Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra †
Abstract
:1. Introduction
2. Polyhedral Embeddings of Triangulated Orientable Regular Maps with Genus g, , and Some of Their Duals
3. Polyhedral Embeddings of Neighborly Spatial Polyhedra with Complete Graphs as Their Edge Graph and Their Duals
4. Polyhedral Embeddings as an Optimization Problem
Algorithm 1 Primary search for embeddings |
Input: List of index triplets representing the triangles T
|
5. Polyhedral Embeddings According to Table 1
5.1. Case R3.1
5.2. The Dual Case R3.1′
5.3. Case R3.2
5.4. Case R5.1
5.5. The Dual Case R5.1′
5.6. Case R6.1
5.7. Case R7.1
5.8. The Dual Case R7.1′
5.9. Case R8.1
5.10. Case R8.2
5.11. Case R10.1
5.12. Case R10.2
5.13. Case R13.1
5.14. Case R13.2
5.15. Case R14.1
5.16. The Dual Case R14.1′
5.17. Case R14.2
5.18. The Dual Case R14.2′
5.19. Case R14.3
5.20. The Dual Case R14.3′
6. Three New Leonardo Polyhedra and Understandable Spatial Representation
7. Complete Graphs with 4, 7, and 12 Vertices on Closed Oriented 2-Manifolds, No Diagonals
7.1. The Tetrahedron
7.2. The Seven Vertex Torus of Möbius
7.3. The 59 Examples of the Complete Graph with 12 Vertices
7.4. Neighborly Spatial Pseudo-Manifolds with 9 and 10 Vertices
8. The Dual Case of the Former Section
8.1. The Tetrahedron
8.2. Szilassi’s Polyhedron
8.3. The 59 Examples of the Complete Graph with 12 Vertices Used for Its 59 Duals
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Vertex Tables
Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 4 | 5 | −6 | 13 | 4 | 3 | −4 | (1, 5, 23) | (1, 21, 22) | (2, 6, 20) |
2 | −4 | 5 | 6 | 14 | −4 | 3 | 4 | (2, 22, 21) | (3, 7, 21) | (3, 23, 20) |
3 | −4 | −5 | −6 | 15 | −4 | −3 | −4 | (4, 8, 13) | (4, 12, 14) | (5, 9, 12) |
4 | 6 | −4 | 5 | 16 | 4 | −4 | 3 | (5, 13, 15) | (6, 10, 15) | (6, 14, 12) |
5 | 6 | 4 | −5 | 17 | 4 | 4 | −3 | (7, 11, 14) | (7, 15, 13) | (8, 4, 24) |
6 | −6 | 4 | 5 | 18 | −4 | 4 | 3 | (8, 16, 17) | (8, 24, 19) | (9, 1, 18) |
7 | −6 | −4 | −5 | 19 | −4 | −4 | −3 | (9, 5, 1) | (9, 17, 16) | (10, 2, 17) |
8 | 5 | −6 | 4 | 20 | 3 | −4 | 4 | (10, 6, 2) | (10, 18, 19) | (11, 3, 16) |
9 | 5 | 6 | −4 | 21 | 3 | 4 | −4 | (11, 7, 3) | (11, 19, 18) | (12, 4, 5) |
10 | −5 | 6 | 4 | 22 | −3 | 4 | 4 | (12, 16, 20) | (12, 20, 6) | (13, 5, 4) |
11 | −5 | −6 | −4 | 23 | −3 | −4 | −4 | (13, 17, 21) | (13, 21, 7) | (14, 6, 7) |
12 | 4 | −3 | 4 | 24 | 4 | −5 | 6 | (14, 18, 22) | (14, 22, 4) | (15, 7, 6) |
(15, 19, 23) | (15, 23, 5) | (16, 8, 11) | ||||||||
(16, 12, 9) | (17, 9, 10) | (17, 13, 8) | ||||||||
(18, 10, 9) | (18, 14, 11) | (19, 11, 8) | ||||||||
(19, 15, 10) | (20, 16, 3) | (20, 24, 2) | ||||||||
(21, 1, 3) | (21, 17, 2) | (22, 2, 24) | ||||||||
(22, 18, 1) | (23, 3, 1) | (23, 19, 24) | ||||||||
(24, 4, 22) | (24, 20, 23) | |||||||||
Vertex Permutation Groups | ||||||||||
(1, 3) (2, 24) (4, 6) (5, 7) (8, 10) (9, 11) (12, 14) (13, 15) (16, 18) (17, 19) (20, 22) (21, 23) | ||||||||||
(1, 8, 6) (2, 9, 4) (3, 11, 7) (5, 24, 10) (12, 22, 17) (13, 20, 18) (14, 21, 16) (15, 23, 19) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | 513 | 513 | −2337 | 29 | 209 | −209 | −855 | (12, 16, 42, 30, 11, 8, 26) |
2 | −513 | 513 | 2337 | 30 | −209 | −209 | 855 | (12, 21, 44, 32, 2, 56, 16) |
3 | −513 | −513 | −2337 | 31 | −209 | 209 | −855 | (12, 26, 49, 37, 5, 4, 21) |
4 | 2337 | −513 | 513 | 32 | 855 | 209 | 209 | (13, 17, 43, 31, 10, 9, 27) |
5 | 2337 | 513 | −513 | 33 | 855 | −209 | −209 | (13, 20, 45, 33, 3, 1, 17) |
6 | −2337 | 513 | 513 | 34 | −855 | −209 | 209 | (13, 27, 48, 36, 4, 5, 20) |
7 | −2337 | −513 | −513 | 35 | −855 | 209 | −209 | (14, 18, 40, 28, 9, 10, 24) |
8 | 513 | −2337 | 513 | 36 | 209 | 855 | 209 | (14, 23, 46, 34, 56, 2, 18) |
9 | 513 | 2337 | −513 | 37 | 209 | −855 | −209 | (14, 24, 51, 39, 7, 6, 23) |
10 | −513 | 2337 | 513 | 38 | −209 | −855 | 209 | (15, 19, 41, 29, 8, 11, 25) |
11 | −513 | −2337 | −513 | 39 | −209 | 855 | −209 | (15, 22, 47, 35, 1, 3, 19) |
12 | 2337 | −2337 | 2337 | 40 | 549 | 141 | 549 | (15, 25, 50, 38, 6, 7, 22) |
13 | 2337 | 2337 | −2337 | 41 | 549 | −141 | −549 | (52, 40, 18, 2, 32, 33, 45) |
14 | −2337 | 2337 | 2337 | 42 | −549 | −141 | 549 | (52, 45, 20, 5, 37, 38, 50) |
15 | −2337 | −2337 | −2337 | 43 | −549 | 141 | −549 | (52, 50, 25, 11, 30, 28, 40) |
16 | 342 | 57 | 1539 | 44 | 549 | 549 | 141 | (53, 41, 19, 3, 33, 32, 44) |
17 | 342 | −57 | −1539 | 45 | 549 | −549 | −141 | (53, 44, 21, 4, 36, 39, 51) |
18 | −342 | −57 | 1539 | 46 | −549 | −549 | 141 | (53, 51, 24, 10, 31, 29, 41) |
19 | −342 | 57 | −1539 | 47 | −549 | 549 | −141 | (54, 42, 16, 56, 34, 35, 47) |
20 | 1539 | 342 | 57 | 48 | 141 | 549 | 549 | (54, 47, 22, 7, 39, 36, 48) |
21 | 1539 | −342 | −57 | 49 | 141 | −549 | −549 | (54, 48, 27, 9, 28, 30, 42) |
22 | −1539 | −342 | 57 | 50 | −141 | −549 | 549 | (55, 43, 17, 1, 35, 34, 46) |
23 | −1539 | 342 | −57 | 51 | −141 | 549 | −549 | (55, 46, 23, 6, 38, 37, 49) |
24 | 57 | 1539 | 342 | 52 | 342 | −342 | 342 | (55, 49, 26, 8, 29, 31, 43) |
25 | 57 | −1539 | −342 | 53 | 342 | 342 | −342 | |
26 | −57 | −1539 | 342 | 54 | −342 | 342 | 342 | |
27 | −57 | 1539 | −342 | 55 | −342 | −342 | −342 | |
28 | 209 | 209 | 855 | 56 | 513 | −513 | 2337 | |
Face Permutation Groups | ||||||||
(1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12) (13, 19) (14, 20) (15, 21) (16, 22) (17, 23) (18, 24) | ||||||||
(1, 8, 6) (2, 9, 4) (3, 7, 5) (10, 11, 12) (13, 21, 17) (14, 19, 18) (15, 20, 16) (22, 24, 23) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | −4.1915 | 1.6830 | −8.1706 | (1, 2, 3) | (1, 3, 5) | (1, 4, 2) |
2 | −10.3976 | 0.1024 | −4.5518 | (1, 5, 8) | (1, 7, 4) | (1, 8, 11) |
3 | 5.2875 | 8.9535 | −4.5518 | (1, 10, 7) | (1, 11, 10) | (2, 4, 9) |
4 | 3.5533 | −2.7885 | 8.1706 | (2, 6, 3) | (2, 8, 6) | (2, 9, 10) |
