Inversion of Gravity Anomalies Based on U-Net Network
Abstract
:1. Introduction
2. Dataset Construction
2.1. Construction of 3D Density Variation Anomaly Models
Model Space Construction
2.2. Forward Modeling of 3D Models
2.2.1. Model Generation
2.2.2. Model Combination
2.2.3. Data Forward Modeling
3. Inversion of Network Architecture
3.1. The Main Architecture of U-Net
3.2. Regularization
3.3. Loss Function
3.4. Algorithm Selection
3.5. Network Configuration
4. Inversion and Discussions
4.1. Single Anomaly Body Inversion
4.1.1. Classification Results
4.1.2. Forecast Results
4.2. Inversion of Multiple Classified Anomaly Bodies
4.2.1. Classification Result
4.2.2. Forecast Results
- 1.
- Two anomalies
- 2.
- Three anomaly bodies
- 3.
- Five anomaly bodies
5. Model Application and Verification
6. Conclusions
- During the theoretical model testing phase, a RMSE loss function based on partition calculations is introduced. This method takes into account the spatial distribution characteristics of underground anomaly bodies and effectively optimizes inversion accuracy.
- In model tests, not only are the shape, size, and boundaries of subsurface anomalies accurately constrained, but also the residual gravity from the surface flow is maintained below 5 μGal. These results further validate both the feasibility and superiority of using U-Net networks for gravity anomaly inversion.
- In practical applications, U-Net networks have successfully addressed inversion challenges in geological contexts, as demonstrated by their ability to identify underground density variation changes preceding the Menyuan MS 6.9 earthquake. The focal depth matches the one produced by the USGS while keeping surface gravity residuals within 15 μGal. Additionally, the distribution and focal mechanisms of aftershocks are consistent with those obtained using other researchers’ GNSS methods, thereby demonstrating U-Net’s capability in addressing non-unique gravity inversion issues.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Last, B.J.; Kubik, K. Compact gravity inversion. Geophysics 1983, 48, 713–721. [Google Scholar] [CrossRef]
- Guillen, A.; Menichetti, V. Gravity and magnetic inversion with minimization of a specific functional. Geophysics 1984, 49, 1354–1360. [Google Scholar] [CrossRef]
- Barbosa, V.C.F.; Silva, J.B.C. Generalized compact gravity inversion. Geophysics 1994, 59, 57–68. [Google Scholar] [CrossRef]
- Li, Y.G.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 63, 109–119. [Google Scholar] [CrossRef]
- Silva, J.B.C.; Barbosa, V.C.F. Interactive gravity inversion. Geophysics 2006, 71, 696–699. [Google Scholar] [CrossRef]
- Dias, F.J.S.S.; Barbosa, V.C.F.; Silva, J.B.C. 3D gravity inversion through an adaptive-learning procedure. Geophysics 2009, 74, I9–I21. [Google Scholar] [CrossRef]
- Bertete-Aguirre, H.; Cherkaev, E.; Oristaglio, M. Non-smooth gravity problem with total variation penalization functional. Geophys. J. Int. 2002, 149, 499–507. [Google Scholar]
- Portniaguine, O.; Zhdanov, M.S. Focusing geophysical inversion images. Geophysics 1999, 64, 874–887. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Robert, E.; Souvik, M. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 2004, 69, 925–937. [Google Scholar] [CrossRef]
- Zhdanov, M.S. New advances in regularized inversion of gravity and electromagnetic data. Geophys. Prospect. 2009, 57, 463–478. [Google Scholar] [CrossRef]
- Chasseriau, P.; Chouteau, M. 3D gravity inversion using a model of parameter covariance. J. Appl. Geophy. 2003, 52, 59–74. [Google Scholar] [CrossRef]
- Commer, M. Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophys. Prospect. 2011, 59, 966–979. [Google Scholar] [CrossRef]
- Xu, R.; Wu, G.; Wang, G.; Fu, G.; Yu, F.; Wang, X.; Liu, L. Density structure of the upper and middle crust in the northeast Dabie Orogen revealed by terrestrial gravity surveys. Geol. J. 2023, 59, 137–154. [Google Scholar] [CrossRef]
- Xu, S.; Yu, H.; Li, H.; Gang, T.; Yu, J. The inversion of apparent density based on the separation and continuation of the potential field. Chin. J. Geophys. 2009, 52, 1592–1598. (In Chinese) [Google Scholar] [CrossRef]
- Sun, J.J.; Li, Y.G. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics 2015, 80, ID1–ID18. [Google Scholar] [CrossRef]
- Liu, S.; Jin, S.G. 3-D gravity anomaly inversion based on improved guided fuzzy C-Means clustering algorithm. Pure Appl. Geophys. 2020, 117, 1005–1027. [Google Scholar] [CrossRef]
