat | N/A | 10.0 | 16.7 | 10.0 | 27.6 | 11.0 | 10.0 | 47.9 | 55.8 | 21.8 |
JapaneseVowels | 88.1 | 97.8 | 97.6 | 98.7 | 98.9 | 98.4 | 96.5 | 90.8 | 97.0 | 98.1 |
Libras | 81.1 | 73.3 | 85.6 | 81.1 | 76.1 | 87.0 | 77.8 | 78.3 | 85.0 | 87.8 |
LSST | 52.6 | 35.8 | 37.3 | 67.8 | 42.8 | 57.5 | 59.2 | 39.1 | 61.9 | 62.7 |
MotorImagery | 46.0 | 61.0 | 51.0 | 61.0 | 61.0 | 59.0 | 51.0 | 51.0 | 62.0 | 59.0 |
NATOPS | 85.0 | 93.9 | 88.9 | 96.7 | 88.3 | 93.9 | 81.8 | 80.0 | 91.7 | 86.7 |
PEMS-SF | 79.8 | 82.1 | 69.9 | 88.4 | 82.1 | 80.9 | 83.2 | 63.5 | 80.9 | 89.6 |
PenDigits | 94.6 | 93.0 | 97.8 | 97.3 | 93.7 | 97.6 | 98.2 | 96.7 | 98.2 | 98.1 |
PhonemeSpectra | 13.3 | 7.1 | 11.0 | 11.7 | 7.6 | 10.1 | 18.2 | 16.5 | 21.9 | 11.0 |
RacketSports | 84.9 | 79.0 | 80.3 | 84.2 | 81.6 | 81.6 | 82.6 | 82.5 | 84.2 | 83.6 |
SelfRegulationSCP1 | 75.6 | 88.4 | 87.4 | 89.8 | 91.5 | 88.7 | 91.8 | 89.0 | 89.4 | 92.2 |
SelfRegulationSCP2 | 48.3 | 51.7 | 47.2 | 54.4 | 53.3 | 54.4 | 53.3 | 53.3 | 57.8 | 58.3 |
SpokenArabicDigits | 90.6 | 96.7 | 99.0 | 99.7 | 96.4 | 98.3 | 98.4 | 99.8 | 97.8 | 99.1 |
StandWalkJump | 40.0 | 60.0 | 6.7 | 60.0 | 53.3 | 53.3 | 53.3 | 45.0 | 53.3 | 60.0 |
UWaveGestureLibrary | 84.7 | 81.9 | 89.1 | 80.0 | 81.6 | 87.5 | 85.3 | 80.6 | 91.9 | 91.3 |
Average Accuracy | 64.2 | 68.4 | 64.8 | 70.2 | 68.4 | 69.7 | 69.1 | 66.1 | 72.1 | 72.8 |
Best accuracy count | 3 | 3 | 2 | 5 | 3 | 1 | 1 | 3 | 6 | 12 |
Average Rank | 7.33 | 6.7 | 6.47 | 4.57 | 5.72 | 5.1 | 5.43 | 6.5 | 4.5 | 2.95 |
Metrics | Methods | Result |
---|---|---|
AUC | SMDE | 0.67 |
ITransformer | 0.71 | |
FFICLNet | 0.74 | |
Accuracy | SMDE | 0.651 |
ITransformer | 0.685 | |
FFICLNet | 0.703 | |
Recall | SMDE | 0.654 |
ITransformer | 0.68 | |
FFICLNet | 0.642 | |
Specificity | SMDE | 0.648 |
ITransformer | 0.665 | |
FFICLNet | 0.741 | |
F1-score | SMDE | 0.652 |
ITransformer | 0.675 | |
FFICLNet | 0.676 |
Epoch | Epoch 1 | Epoch 25 | Epoch 50 | Epoch 75 | Epoch 100 |
---|---|---|---|---|---|
Minimum Cosine Similarity | 0.5484 | 0.6921 | 0.8247 | 0.8761 | 0.9212 |
Metrics | Methods | Result |
---|---|---|
AUC | FFICLNet w/o FFI | 0.69 |
FFICLNet w/o CL | 0.72 | |
FFICLNet | 0.74 | |
Accuracy | FFICLNet w/o FFI | 0.66 |
FFICLNet w/o CL | 0.672 | |
FFICLNet | 0.703 | |
Recall | FFICLNet w/o FFI | 0.589 |
FFICLNet w/o CL | 0.68 | |
FFICLNet | 0.642 | |
Specificity | FFICLNet w/o FFI | 0.727 |
FFICLNet w/o CL | 0.665 | |
FFICLNet | 0.741 | |
F1-score | FFICLNet w/o FFI | 0.631 |
FFICLNet w/o CL | 0.675 | |
FFICLNet | 0.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, A.; Qi, W.; Zhang, C.; Liu, S. FFICL-Net: A Fusing Symmetric Feature-Importance Ranking Contrastive-Learning Network for Multivariate Time-Series Classification. Symmetry 2025, 17, 522. https://doi.org/10.3390/sym17040522
Song A, Qi W, Zhang C, Liu S. FFICL-Net: A Fusing Symmetric Feature-Importance Ranking Contrastive-Learning Network for Multivariate Time-Series Classification. Symmetry. 2025; 17(4):522. https://doi.org/10.3390/sym17040522
Chicago/Turabian StyleSong, Anping, Wendong Qi, Chenbei Zhang, and Shibei Liu. 2025. "FFICL-Net: A Fusing Symmetric Feature-Importance Ranking Contrastive-Learning Network for Multivariate Time-Series Classification" Symmetry 17, no. 4: 522. https://doi.org/10.3390/sym17040522
APA StyleSong, A., Qi, W., Zhang, C., & Liu, S. (2025). FFICL-Net: A Fusing Symmetric Feature-Importance Ranking Contrastive-Learning Network for Multivariate Time-Series Classification. Symmetry, 17(4), 522. https://doi.org/10.3390/sym17040522