5 | 0.6382 | 4.4714 | 8.1706 | (2, 10, 12) | (2, 12, 8) | (3, 6, 7) |
6 | 5.1102 | 9.0558 | 4.5518 | (3, 7, 12) | (3, 9, 5) | (3, 11, 9) |
7 | 5.2875 | −8.9535 | 4.5518 | (3, 12, 11) | (4, 5, 9) | (4, 6, 11) |
8 | −10.3976 | −0.1024 | 4.5518 | (4, 7, 6) | (4, 11, 12) | (4, 12, 5) |
9 | −4.1915 | −1.6830 | 8.1706 | (5, 6, 8) | (5, 10, 6) | (5, 12, 10) |
10 | 0.6382 | −4.4714 | −8.1706 | (6, 10, 11) | (7, 8, 12) | (7, 9, 8) |
11 | 3.5533 | 2.7885 | −8.1706 | (7, 10, 9) | (8, 9, 11) | |
12 | 5.1102 | −9.0558 | −4.5518 | |||
Vertex Permutation Groups | ||||||
(1, 9) (2, 8) (3, 7) (4, 11) (5, 10) (6, 12) | ||||||
(1, 10, 11) (2, 12, 3) (4, 5, 9) (6, 8, 7) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | −3 | 19 | 2 | (1, 2, 3) | (1, 2, 4) | (1, 3, 5) |
2 | −2 | 3 | 19 | (1, 4, 7) | (1, 5, 8) | (1, 7, 12) |
3 | −19 | 2 | 3 | (1, 8, 14) | (1, 12, 14) | (2, 3, 6) |
4 | 3 | 2 | 19 | (2, 4, 10) | (2, 6, 11) | (2, 10, 20) |
5 | −2 | 19 | −3 | (2, 11, 18) | (2, 20, 18) | (3, 5, 9) |
6 | −19 | −3 | 2 | (3, 6, 13) | (3, 9, 16) | (3, 13, 21) |
7 | 2 | 19 | 3 | (3, 16, 21) | (4, 7, 15) | (4, 10, 17) |
8 | 3 | −2 | −19 | (4, 15, 16) | (4, 16, 21) | (4, 17, 21) |
9 | −19 | 3 | −2 | (5, 8, 15) | (5, 9, 19) | (5, 15, 20) |
10 | 19 | −3 | −2 | (5, 19, 18) | (5, 20, 18) | (6, 11, 17) |
11 | −3 | −2 | 19 | (6, 12, 14) | (6, 13, 19) | (6, 14, 19) |
12 | −19 | −2 | −3 | (6, 17, 12) | (7, 9, 11) | (7, 11, 18) |
13 | 2 | −19 | −3 | (7, 12, 9) | (7, 15, 22) | (7, 18, 22) |
14 | 2 | 3 | −19 | (8, 10, 13) | (8, 13, 21) | (8, 14, 10) |
15 | 19 | 3 | 2 | (8, 15, 23) | (8, 21, 23) | (9, 12, 23) |
16 | 2 | −3 | 19 | (9, 16, 11) | (9, 19, 23) | (10, 14, 22) |
17 | −2 | −19 | 3 | (10, 17, 22) | (10, 20, 13) | (11, 16, 24) |
18 | 3 | 19 | −2 | (11, 17, 24) | (12, 17, 21) | (12, 23, 21) |
19 | −3 | 2 | −19 | (13, 19, 24) | (13, 20, 24) | (14, 19, 18) |
20 | 19 | −2 | 3 | (14, 22, 18) | (15, 16, 20) | (15, 22, 23) |
21 | −3 | −19 | −2 | (16, 24, 20) | (17, 22, 24) | (19, 23, 24) |
22 | 19 | 2 | −3 | (22, 23, 24) | ||
23 | −2 | −3 | −19 | |||
24 | 3 | −19 | 2 | |||
Vertex Permutation Groups | ||||||
(1, 16, 22) (2, 20, 18) (3, 24, 14) (4, 15, 7) | ||||||
(5, 11, 10) (6, 13, 19) (8, 9, 17) (12, 21, 23) | ||||||
(1, 6, 24, 15) (2, 11, 16, 4) (3, 17, 20, 7) | ||||||
(5, 12, 13, 22) (8, 14, 19, 23) (9, 21, 10, 18) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | 20.6538 | −21.8037 | 30.7781 | 33 | −21.7123 | −46.6975 | −23.8636 | (1, 2, 4, 6, 8, 7, 5, 3) |
2 | 12.7436 | 19.7610 | 29.7475 | 34 | −23.7155 | −42.3821 | −21.1059 | (1, 3, 15, 17, 19, 18, 16, 9) |
3 | 22.4112 | −22.2487 | 26.2924 | 35 | 21.8037 | 20.6538 | −30.7781 | (1, 9, 11, 13, 14, 12, 10, 2) |
4 | 29.8701 | 38.8839 | −26.5501 | 36 | −19.7610 | 12.7436 | −29.7475 | (2, 10, 21, 24, 23, 22, 20, 4) |
5 | 17.1835 | 5.2208 | 25.6113 | 37 | −60.3072 | −73.0117 | −49.4405 | (3, 5, 25, 27, 29, 28, 26, 15) |
6 | 24.9364 | 54.9657 | −21.9134 | 38 | 38.0925 | −54.7253 | −51.9970 | (4, 20, 38, 39, 37, 35, 36, 6) |
7 | 33.9628 | 41.7103 | −39.0682 | 39 | 33.1120 | −49.6397 | −50.2733 | (5, 7, 41, 40, 42, 44, 43, 25) |
8 | 33.1161 | 50.3384 | −41.4204 | 40 | −21.8037 | −20.6538 | −30.7781 | (6, 36, 46, 54, 53, 32, 31, 8) |
9 | −73.0117 | 60.3072 | 49.4405 | 41 | −22.2487 | −22.4112 | −26.2924 | (7, 8, 31, 34, 57, 58, 49, 41) |
10 | 54.9657 | −24.9364 | 21.9134 | 42 | 60.3072 | 73.0117 | −49.4405 | (9, 16, 33, 34, 31, 32, 30, 11) |
11 | −49.6397 | −33.1120 | 50.2733 | 43 | 49.6397 | 33.1120 | 50.2733 | (10, 12, 48, 40, 41, 49, 50, 21) |
12 | 38.8839 | −29.8701 | 26.5501 | 44 | 54.7253 | 38.0924 | 51.9970 | (11, 30, 52, 51, 45, 35, 37, 13) |
13 | −54.7253 | −38.0924 | 51.9970 | 45 | 22.2487 | 22.4113 | −26.2924 | (12, 14, 29, 27, 59, 61, 56, 48) |
14 | 46.6975 | −21.7122 | 23.8636 | 46 | −38.8839 | 29.8701 | 26.5501 | (13, 37, 39, 58, 57, 28, 29, 14) |
15 | −41.7103 | 33.9628 | 39.0682 | 47 | −54.9657 | 24.9364 | 21.9134 | (15, 26, 47, 46, 36, 35, 45, 17) |
16 | −38.0925 | 54.7253 | −51.9970 | 48 | 19.7610 | −12.7436 | −29.7475 | (16, 18, 42, 40, 48, 56, 55, 33) |
17 | −5.2208 | 17.1835 | −25.6113 | 49 | 5.2208 | −17.1835 | −25.6113 | (17, 45, 51, 61, 59, 22, 23, 19) |
18 | −33.1120 | 49.6397 | −50.2733 | 50 | 41.7103 | −33.9628 | 39.0682 | (18, 19, 23, 24, 53, 54, 44, 42) |
19 | −31.3143 | 39.3571 | −17.7661 | 51 | −33.9628 | −41.7103 | −39.0682 | (20, 22, 59, 27, 25, 43, 60, 38) |
20 | 21.7123 | 46.6976 | −23.8636 | 52 | −17.1835 | −5.2208 | 25.6113 | (21, 50, 62, 52, 30, 32, 53, 24) |
21 | 50.3384 | −33.1162 | 41.4204 | 53 | −42.3821 | 23.7155 | 21.1059 | (26, 28, 57, 34, 33, 55, 63, 47) |
22 | 23.7155 | 42.3821 | −21.1059 | 54 | −46.6975 | 21.7122 | 23.8636 | (38, 60, 64, 62, 50, 49, 58, 39) |
23 | 14.6167 | 51.0970 | −18.1096 | 55 | −29.8701 | −38.8839 | −26.5501 | (43, 44, 54, 46, 47, 63, 64, 60) |
24 | 1.4016 | 30.7868 | 33.2509 | 56 | −24.9364 | −54.9657 | −21.9134 | (51, 52, 62, 64, 63, 55, 56, 61) |
25 | 39.3571 | 31.3144 | 17.7661 | 57 | −14.6167 | −51.0970 | −18.1096 | |
26 | −50.3384 | 33.1161 | 41.4204 | 58 | 31.3143 | −39.3571 | −17.7661 | |
27 | 51.0970 | −14.6167 | 18.1096 | 59 | 30.7868 | −1.4016 | −33.2509 | |
28 | −1.4016 | −30.7868 | 33.2509 | 60 | 73.0117 | −60.3072 | 49.4405 | |
29 | 42.3821 | −23.7155 | 21.1059 | 61 | −33.1161 | −50.3384 | −41.4204 | |
30 | −39.3571 | −31.3144 | 17.7661 | 62 | −22.4112 | 22.2487 | 26.2924 | |
31 | −30.7868 | 1.4016 | −33.2509 | 63 | −12.7436 | −19.7610 | 29.7475 | |
32 | −51.0970 | 14.6167 | 18.1096 | 64 | −20.6538 | 21.8037 | 30.7781 | |
Face Permutation Groups | ||||||||
(1, 9, 24, 10) (2, 7, 23, 13) (3, 11, 22, 8) (4, 12, 19, 20) (5, 16, 17, 14) (6, 18, 15, 21) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | −5.9938 | 5.0131 | 1.2441 | (1, 2, 3) | (1, 2, 4) | (1, 3, 5) |
2 | −18.7143 | 20.4439 | 9.9060 | (1, 4, 7) | (1, 5, 8) | (1, 7, 10) |