- Barak, S.; Abedi, M.; Bahroudi, A. A knowledge-guided fuzzy inference approach for integrating geophysics, geochemistry, and geology data in a deposit-scale porphyry copper targeting, Saveh, Iran. Boll. Geofis. Teor. Appl. 2020, 61, 159–176. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Wu, N.; Tian, Y.; Wang, T. Desert seismic random noise reduction framework based on improved PSO-SVM. Acta Geod. Geophys. 2020, 55, 101–117. [Google Scholar] [CrossRef]
- Guo, R.W.; Dosso, S.E.; Liu, J.X.; Dettmer, J.; Tong, X. Non-linearity in Bayesian 1-D magnetotelluric inversion. Geophys. J. Int. 2011, 185, 663–675. [Google Scholar] [CrossRef]
- Jiang, F.B.; Dai, Q.W.; Dong, L. Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks. Appl. Geophys. 2016, 13, 267–278. [Google Scholar] [CrossRef]
- Al-Garni, M.A. Interpretation of some magnetic bodies using neural networks inversion. Arab. J. Geosci. 2009, 2, 175–184. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, Y.Z. Big data will lead to a profound revolution in the field of geological science. Geol. Sci. 2017, 52, 637–648. (In Chinese) [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Kim, Y.; Nakata, N. Geophysical inversion versus machine learning in inverse problems. Lead. Edge. 2018, 37, 894–901. [Google Scholar] [CrossRef]
- Wang, H.; Yan, J.; Fu, G.; Wang, X. Current status and application prospect of deep learning in geophysics. Prog. Geophys. 2020, 35, 0642–0655. (In Chinese) [Google Scholar] [CrossRef]
- Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 2017, 26, 4509–4522. [Google Scholar] [CrossRef]
- Liu, B.; Guo, Q.; Li, S.C.; Liu, B.C.; Ren, Y.X.; Pang, Y.H. Deep learning inversion of electrical resistivity data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5715–5728. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M.; Xi, Z.; Peng, X. Magnetotelluric inversion based on BP neural network optimized by genetic algorithm. Chin. J. Geophys. 2018, 61, 1563–1575. (In Chinese) [Google Scholar] [CrossRef]
- Puzyrev, V. Deep learning electromagnetic inversion with convolutional neural networks. Geophys. J. Int. 2019, 218, 817–832. [Google Scholar] [CrossRef]
- Puzyrev, V.; Swidinsky, A. Inversion of 1D frequency- and time-domain electromagnetic data with convolutional neural networks. Comput. Geosci. 2020, 29, 104681. [Google Scholar] [CrossRef]
- Noh, K.; Yoon, D.; Byun, J. Imaging subsurface resistivity structure from airborne electromagnetic induction data using deep neural network. Explor. Geophys. 2020, 51, 214–220. [Google Scholar] [CrossRef]
- Li, S.C.; Liu, B.; Ren, Y.X.; Chen, Y.K.; Yang, S.L.; Wang, Y.H.; Jiang, P. Deep-learning inversion of seismic data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2135–2149. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, X.; Cao, Y.; Hou, Z. Joint Gravity and Gravity Gradient Inversion Based on Deep Learning. Chin. J. Geophys. 2021, 64, 1435–1452. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding Deep Learning Requires Rethinking Generalization. In Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Chan, B.; Deng, W.; Du, J. Noisy softmax: Improving the generalization ability of DCNN via postponing the early softmax saturation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks by Preventing Co-adaptation of Feature Detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Hinton, G.E.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Xu, B.; Wang, N.Y.; Chen, T.Q.; Li, M. Empirical evaluation of rectified activations in convolutional networks. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Boureau, Y.L.; Ponce, J.; LeCun, Y. A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 111–118. [Google Scholar]
- Jin, X.; Wang, S.; Jiang, X.; Zhang, L. Coseismic deformation and slip distribution of the MW 6.9 Menyuan, Qinghai earthquake revealed by Sentinel-1A SAR imagery. Prog. Geophys. 2022, 37, 2267–2274. (In Chinese) [Google Scholar] [CrossRef]
- Dai, D.Q.; Yang, Z.G.; Sun, L. Rupture Process of the MS6.9 Menyuan, Qinghai, Earthquake on January 8, 2022. Acta Seismol. Sin. 2023, 45, 814–822. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Wu, G.; Xi, Y.; Wang, F.; Wang, J.; Zhang, R.; Long, Q. Inversion of Gravity Anomalies Based on U-Net Network. Symmetry 2025, 17, 523. https://doi.org/10.3390/sym17040523
Yu F, Wu G, Xi Y, Wang F, Wang J, Zhang R, Long Q. Inversion of Gravity Anomalies Based on U-Net Network. Symmetry. 2025; 17(4):523. https://doi.org/10.3390/sym17040523
Chicago/Turabian StyleYu, Fei, Guiju Wu, Yufei Xi, Fan Wang, Jiapei Wang, Rui Zhang, and Qinghong Long. 2025. "Inversion of Gravity Anomalies Based on U-Net Network" Symmetry 17, no. 4: 523. https://doi.org/10.3390/sym17040523
APA StyleYu, F., Wu, G., Xi, Y., Wang, F., Wang, J., Zhang, R., & Long, Q. (2025). Inversion of Gravity Anomalies Based on U-Net Network. Symmetry, 17(4), 523. https://doi.org/10.3390/sym17040523