3 | −1.3445 | −7.6974 | 1.2441 | (1, 8, 11) | (1, 10, 13) | (1, 11, 14) |
4 | 27.0621 | 5.9851 | 9.9060 | (1, 13, 14) | (2, 3, 6) | (2, 4, 9) |
5 | −12.1670 | 29.7607 | −19.6627 | (2, 6, 8) | (2, 8, 12) | (2, 9, 10) |
6 | −8.3478 | −26.4290 | 9.9060 | (2, 10, 15) | (2, 12, 14) | (2, 15, 14) |
7 | 7.3384 | 2.6843 | 1.2441 | (3, 5, 9) | (3, 6, 7) | (3, 7, 12) |
8 | −12.2496 | −9.5816 | −9.4864 | (3, 9, 11) | (3, 11, 15) | (3, 12, 13) |
9 | −2.1732 | 15.3993 | −9.4864 | (3, 15, 13) | (4, 5, 15) | (4, 6, 13) |
10 | 31.8570 | −4.3434 | −19.6628 | (4, 7, 6) | (4, 9, 5) | (4, 11, 12) |
11 | −6.9338 | −15.9841 | −1.2142 | (4, 13, 12) | (4, 15, 11) | (5, 6, 14) |
12 | −19.6900 | −25.4173 | −19.6628 | (5, 8, 6) | (5, 10, 12) | (5, 14, 12) |
13 | 14.4227 | −5.8176 | −9.4864 | (5, 15, 10) | (6, 10, 11) | (6, 13, 10) |
14 | −10.3757 | 13.9968 | −1.2142 | (6, 14, 11) | (7, 8, 15) | (7, 9, 14) |
15 | 17.3095 | 1.9872 | −1.2142 | (7, 10, 9) | (7, 12, 8) | (7, 15, 14) |
(8, 9, 13) | (8, 11, 9) | (8, 15, 13) | ||||
(9, 14, 13) | (10, 12, 11) | |||||
Vertex Permutation Groups | ||||||
(1, 3, 7) (2, 6, 4) (5, 12, 10) (8, 13, 9) (11, 15, 14) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.4001 | −7.0629 | 2.8252 | 37 | −21.9344 | −25.3906 | −1.2867 | (1, 2, 4) | (1, 3, 2) | (1, 4, 7) | (1, 5, 3) |
2 | −2.1462 | 13.3247 | 0.1947 | 38 | 15.1257 | −15.5554 | −9.5477 | (1, 7, 12) | (1, 8, 5) | (1, 12, 8) | (2, 3, 6) |
3 | 12.6127 | 4.8037 | −0.1947 | 39 | −11.2721 | 14.5763 | 3.7805 | (2, 6, 11) | (2, 10, 4) | (2, 11, 18) | (2, 18, 10) |
4 | 9.3387 | −11.6614 | 4.7984 | 40 | −11.0218 | −31.6910 | 1.2867 | (3, 5, 9) | (3, 9, 16) | (3, 13, 6) | (3, 16, 13) |
5 | 9.3217 | −18.2160 | 16.2271 | 41 | −20.4364 | 1.0351 | 16.2271 | (4, 10, 17) | (4, 15, 7) | (4, 17, 26) | (4, 26, 15) |
6 | −13.8167 | 9.8054 | −2.8252 | 42 | 9.3217 | 18.2160 | −16.2271 | (5, 8, 14) | (5, 14, 24) | (5, 19, 9) | (5, 24, 19) |
7 | 22.6320 | −3.3891 | −9.9525 | 43 | −22.6922 | 15.0609 | −17.0380 | (6, 13, 20) | (6, 20, 34) | (6, 22, 11) | (6, 34, 22) |
8 | −1.3639 | −24.8139 | 20.7038 | 44 | −21.0343 | 5.3216 | 9.5477 | (7, 15, 25) | (7, 23, 12) | (7, 25, 38) | (7, 38, 23) |
9 | 18.2595 | 2.4738 | 3.7805 | 45 | 14.4952 | 11.1575 | −14.2691 | (8, 12, 21) | (8, 21, 35) | (8, 27, 14) | (8, 35, 27) |
10 | 5.4297 | 13.9182 | 4.7984 | 46 | −13.8167 | −9.8054 | 2.8252 | (9, 19, 28) | (9, 28, 47) | (9, 31, 16) | (9, 47, 31) |
11 | −20.4364 | −1.0351 | −16.2271 | 47 | 32.9561 | −6.3004 | −1.2867 | (10, 18, 29) | (10, 29, 48) | (10, 32, 17) | (10, 48, 32) |
12 | 5.9085 | −20.8770 | 9.5477 | 48 | −1.5834 | 16.8683 | 2.8252 | (11, 22, 36) | (11, 33, 18) | (11, 36, 53) | (11, 53, 33) |
13 | −14.7684 | 2.2569 | −4.7984 | 49 | −10.4665 | 8.5210 | −0.1947 | (12, 23, 37) | (12, 37, 40) | (12, 40, 21) | (13, 16, 30) |
14 | −20.8075 | 13.5881 | 20.7038 | 50 | 15.4001 | 7.0629 | −2.8252 | (13, 30, 49) | (13, 39, 20) | (13, 49, 39) | (14, 27, 41) |
15 | 18.2595 | −2.4738 | −3.7805 | 51 | −11.2721 | −14.5763 | −3.7805 | (14, 41, 46) | (14, 44, 24) | (14, 46, 44) | (15, 26, 42) |
16 | 9.3387 | 11.6614 | −4.7984 | 52 | −16.9103 | 6.9745 | −14.2691 | (15, 42, 43) | (15, 43, 45) | (15, 45, 25) | (16, 31, 50) |
17 | −14.7684 | −2.2569 | 4.7984 | 53 | 14.8987 | −21.1965 | −20.4158 | (16, 50, 56) | (16, 56, 30) | (17, 32, 51) | (17, 46, 26) |
18 | −6.9874 | 17.0500 | −3.7805 | 54 | −16.9103 | −6.9745 | 14.2691 | (17, 51, 61) | (17, 61, 46) | (18, 33, 52) | (18, 52, 55) |
19 | −22.6922 | −15.0609 | 17.0380 | 55 | −21.9344 | 25.3906 | 1.2867 | (18, 55, 29) | (19, 24, 43) | (19, 43, 59) | (19, 54, 28) |
20 | −14.2510 | 17.9054 | 9.9525 | 56 | −2.1462 | −13.3247 | −0.1947 | (19, 59, 54) | (20, 39, 57) | (20, 44, 61) | (20, 57, 44) |
21 | 10.9074 | −23.5009 | 20.4158 | 57 | −11.0218 | 31.6910 | −1.2867 | (20, 61, 34) | (21, 33, 62) | (21, 40, 58) | (21, 58, 33) |
22 | −20.8075 | −13.5881 | −20.7038 | 58 | 2.4151 | −18.1320 | −14.2691 | (21, 62, 35) | (22, 34, 59) | (22, 42, 63) | (22, 59, 42) |
23 | −8.3810 | −21.2944 | 9.9525 | 59 | −25.8061 | −2.3044 | −20.4158 | (22, 63, 36) | (23, 30, 64) | (23, 38, 60) | (23, 60, 30) |
24 | −25.8061 | 2.3044 | 20.4158 | 60 | −1.5834 | −16.8683 | −2.8252 | (23, 64, 37) | (24, 44, 55) | (24, 52, 43) | (24, 55, 52) |
25 | 32.9561 | 6.3004 | 1.2867 | 61 | −14.2510 | −17.9054 | −9.9525 | (25, 45, 65) | (25, 47, 38) | (25, 65, 68) | (25, 68, 47) |
26 | 12.6127 | −4.8037 | 0.1947 | 62 | 24.3892 | −12.1216 | 17.0380 | (26, 46, 56) | (26, 50, 42) | (26, 56, 50) | (27, 35, 48) |
27 | 22.1714 | 11.2257 | 20.7038 | 63 | −1.3639 | 24.8139 | −20.7038 | (27, 48, 68) | (27, 65, 41) | (27, 68, 65) | (28, 53, 47) |
28 | 14.4952 | −11.1575 | 14.2691 | 64 | −6.9874 | −17.0500 | 3.7805 | (28, 54, 66) | (28, 62, 53) | (28, 66, 62) | (29, 31, 68) |
29 | −8.3810 | 21.2944 | −9.9525 | 65 | 14.8987 | 21.1965 | 20.4158 | (29, 55, 67) | (29, 67, 31) | (29, 68, 48) | (30, 56, 64) |
30 | 5.4297 | −13.9182 | −4.7984 | 66 | 2.4151 | 18.1320 | 14.2691 | (30, 60, 49) | (31, 47, 68) | (31, 67, 50) | (32, 48, 49) |
31 | 22.6320 | 3.3891 | 9.9525 | 67 | 5.9085 | 20.8770 | −9.5477 | (32, 49, 60) | (32, 60, 69) | (32, 69, 51) | (33, 53, 62) |
32 | −10.4665 | −8.5210 | 0.1947 | 68 | 15.1257 | 15.5554 | 9.5477 | (33, 58, 52) | (34, 37, 59) | (34, 40, 37) | (34, 61, 40) |
33 | −1.6970 | −27.1825 | −17.0380 | 69 | 11.1146 | −17.1808 | −16.2271 | (35, 39, 49) | (35, 49, 48) | (35, 62, 39) | (36, 38, 53) |
34 | −21.0343 | −5.3216 | −9.5477 | 70 | −1.6970 | 27.1825 | 17.0380 | (36, 60, 38) | (36, 63, 69) | (36, 69, 60) | (37, 54, 59) |
35 | 11.1146 | 17.1808 | 16.2271 | 71 | 24.3892 | 12.1216 | −17.0380 | (37, 64, 54) | (38, 47, 53) | (39, 62, 66) | (39, 66, 57) |
36 | 22.1714 | −11.2257 | −20.7038 | 72 | 10.9074 | 23.5009 | −20.4158 | (40, 51, 58) | (40, 61, 51) | (41, 56, 46) | (41, 64, 56) |
(41, 65, 70) | (41, 70, 64) | (42, 50, 63) | (42, 59, 43) | ||||||||
(43, 52, 45) | (44, 46, 61) | (44, 57, 55) | (45, 52, 58) | ||||||||
(45, 58, 71) | (45, 71, 65) | (50, 67, 63) | (51, 69, 71) | ||||||||
(51, 71, 58) | (54, 64, 70) | (54, 70, 66) | (55, 57, 67) | ||||||||
(57, 66, 72) | (57, 72, 67) | (63, 67, 72) | (63, 72, 69) | ||||||||
(65, 71, 70) | (66, 70, 72) | (69, 72, 71) | (70, 71, 72) | ||||||||
Vertex Permutation Groups | |||||||||||
(1, 50) (2, 56) (3, 26) (4, 16) (5, 42) (6, 46) (7, 31) (8, 63) (9, 15) (10, 30) | |||||||||||
(11, 41) (12, 67) (13, 17) (14, 22) (18, 64) (19, 43) (20, 61) (21, 72) (23, 29) (24, 59) | |||||||||||
(25, 47) (27, 36) (28, 45) (32, 49) (33, 70) (34, 44) (35, 69) (37, 55) (38, 68) (39, 51) | |||||||||||
(40, 57) (48, 60) (52, 54) (53, 65) (58, 66) (62, 71) | |||||||||||
(1, 48, 46) (2, 32, 26) (3, 49, 56) (4, 10, 17) (5, 35, 41) (6, 60, 50) (7, 29, 61) (8, 27, 14) | |||||||||||
(9, 39, 64) (11, 69, 42) (12, 68, 44) (13, 30, 16) (15, 18, 51) (19, 62, 70) (20, 23, 31) (21, 65, 24) | |||||||||||
(22, 36, 63) (25, 55, 40) (28, 66, 54) (33, 71, 43) (34, 38, 67) (37, 47, 57) (45, 52, 58) (53, 72, 59) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | −11.9611 | −62.3857 | −34.6229 | 85 | 17.6246 | −48.5909 | 4.9002 | (1, 2, 4, 6, 7, 5, 3) |
2 | −8.3887 | 14.8861 | −12.6041 | 86 | −73.0143 | −61.7741 | 39.1582 | (1, 2, 9, 11, 12, 10, 8) |
3 | −9.8501 | −59.6271 | −33.5116 | 87 | 0 | 0 | 43.8585 | (1, 3, 13, 15, 16, 14, 8) |
4 | −15.1290 | 19.7786 | −12.3520 | 88 | −75.5917 | −37.9932 | 33.2130 | (2, 4, 17, 19, 20, 18, 9) |
5 | 4.7685 | −72.1192 | −34.5800 | 89 | 4.6493 | 23.1080 | 39.8894 | (3, 5, 21, 23, 24, 22, 13) |
6 | −16.4631 | 18.2321 | −12.9997 | 90 | −9.5642 | 22.9914 | 12.3520 | (4, 6, 29, 31, 32, 30, 17) |
7 | −14.7678 | −79.9962 | −39.9677 | 91 | −23.3767 | 16.3077 | −2.9193 | (5, 7, 33, 35, 36, 34, 21) |
8 | −48.0470 | −41.5515 | 34.6229 | 92 | −19.7452 | 13.0607 | −12.2542 | (6, 7, 33, 49, 51, 50, 29) |
9 | −9.4783 | 19.7410 | −8.9752 | 93 | −7.5579 | 23.3735 | 12.9997 | (8, 10, 25, 28, 27, 26, 14) |
10 | −46.7136 | −38.3440 | 33.5116 | 94 | −21.2240 | 16.9588 | 34.8700 | (9, 11, 42, 43, 44, 41, 18) |
11 | −25.7369 | −17.1959 | 5.3639 | 95 | −38.4369 | 60.8557 | −0.4706 | (10, 12, 45, 47, 48, 46, 25) |
12 | −45.2292 | −22.9484 | 36.5785 | 96 | −50.8932 | 9.0321 | 4.9002 | (11, 12, 45, 72, 73, 71, 42) |
13 | 2.7407 | −50.6439 | −36.5785 | 97 | 70.2066 | −1.9308 | 0.1000 | (13, 15, 37, 40, 39, 38, 22) |
14 | 17.0861 | 0.1782 | 12.6040 | 98 | 33.2686 | 39.5588 | 4.9002 | (14, 16, 52, 54, 55, 53, 26) |
15 | −2.0237 | −30.8867 | −5.3639 | 99 | 70.2066 | 1.9308 | −0.1000 | (15, 16, 52, 64, 66, 65, 37) |
16 | 21.8354 | 1.6621 | 8.9752 | 100 | 71.9211 | 2.8595 | −0.4706 | (17, 19, 61, 62, 63, 60, 30) |
17 | −2.4345 | 28.3987 | 2.9193 | 101 | −9.8501 | 59.6271 | 33.5116 | (18, 20, 67, 69, 70, 68, 41) |
18 | 0 | 0 | −20.6846 | 102 | −48.0470 | 41.5515 | −34.6229 | (19, 20, 67, 102, 103, 101, 61) |
19 | −2.0237 | 30.8867 | 5.3639 | 103 | −11.9611 | 62.3857 | 34.6229 | (21, 23, 56, 59, 58, 57, 34) |
20 | 21.8354 | −1.6621 | −8.9752 | 104 | 60.0729 | 40.1893 | −34.5800 | (22, 24, 74, 76, 77, 75, 38) |
21 | 4.6493 | −23.1080 | −39.8894 | 105 | 70.6990 | 46.4678 | −33.2130 | (23, 24, 74, 94, 96, 95, 56) |
22 | 2.0218 | −23.8887 | −39.3683 | 106 | 76.6627 | 27.2089 | −39.9677 | (25, 28, 86, 88, 89, 87, 46) |
23 | −75.5917 | 37.9932 | −33.2130 | 107 | 90.0051 | 32.3452 | −39.1582 | (26, 27, 78, 81, 80, 79, 53) |
24 | −83.3797 | 0.0158 | −27.7907 | 108 | 33.2686 | −39.5588 | −4.9002 | (27, 28, 86, 127, 126, 128, 78) |
25 | −64.8414 | −31.9300 | 34.5800 | 109 | 25.2987 | −9.9011 | −34.8700 | (29, 31, 93, 90, 91, 92, 50) |
26 | 24.6933 | −3.2128 | 12.3520 | 110 | 0 | 0 | −41.8504 | (30, 32, 97, 99, 100, 98, 60) |
27 | 24.0210 | −5.1414 | 12.9997 | 111 | 24.9674 | −19.0042 | −25.3000 | (31, 32, 97, 138, 132, 133, 93) |
28 | −61.8949 | −52.7874 | 39.9677 | 112 | −18.3286 | −13.8073 | 10.5249 | (33, 35, 84, 83, 82, 85, 49) |
29 | −18.3286 | 13.8073 | −10.5249 | 113 | −2.7932 | −22.7767 | −10.5249 | (34, 36, 104, 106, 107, 105, 57) |
30 | −1.4383 | 23.6302 | 12.2542 | 114 | −7.5579 | −23.3735 | −12.9997 | (35, 36, 104, 131, 129, 130, 84) |
31 | −2.7932 | 22.7767 | 10.5249 | 115 | −17.3288 | −13.1006 | 12.5954 | (37, 40, 118, 113, 112, 119, 65) |
32 | −2.6811 | 21.5575 | 12.5954 | 116 | −8.6974 | 14.7079 | 12.6040 | (38, 39, 108, 109, 111, 110, 75) |
33 | −16.9908 | −94.1193 | −39.1582 | 117 | −25.7369 | 17.1959 | −5.3639 | (39, 40, 118, 99, 97, 138, 108) |
34 | 0 | 0 | −43.8585 | 118 | −2.6811 | −21.5575 | −12.5954 | (41, 44, 120, 121, 123, 122, 68) |
35 | 4.8926 | −84.4610 | −33.2130 | 119 | −16.4631 | −18.2321 | 12.9997 | (42, 43, 114, 113, 112, 115, 71) |
36 | 17.6874 | 15.5803 | −39.8894 | 120 | 60.0082 | 20.8342 | −34.6229 | (43, 44, 120, 131, 104, 106, 114) |
37 | −2.4345 | −28.3987 | −2.9193 | 121 | 60.0081 | −20.8342 | 34.6229 | (45, 47, 125, 83, 82, 124, 72) |
38 | −0.3134 | −18.1377 | −22.8286 | 122 | 42.4885 | −27.6955 | 36.5785 | (46, 48, 132, 133, 134, 135, 87) |
39 | −1.2826 | −28.3823 | −11.9789 | 123 | 56.5636 | −21.2831 | 33.5116 | (47, 48, 132, 138, 108, 109, 125) |
40 | −1.4383 | −23.6302 | −12.2542 | 124 | 3.9744 | −31.1245 | 25.3000 | (49, 51, 126, 128, 142, 141, 85) |
41 | −12.3571 | −18.0790 | −8.9752 | 125 | 26.4513 | −38.4429 | −11.7314 | (50, 51, 126, 127, 136, 137, 92) |
42 | −23.3767 | −16.3077 | 2.9193 | 126 | −36.7754 | −59.8353 | 0.1000 | (52, 54, 116, 90, 91, 117, 64) |
43 | −9.5642 | −22.9914 | −12.3520 | 127 | −38.4369 | −60.8557 | 0.4706 | (53, 55, 129, 130, 140, 139, 79) |
44 | −8.6974 | −14.7079 | −12.6040 | 128 | 20.0099 | −8.4569 | 12.5954 | (54, 55, 129, 131, 120, 121, 116) |
45 | −21.6991 | −10.1934 | 39.3683 | 129 | 42.4885 | 27.6955 | −36.5785 | (56, 59, 150, 81, 80, 151, 95) |
46 | −22.3368 | −7.5276 | 39.8894 | 130 | 19.6773 | 13.6952 | −39.3683 | (57, 58, 143, 144, 145, 146, 105) |
47 | 41.7035 | −72.2010 | 27.7907 | 131 | 56.5636 | 21.2831 | −33.5116 | (58, 59, 150, 69, 67, 102, 143) |
48 | 70.6990 | −46.4677 | 33.2130 | 132 | 90.0051 | −32.3452 | 39.1582 | (60, 63, 149, 152, 153, 154, 98) |
49 | −33.4841 | −63.7152 | −0.4706 | 133 | 76.6627 | −27.2089 | 39.9677 | (61, 62, 147, 88, 89, 148, 101) |
50 | −17.3288 | 13.1006 | −12.5954 | 134 | 60.0729 | −40.1892 | 34.5800 | (62, 63, 149, 94, 74, 76, 147) |
51 | −33.4312 | −61.7661 | −0.1000 | 135 | 17.6874 | −15.5803 | 39.8894 | (64, 66, 103, 102, 143, 144, 117) |
52 | 0 | 0 | 20.6846 | 136 | −50.8932 | −9.0320 | −4.9002 | (65, 66, 103, 101, 148, 155, 119) |
53 | 25.8113 | 12.0910 | −2.9193 | 137 | −23.9385 | 15.3019 | −11.9789 | (68, 70, 142, 141, 156, 157, 122) |
54 | −12.3571 | 18.0789 | 8.9752 | 138 | 71.9211 | −2.8595 | 0.4706 | (69, 70, 142, 128, 78, 81, 150) |
55 | 27.7605 | 13.6908 | −5.3639 | 139 | 25.2211 | 13.0804 | −11.9789 | (71, 73, 96, 95, 151, 160, 115) |
56 | −73.0143 | 61.7741 | −39.1582 | 140 | 15.8644 | 8.7975 | −22.8286 | (72, 73, 96, 94, 149, 152, 124) |
57 | −22.3368 | 7.5276 | −39.8894 | 141 | 25.2211 | −13.0804 | 11.9789 | (75, 77, 136, 137, 158, 159, 110) |
58 | −64.8414 | 31.9300 | −34.5800 | 142 | 21.1835 | −10.5695 | 12.2542 | (76, 77, 136, 127, 86, 88, 147) |
59 | −61.8949 | 52.7874 | −39.9677 | 143 | −46.7136 | 38.3440 | −33.5116 | (79, 80, 151, 160, 162, 161, 139) |
60 | −1.2826 | 28.3823 | 11.9789 | 144 | −45.2292 | 22.9484 | −36.5785 | (82, 85, 141, 156, 153, 152, 124) |
61 | 2.7407 | 50.6439 | 36.5785 | 145 | −21.6991 | 10.1934 | −39.3683 | (83, 84, 130, 140, 111, 109, 125) |
62 | 2.0218 | 23.8887 | 39.3683 | 146 | 41.7035 | 72.2010 | −27.7907 | (87, 89, 148, 155, 163, 164, 135) |
63 | −0.3134 | 18.1377 | 22.8286 | 147 | −83.3797 | −0.0158 | 27.7907 | (90, 93, 133, 134, 123, 121, 116) |
64 | −9.4783 | −19.7410 | 8.9752 | 148 | 4.7685 | 72.1192 | 34.5800 | (91, 92, 137, 158, 145, 144, 117) |
65 | −15.1290 | −19.7786 | 12.3520 | 149 | −28.9418 | 12.1203 | 25.3000 | (98, 100, 107, 105, 146, 165, 154) |
66 | −8.3887 | −14.8861 | 12.6041 | 150 | 24.0210 | 5.1414 | −12.9997 | (99, 100, 107, 106, 114, 113, 118) |
67 | 17.0861 | −0.1782 | −12.6040 | 151 | −36.7754 | 59.8353 | −0.1000 | (110, 111, 140, 139, 161, 166, 159) |
68 | 27.7605 | −13.6908 | 5.3639 | 152 | 0 | 0 | 41.8504 | (112, 115, 160, 162, 163, 155, 119) |
69 | 24.6933 | 3.2128 | −12.3520 | 153 | 24.9674 | 19.0042 | 25.3000 | (122, 123, 134, 135, 164, 167, 157) |
70 | 25.8113 | −12.0910 | 2.9193 | 154 | 25.2987 | 9.9011 | 34.8700 | (145, 146, 165, 168, 166, 159, 158) |
71 | −19.7452 | −13.0607 | 12.2542 | 155 | −14.7678 | 79.9962 | 39.9677 | (153, 154, 165, 168, 167, 157, 156) |
72 | −15.5510 | −9.3402 | 22.8286 | 156 | 15.8644 | −8.7975 | 22.8286 | (161, 162, 163, 164, 167, 168, 166) |
73 | −23.9385 | −15.3019 | 11.9788 | 157 | 19.6773 | −13.6952 | 39.3683 | |
74 | −46.5181 | 3.6860 | 11.7314 | 158 | −15.5510 | 9.3402 | −22.8286 | |
75 | −28.9418 | −12.1203 | −25.3000 | 159 | 3.9744 | 31.1245 | −25.3000 | |
76 | −46.5181 | −3.6860 | −11.7314 | 160 | −33.4312 | 61.7661 | 0.1000 | |
77 | −21.2240 | −16.9588 | −34.8700 | 161 | 17.6246 | 48.5909 | −4.9002 | |
78 | 21.1218 | −8.9694 | 10.5249 | 162 | −33.4841 | 63.7152 | 0.4706 | |
79 | 21.1835 | 10.5695 | −12.2542 | 163 | −16.9908 | 94.1193 | 39.1582 | |
80 | 20.0099 | 8.4569 | −12.5954 | 164 | 4.8926 | 84.4610 | 33.2130 | |
81 | 21.1218 | 8.9694 | −10.5249 | 165 | 26.4513 | 38.4429 | 11.7314 | |
82 | −4.0748 | −26.8599 | 34.8701 | 166 | −4.0748 | 26.8599 | −34.8701 | |
83 | 20.0669 | −42.1289 | 11.7314 | 167 | 41.6762 | 72.2168 | 27.7908 | |
84 | 41.6762 | −72.2168 | −27.7908 | 168 | 20.0669 | 42.1289 | −11.7314 | |
Face Permutation Groups | ||||||||
(1, 50) (2, 56) (3, 26) (4, 16) (5, 42) (6, 46) (7, 31) (8, 63) (9, 15) (10, 30) | ||||||||
(11, 41) (12, 67) (13, 17) (14, 22) (18, 64) (19, 43) (20, 61) (21, 72) (23, 29) (24, 59) | ||||||||
(25, 47) (27, 36) (28, 45) (32, 49) (33, 70) (34, 44) (35, 69) (37, 55) (38, 68) (39, 51) | ||||||||
(40, 57) (48, 60) (52, 54) (53, 65) (58, 66) (62, 71) | ||||||||
(1, 48, 46) (2, 32, 26) (3, 49, 56) (4, 10, 17) (5, 35, 41) (6, 60, 50) (7, 29, 61) (8, 27, 14) | ||||||||
(9, 39, 64) (11, 69, 42) (12, 68, 44) (13, 30, 16) (15, 18, 51) (19, 62, 70) (20, 23, 31) (21, 65, 24) | ||||||||
(22, 36, 63) (25, 55, 40) (28, 66, 54) (33, 71, 43) (34, 38, 67) (37, 47, 57) (45, 52, 58) (53, 72, 59) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | 15 | 19 | −13 | (1, 2, 4) | (1, 3, 2) | (1, 4, 7) |
2 | −15 | 19 | 13 | (1, 5, 3) | (1, 7, 12) | (1, 8, 5) |
3 | −19 | 15 | −13 | (1, 12, 14) | (1, 14, 8) | (2, 3, 6) |
4 | 19 | 15 | 13 | (2, 6, 11) | (2, 10, 4) | (2, 11, 19) |
5 | 12 | 14 | −7 | (2, 19, 20) | (2, 20, 10) | (3, 5, 9) |
6 | −19 | −15 | 13 | (3, 9, 17) | (3, 13, 6) | (3, 17, 21) |
7 | 19 | −15 | −13 | (3, 21, 13) | (4, 10, 18) | (4, 16, 7) |
8 | 5 | −4 | 1 | (4, 18, 25) | (4, 25, 26) | (4, 26, 16) |
9 | 6 | 8 | 0 | (5, 8, 15) | (5, 15, 24) | (5, 18, 9) |
10 | −12 | 14 | 7 | (5, 24, 27) | (5, 27, 18) | (6, 13, 16) |
11 | −14 | −12 | 7 | (6, 15, 11) | (6, 16, 30) | (6, 30, 33) |
12 | 14 | −12 | −7 | (6, 33, 15) | (7, 13, 32) | (7, 16, 13) |
13 | −15 | −19 | −13 | (7, 23, 12) | (7, 31, 23) | (7, 32, 31) |
14 | 8 | −6 | 0 | (8, 11, 15) | (8, 14, 22) | (8, 22, 31) |
15 | 4 | −5 | −1 | (8, 31, 34) | (8, 34, 11) | (9, 10, 37) |
16 | 15 | −19 | 13 | (9, 18, 10) | (9, 22, 17) | (9, 37, 39) |
17 | 4 | 5 | 1 | (9, 39, 22) | (10, 20, 23) | (10, 23, 38) |
18 | −6 | 8 | 0 | (10, 38, 37) | (11, 28, 19) | (11, 34, 38) |
19 | −8 | −6 | 0 | (11, 38, 28) | (12, 20, 40) | (12, 23, 20) |
20 | −5 | −4 | −1 | (12, 24, 29) | (12, 29, 14) | (12, 40, 24) |
21 | −14 | 12 | −7 | (13, 21, 28) | (13, 28, 39) | (13, 39, 32) |
22 | 0 | 0 | 27 | (14, 17, 22) | (14, 26, 41) | (14, 29, 26) |
23 | −4 | −5 | 1 | (14, 41, 17) | (15, 29, 24) | (15, 33, 36) |
24 | 12 | 16 | −4 | (15, 36, 29) | (16, 26, 29) | (16, 29, 35) |
25 | −4 | 5 | −1 | (16, 35, 30) | (17, 30, 35) | (17, 35, 21) |
26 | 14 | 12 | 7 | (17, 41, 30) | (18, 27, 35) | (18, 35, 36) |
27 | −16 | 12 | −4 | (18, 36, 25) | (19, 21, 42) | (19, 25, 36) |
28 | −8 | 6 | 0 | (19, 28, 21) | (19, 36, 20) | (19, 42, 25) |
29 | 8 | 6 | 0 | (20, 33, 40) | (20, 36, 33) | (21, 27, 42) |
30 | 12 | −14 | 7 | (21, 35, 27) | (22, 23, 31) | (22, 28, 23) |
31 | −6 | −8 | 0 | (22, 39, 28) | (23, 28, 38) | (24, 37, 38) |
32 | −12 | −14 | −7 | (24, 38, 27) | (24, 40, 37) | (25, 32, 39) |
33 | 6 | −8 | 0 | (25, 39, 26) | (25, 42, 32) | (26, 37, 41) |
34 | −16 | −12 | 4 | (26, 39, 37) | (27, 34, 42) | (27, 38, 34) |
35 | 5 | 4 | −1 | (29, 36, 35) | (30, 31, 33) | (30, 34, 31) |
36 | 0 | 0 | −27 | (30, 41, 34) | (31, 32, 33) | (32, 40, 33) |
37 | 16 | 12 | 4 | (32, 42, 40) | (34, 41, 42) | (37, 40, 41) |
38 | −12 | 16 | 4 | (40, 42, 41) | ||
39 | −5 | 4 | 1 | |||
40 | 16 | −12 | −4 | |||
41 | 12 | −16 | 4 | |||
42 | −12 | −16 | −4 | |||
Vertex Permutation Groups | ||||||
(1, 16) (2, 13) (3, 6) (4, 7) (5, 30) (8, 35) (9, 33) | ||||||
(10, 32) (11, 21) (12, 26) (14, 29) (15, 17) (18, 31) (19, 28) | ||||||
(20, 39) (22, 36) (23, 25) (24, 41) (27, 34) (37, 40) (38, 42) | ||||||
(1, 3, 13, 7) (2, 6, 16, 4) (5, 21, 32, 12) (8, 17, 39, 23) (9, 28, 31, 14) | ||||||
(10, 11, 30, 26) (15, 35, 25, 20) (18, 19, 33, 29) (24, 27, 42, 40) (34, 41, 37, 38) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | 0 | 0 | 24 | (1, 2, 12) | (1, 6, 2) | (1, 8, 25) |
2 | −4 | 19 | 17 | (1, 12, 19) | (1, 13, 6) | (1, 17, 8) |
3 | −6 | −12 | −11 | (1, 19, 17) | (1, 25, 13) | (2, 6, 18) |
4 | 12 | 6 | 11 | (2, 10, 14) | (2, 14, 26) | (2, 18, 20) |
5 | −5 | −4 | −5 | (2, 20, 10) | (2, 26, 12) | (3, 4, 5) |
6 | 6 | 12 | 9 | (3, 5, 12) | (3, 12, 34) | (3, 18, 4) |
7 | −12 | 6 | −11 | (3, 21, 29) | (3, 29, 32) | (3, 32, 18) |
8 | 4 | −19 | 17 | (3, 34, 21) | (4, 13, 5) | (4, 18, 36) |
9 | −12 | −6 | 11 | (4, 22, 23) | (4, 23, 35) | (4, 35, 13) |
10 | −6 | 12 | 11 | (4, 36, 22) | (5, 13, 33) | (5, 24, 31) |
11 | −18 | −4 | −12 | (5, 28, 24) | (5, 31, 12) | (5, 33, 28) |
12 | −12 | 6 | 9 | (6, 7, 30) | (6, 11, 7) | (6, 13, 27) |
13 | 19 | 4 | 17 | (6, 27, 11) | (6, 30, 18) | (7, 9, 26) |
14 | −4 | 18 | −12 | (7, 11, 9) | (7, 21, 30) | (7, 26, 28) |
15 | −4 | −5 | 5 | (7, 28, 33) | (7, 33, 21) | (8, 15, 30) |
16 | 6 | 12 | −11 | (8, 17, 15) | (8, 21, 34) | (8, 22, 25) |
17 | −6 | −12 | 9 | (8, 30, 21) | (8, 34, 22) | (9, 11, 19) |
18 | 4 | 5 | 5 | (9, 15, 38) | (9, 16, 15) | (9, 19, 37) |
19 | −19 | −4 | 17 | (9, 37, 16) | (9, 38, 26) | (10, 16, 14) |
20 | 4 | −5 | −5 | (10, 20, 23) | (10, 23, 31) | (10, 24, 27) |
21 | 6 | −12 | 11 | (10, 27, 16) | (10, 31, 24) | (11, 24, 32) |
22 | 18 | −4 | 12 | (11, 27, 24) | (11, 29, 19) | (11, 32, 29) |
23 | 12 | −6 | −11 | (12, 26, 34) | (12, 31, 19) | (13, 25, 33) |
24 | −12 | −6 | −9 | (13, 35, 27) | (14, 16, 25) | (14, 22, 36) |
25 | 12 | −6 | 9 | (14, 25, 22) | (14, 28, 26) | (14, 36, 28) |
26 | −18 | 4 | 12 | (15, 16, 39) | (15, 17, 20) | (15, 20, 38) |
27 | 4 | 18 | 12 | (15, 39, 30) | (16, 27, 39) | (16, 37, 25) |
28 | −19 | 4 | −17 | (17, 19, 29) | (17, 23, 20) | (17, 29, 35) |
29 | −4 | −18 | 12 | (17, 35, 23) | (18, 30, 36) | (18, 32, 20) |
30 | −4 | 5 | −5 | (19, 31, 37) | (20, 32, 38) | (21, 33, 41) |
31 | −5 | 4 | 5 | (21, 41, 29) | (22, 34, 42) | (22, 42, 23) |
32 | −4 | −19 | −17 | (23, 42, 31) | (24, 28, 40) | (24, 40, 32) |
33 | 5 | −4 | 5 | (25, 37, 33) | (26, 38, 34) | (27, 35, 39) |
34 | 4 | −18 | −12 | (28, 36, 40) | (29, 41, 35) | (30, 39, 36) |
35 | 18 | 4 | −12 | (31, 42, 37) | (32, 40, 38) | (33, 37, 41) |
36 | −6 | 12 | −9 | (34, 38, 42) | (35, 41, 39) | (36, 39, 40) |
37 | 5 | 4 | −5 | (37, 42, 41) | (38, 40, 42) | (39, 41, 40) |
38 | 6 | −12 | −9 | (40, 41, 42) | ||
39 | 4 | 19 | −17 | |||
40 | 0 | 0 | −24 | |||
41 | 12 | 6 | −9 | |||
42 | 19 | −4 | −17 | |||
Vertex Permutation Groups | ||||||
(1, 40) (2, 32) (3, 10) (4, 23) (5, 31) (6, 38) (7, 9) | ||||||
(8, 39) (11, 26) (12, 24) (13, 42) (14, 29) (15, 30) (16, 21) | ||||||
(17, 36) (18, 20) (19, 28) (22, 35) (25, 41) (27, 34) (33, 37) | ||||||
(2, 19, 8, 13) (3, 23, 16, 7) (4, 10, 9, 21) (5, 20, 37, 30) (6, 12, 17, 25) | ||||||
(11, 34, 35, 14) (15, 33, 18, 31) (22, 27, 26, 29) (24, 38, 41, 36) (28, 32, 42, 39) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | 18 | −26 | −16 | (1, 2, 3) | (1, 3, 5) | (1, 4, 2) |
2 | 41 | −45 | −11 | (1, 5, 8) | (1, 7, 4) | (1, 8, 14) |
3 | −4 | 0 | −18 | (1, 12, 7) | (1, 14, 20) | (1, 20, 12) |
4 | 26 | 18 | 16 | (2, 4, 10) | (2, 6, 3) | (2, 10, 22) |
5 | −34 | 19 | −57 | (2, 11, 6) | (2, 19, 11) | (2, 22, 29) |
6 | 4 | 0 | −18 | (2, 29, 19) | (3, 6, 13) | (3, 9, 5) |
7 | 37 | 49 | 40 | (3, 13, 23) | (3, 17, 9) | (3, 23, 28) |
8 | 49 | −37 | −40 | (3, 28, 17) | (4, 7, 16) | (4, 16, 21) |
9 | −1 | −1 | −2 | (4, 18, 10) | (4, 21, 34) | (4, 24, 18) |
10 | 14 | 19 | 11 | (4, 34, 24) | (5, 9, 21) | (5, 15, 8) |
11 | 49 | −40 | −37 | (5, 18, 15) | (5, 21, 26) | (5, 26, 33) |
12 | 19 | −14 | −11 | (5, 33, 18) | (6, 11, 26) | (6, 15, 24) |
13 | −41 | 45 | −11 | (6, 16, 36) | (6, 24, 13) | (6, 26, 16) |
14 | −26 | −18 | 16 | (6, 36, 15) | (7, 12, 27) | (7, 13, 33) |
15 | 34 | −19 | −57 | (7, 17, 16) | (7, 27, 13) | (7, 30, 17) |
16 | −19 | −34 | 57 | (7, 33, 30) | (8, 11, 25) | (8, 15, 22) |
17 | 19 | 34 | 57 | (8, 22, 30) | (8, 25, 14) | (8, 30, 34) |
18 | −49 | 37 | −40 | (8, 34, 11) | (9, 10, 36) | (9, 17, 30) |
19 | −40 | −49 | 37 | (9, 19, 21) | (9, 25, 19) | (9, 30, 10) |
20 | −45 | −41 | 11 | (9, 36, 25) | (10, 18, 23) | (10, 23, 27) |
21 | 0 | −4 | 18 | (10, 27, 36) | (10, 30, 22) | (11, 12, 26) |
22 | 11 | −4 | 0 | (11, 19, 25) | (11, 27, 12) | (11, 34, 27) |
23 | −49 | 40 | −37 | (12, 20, 32) | (12, 22, 28) | (12, 28, 26) |
24 | −18 | 26 | −16 | (12, 32, 22) | (13, 14, 25) | (13, 24, 14) |
25 | −14 | −19 | 11 | (13, 25, 33) | (13, 27, 23) | (14, 17, 31) |
26 | 1 | −1 | 2 | (14, 24, 29) | (14, 29, 17) | (14, 31, 20) |
27 | 40 | 49 | 37 | (15, 18, 24) | (15, 28, 22) | (15, 31, 28) |
28 | −1 | 1 | 2 | (15, 36, 31) | (16, 17, 29) | (16, 26, 21) |
29 | −37 | −49 | 40 | (16, 29, 32) | (16, 32, 36) | (17, 28, 31) |
30 | 4 | 11 | 0 | (18, 20, 23) | (18, 32, 20) | (18, 33, 32) |
31 | 0 | 4 | 18 | (19, 20, 21) | (19, 23, 20) | (19, 29, 35) |
32 | −4 | −11 | 0 | (19, 35, 23) | (20, 31, 21) | (21, 31, 34) |
33 | −11 | 4 | 0 | (22, 32, 29) | (23, 35, 28) | (24, 34, 35) |
34 | 45 | 41 | 11 | (24, 35, 29) | (25, 32, 33) | (25, 36, 32) |
35 | −19 | 14 | −11 | (26, 28, 35) | (26, 35, 33) | (27, 31, 36) |
36 | 1 | 1 | −2 | (27, 34, 31) | (30, 33, 35) | (30, 35, 34) |
Vertex Permutation Groups | ||||||
(1, 4, 24, 14) (2, 34, 13, 20) (3, 21, 6, 31) (5, 16, 15, 17) (7, 18, 29, 8) | ||||||
(9, 26, 36, 28) (10, 35, 25, 12) (11, 27, 23, 19) (22, 30, 33, 32) |
Vertex | X | Y | Z | Triangles | ||
---|---|---|---|---|---|---|
1 | −29 | −83 | −105 | (1, 2, 3) | (1, 3, 5) | (1, 4, 2) |
2 | −2 | −20 | −42 | (1, 5, 8) | (1, 7, 4) | (1, 8, 11) |
3 | 76 | 34 | 18 | (1, 10, 7) | (1, 11, 14) | (1, 13, 10) |
4 | −41 | −19 | 7 | (1, 14, 17) | (1, 16, 13) | (1, 17, 16) |
5 | 6 | −26 | −9 | (2, 4, 9) | (2, 6, 3) | (2, 8, 6) |
6 | 29 | 83 | −105 | (2, 9, 10) | (2, 10, 15) | (2, 12, 8) |
7 | 3 | 31 | −30 | (2, 14, 12) | (2, 15, 16) | (2, 16, 18) |
8 | 15 | −7 | 0 | (2, 18, 14) | (3, 6, 7) | (3, 7, 12) |
9 | −26 | −37 | −1 | (3, 9, 5) | (3, 11, 9) | (3, 12, 13) |
10 | −6 | 26 | −9 | (3, 13, 18) | (3, 15, 11) | (3, 17, 15) |
11 | 41 | 19 | 7 | (3, 18, 17) | (4, 5, 9) | (4, 6, 13) |
12 | 26 | 37 | −1 | (4, 7, 6) | (4, 11, 15) | (4, 12, 17) |
13 | −15 | 7 | 0 | (4, 13, 12) | (4, 15, 5) | (4, 17, 18) |
14 | −3 | −31 | −30 | (4, 18, 11) | (5, 6, 8) | (5, 10, 18) |
15 | −7 | −7 | 2 | (5, 12, 14) | (5, 14, 6) | (5, 15, 10) |
16 | 2 | 20 | −42 | (5, 16, 12) | (5, 18, 16) | (6, 10, 13) |
17 | −76 | −34 | 18 | (6, 11, 16) | (6, 14, 11) | (6, 16, 17) |
18 | 7 | 7 | 2 | (6, 17, 10) | (7, 8, 12) | (7, 9, 16) |
(7, 10, 9) | (7, 14, 18) | (7, 15, 14) | ||||
(7, 16, 15) | (7, 18, 8) | (8, 9, 11) | ||||
(8, 13, 15) | (8, 15, 17) | (8, 17, 9) | ||||
(8, 18, 13) | (9, 13, 16) | (9, 14, 13) | ||||
(9, 17, 14) | (10, 11, 18) | (10, 12, 11) | ||||
(10, 17, 12) | (11, 12, 16) | (13, 14, 15) | ||||
Vertex Permutation Groups | ||||||
(1, 6) (2, 16) (3, 17) (4, 11) (5, 10) (7, 14) (8, 13) (9, 12) (15, 18) |
Vertex | X | Y | Z | Triangles | |||
---|---|---|---|---|---|---|---|
1 | −29.0169 | −20.7230 | 4.7465 | (1, 2, 3) | (1, 2, 4) | (1, 3, 5) | (1, 4, 7) |
2 | 6.5404 | −0.5281 | 4.7568 | (1, 5, 8) | (1, 7, 12) | (1, 8, 14) | (1, 12, 20) |
3 | 0.0176 | −8.9591 | 4.7215 | (1, 14, 24) | (1, 20, 24) | (2, 3, 6) | (2, 4, 10) |
4 | 21.2008 | −19.8647 | 23.1409 | (2, 6, 11) | (2, 10, 22) | (2, 11, 19) | (2, 19, 30) |
5 | 0.5111 | −1.5323 | −0.0497 | (2, 22, 32) | (2, 30, 32) | (3, 5, 9) | (3, 6, 13) |
6 | 2.2805 | 5.2048 | 4.4482 | (3, 9, 17) | (3, 13, 23) | (3, 17, 28) | (3, 23, 33) |
7 | −26.1368 | 7.4514 | −11.5974 | (3, 28, 33) | (4, 7, 16) | (4, 10, 18) | (4, 16, 31) |
8 | −3.7276 | −5.4001 | 4.7568 | (4, 18, 29) | (4, 28, 33) | (4, 29, 33) | (4, 31, 28) |
9 | 6.0704 | −5.0680 | −6.1698 | (5, 8, 15) | (5, 9, 21) | (5, 15, 27) | (5, 21, 29) |
10 | 0.5135 | −0.9560 | −1.1483 | (5, 27, 32) | (5, 29, 30) | (5, 32, 30) | (6, 11, 26) |
11 | −2.6421 | 0.4173 | 1.8520 | (6, 13, 25) | (6, 20, 24) | (6, 20, 27) | (6, 24, 31) |
12 | 1.3538 | 7.7911 | −6.1698 | (6, 25, 31) | (6, 26, 27) | (7, 12, 15) | (7, 15, 35) |
13 | 7.7500 | 4.4948 | 4.7215 | (7, 16, 21) | (7, 19, 30) | (7, 21, 23) | (7, 30, 23) |
14 | −1.0847 | 0.0333 | −1.1483 | (7, 35, 19) | (8, 14, 16) | (8, 15, 18) | (8, 16, 34) |
15 | 1.5328 | −0.4023 | −0.8222 | (8, 18, 19) | (8, 19, 33) | (8, 33, 23) | (8, 34, 23) |
16 | −27.8037 | −8.4281 | 23.1409 | (9, 12, 20) | (9, 12, 34) | (9, 17, 25) | (9, 20, 22) |
17 | −1.1148 | −1.1263 | −0.8222 | (9, 21, 26) | (9, 22, 26) | (9, 34, 25) | (10, 14, 24) |
18 | 0.9596 | −2.4968 | 1.8520 | (10, 14, 35) | (10, 17, 25) | (10, 18, 25) | (10, 22, 26) |
19 | 1.6825 | 2.0795 | 1.8520 | (10, 24, 17) | (10, 35, 26) | (11, 14, 16) | (11, 14, 28) |
20 | −7.4242 | −2.7231 | −6.1698 | (11, 17, 36) | (11, 19, 18) | (11, 26, 16) | (11, 28, 17) |
21 | −5.6477 | −0.6274 | 4.4482 | (11, 36, 18) | (12, 13, 32) | (12, 15, 13) | (12, 29, 33) |
22 | 32.4551 | −14.7678 | 4.7465 | (12, 32, 33) | (12, 34, 29) | (13, 21, 36) | (13, 23, 21) |
23 | −7.7676 | 4.4643 | 4.7215 | (13, 25, 15) | (13, 32, 22) | (13, 36, 22) | (14, 28, 30) |
24 | −0.6325 | 1.0201 | −0.2677 | (14, 30, 29) | (14, 35, 29) | (15, 18, 25) | (15, 27, 26) |
25 | 19.5215 | 18.9094 | −11.5974 | (15, 35, 26) | (16, 21, 26) | (16, 31, 25) | (16, 34, 25) |
26 | −0.5672 | −1.0579 | −0.2677 | (17, 24, 32) | (17, 32, 27) | (17, 36, 27) | (18, 29, 21) |
27 | −1.5826 | 0.3235 | −0.0497 | (18, 36, 21) | (19, 24, 31) | (19, 33, 24) | (19, 35, 31) |
28 | 6.6153 | −26.3608 | −11.5974 | (20, 22, 28) | (20, 23, 30) | (20, 27, 23) | (20, 28, 30) |
29 | 1.1997 | 0.0377 | −0.2677 | (22, 28, 31) | (22, 36, 31) | (23, 34, 27) | (24, 32, 33) |
30 | −0.4180 | 1.5286 | −0.8222 | (27, 36, 34) | (29, 34, 35) | (31, 35, 36) | (34, 36, 35) |
31 | 6.6029 | 28.2928 | 23.1409 | ||||
32 | 1.0715 | 1.2088 | −0.0497 | ||||
33 | 3.3672 | −4.5774 | 4.4482 | ||||
34 | −3.4382 | 35.4909 | 4.7465 | ||||
35 | 0.5712 | 0.9228 | −1.1483 | ||||
36 | −2.8128 | 5.9282 | 4.7568 | ||||
Vertex Permutation Groups | |||||||
(1, 22, 34) (2, 36, 8) (3, 13, 23) (4, 31, 16) (5, 32, 27) (6, 21, 33) | |||||||
(7, 28, 25) (9, 12, 20) (10, 35, 14) (11, 18, 19) (15, 30, 17) (24, 26, 29) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 33 | −19 | −7 | 79 | −4 | −27 | 33 | (1, 2, 3) | (1, 3, 5) | (1, 4, 2) | (1, 5, 8) |
2 | 32 | −29 | −10 | 80 | 1 | 3 | −4 | (1, 7, 4) | (1, 8, 12) | (1, 12, 7) | (2, 4, 10) |
3 | 7 | −33 | −19 | 81 | −10 | 32 | −29 | (2, 6, 3) | (2, 10, 18) | (2, 11, 6) | (2, 18, 11) |
4 | 35 | −14 | 30 | 82 | −16 | −23 | −31 | (3, 6, 13) | (3, 9, 5) | (3, 13, 16) | (3, 16, 9) |
5 | 19 | −7 | −33 | 83 | −7 | 16 | −8 | (4, 7, 15) | (4, 15, 26) | (4, 17, 10) | (4, 26, 17) |
6 | 19 | −32 | −1 | 84 | 13 | 26 | −1 | (5, 9, 19) | (5, 14, 8) | (5, 19, 24) | (5, 24, 14) |
7 | 31 | −16 | 23 | 85 | 23 | −31 | 16 | (6, 11, 22) | (6, 20, 13) | (6, 22, 34) | (6, 34, 20) |
8 | 29 | −10 | −32 | 86 | 32 | 41 | −12 | (7, 12, 23) | (7, 23, 38) | (7, 25, 15) | (7, 38, 25) |
9 | 10 | −32 | −29 | 87 | −3 | −25 | −21 | (8, 14, 27) | (8, 21, 12) | (8, 27, 35) | (8, 35, 21) |
10 | 41 | −12 | 32 | 88 | −9 | 18 | 29 | (9, 16, 31) | (9, 28, 19) | (9, 31, 47) | (9, 47, 28) |
11 | 7 | 16 | 8 | 89 | −29 | 9 | 18 | (10, 17, 32) | (10, 29, 18) | (10, 32, 48) | (10, 48, 29) |
12 | 32 | −1 | −19 | 90 | 3 | −25 | 21 | (11, 18, 33) | (11, 33, 53) | (11, 36, 22) | (11, 53, 36) |
13 | −23 | −31 | −16 | 91 | 21 | 3 | −25 | (12, 21, 40) | (12, 37, 23) | (12, 40, 37) | (13, 20, 39) |
14 | 14 | 30 | −35 | 92 | −19 | 32 | −1 | (13, 30, 16) | (13, 39, 49) | (13, 49, 30) | (14, 24, 44) |
15 | 9 | −18 | 29 | 93 | 3 | −4 | 1 | (14, 41, 27) | (14, 44, 64) | (14, 64, 41) | (15, 25, 45) |
16 | −30 | −35 | −14 | 94 | −35 | 14 | 30 | (15, 42, 26) | (15, 45, 65) | (15, 65, 42) | (16, 30, 55) |
17 | 21 | −3 | 25 | 95 | 2 | −10 | −14 | (16, 50, 31) | (16, 55, 50) | (17, 26, 46) | (17, 46, 69) |
18 | 27 | −33 | −4 | 96 | 26 | −1 | 13 | (17, 51, 32) | (17, 69, 51) | (18, 29, 54) | (18, 52, 33) |
19 | 1 | −19 | −32 | 97 | −25 | 21 | 3 | (18, 54, 52) | (19, 28, 51) | (19, 43, 24) | (19, 51, 66) |
20 | −18 | −29 | −9 | 98 | −3 | 25 | 21 | (19, 66, 43) | (20, 34, 60) | (20, 45, 39) | (20, 60, 82) |
21 | −16 | 8 | −7 | 99 | 19 | 7 | 33 | (20, 82, 45) | (21, 35, 61) | (21, 56, 40) | (21, 61, 83) |
22 | 10 | 14 | 2 | 100 | 35 | 14 | −30 | (21, 83, 56) | (22, 36, 41) | (22, 41, 84) | (22, 57, 34) |
23 | 29 | −9 | 18 | 101 | −16 | −8 | 7 | (22, 84, 57) | (23, 37, 62) | (23, 58, 38) | (23, 62, 85) |
24 | 16 | 23 | −31 | 102 | −10 | −32 | 29 | (23, 85, 58) | (24, 43, 71) | (24, 67, 44) | (24, 71, 67) |
25 | 1 | −3 | 4 | 103 | −31 | −16 | −23 | (25, 38, 63) | (25, 39, 45) | (25, 63, 89) | (25, 89, 39) |
26 | −1 | 13 | 26 | 104 | −41 | −12 | −32 | (26, 42, 70) | (26, 68, 46) | (26, 70, 68) | (27, 36, 86) |
27 | 12 | 32 | −41 | 105 | −29 | −10 | 32 | (27, 41, 36) | (27, 59, 35) | (27, 86, 59) | (28, 32, 51) |
28 | −8 | −7 | 16 | 106 | −26 | −1 | −13 | (28, 47, 78) | (28, 78, 101) | (28, 101, 32) | (29, 48, 79) |
29 | 32 | −41 | 12 | 107 | −10 | −14 | 2 | (29, 62, 54) | (29, 79, 102) | (29, 102, 62) | (30, 49, 80) |
30 | −29 | −9 | −18 | 108 | −1 | 19 | −32 | (30, 72, 55) | (30, 80, 103) | (30, 103, 72) | (31, 50, 56) |
31 | −32 | −41 | −12 | 109 | 25 | 21 | −3 | (31, 56, 104) | (31, 73, 47) | (31, 104, 73) | (32, 74, 48) |
32 | 33 | 4 | 27 | 110 | 14 | −30 | 35 | (32, 101, 74) | (33, 52, 72) | (33, 72, 105) | (33, 75, 53) |
33 | 16 | 8 | 7 | 111 | −18 | 29 | 9 | (33, 105, 75) | (34, 57, 90) | (34, 87, 60) | (34, 90, 87) |
34 | 13 | −26 | 1 | 112 | −19 | 7 | −33 | (35, 59, 91) | (35, 70, 61) | (35, 91, 70) | (36, 53, 81) |
35 | 33 | −4 | −27 | 113 | 4 | 27 | 33 | (36, 81, 86) | (37, 40, 77) | (37, 54, 62) | (37, 77, 109) |
36 | −4 | 27 | −33 | 114 | −7 | −33 | 19 | (37, 109, 54) | (38, 58, 67) | (38, 67, 88) | (38, 88, 63) |
37 | 26 | 1 | −13 | 115 | −32 | 1 | −19 | (39, 76, 49) | (39, 89, 76) | (40, 50, 106) | (40, 56, 50) |
38 | −1 | 3 | 4 | 116 | 1 | 13 | −26 | (40, 106, 77) | (41, 64, 98) | (41, 98, 84) | (42, 61, 70) |
39 | −4 | 1 | 3 | 117 | −16 | 23 | 31 | (42, 65, 99) | (42, 99, 122) | (42, 122, 61) | (43, 66, 100) |
40 | −14 | 2 | −10 | 118 | −32 | −29 | 10 | (43, 80, 71) | (43, 100, 123) | (43, 123, 80) | (44, 58, 124) |
41 | 3 | 25 | −21 | 119 | 19 | 32 | 1 | (44, 67, 58) | (44, 92, 64) | (44, 124, 92) | (45, 82, 93) |
42 | 1 | 19 | 32 | 120 | 4 | 1 | −3 | (45, 93, 65) | (46, 68, 75) | (46, 75, 125) | (46, 94, 69) |
43 | 9 | 18 | −29 | 121 | 27 | 33 | 4 | (46, 125, 94) | (47, 73, 87) | (47, 87, 107) | (47, 107, 78) |
44 | 18 | 29 | −9 | 122 | 10 | 32 | 29 | (48, 74, 110) | (48, 90, 79) | (48, 110, 90) | (49, 71, 80) |
45 | −3 | −4 | −1 | 123 | 31 | 16 | −23 | (49, 76, 111) | (49, 111, 71) | (50, 55, 97) | (50, 97, 106) |
46 | −21 | 3 | 25 | 124 | 23 | 31 | −16 | (51, 69, 95) | (51, 95, 66) | (52, 54, 96) | (52, 55, 72) |
47 | 4 | −27 | −33 | 125 | −41 | 12 | 32 | (52, 96, 126) | (52, 126, 55) | (53, 68, 108) | (53, 75, 68) |
48 | 12 | −32 | 41 | 126 | −14 | −2 | 10 | (53, 108, 81) | (54, 109, 96) | (55, 126, 97) | (56, 83, 118) |
49 | −4 | −1 | −3 | 127 | −10 | 14 | −2 | (56, 118, 104) | (57, 79, 90) | (57, 84, 119) | (57, 119, 141) |
50 | −25 | −21 | −3 | 128 | −1 | −19 | 32 | (57, 141, 79) | (58, 85, 120) | (58, 120, 124) | (59, 86, 121) |
51 | −2 | −10 | 14 | 129 | 18 | −29 | 9 | (59, 100, 91) | (59, 121, 142) | (59, 142, 100) | (60, 73, 143) |
52 | 14 | 2 | 10 | 130 | −21 | −3 | −25 | (60, 87, 73) | (60, 112, 82) | (60, 143, 112) | (61, 113, 83) |
53 | 8 | 7 | 16 | 131 | −27 | 33 | −4 | (61, 122, 113) | (62, 102, 114) | (62, 114, 85) | (63, 88, 94) |
54 | 25 | −21 | 3 | 132 | 8 | −7 | −16 | (63, 94, 144) | (63, 115, 89) | (63, 144, 115) | (64, 92, 107) |
55 | −26 | 1 | 13 | 133 | −1 | −3 | −4 | (64, 107, 127) | (64, 127, 98) | (65, 93, 129) | (65, 110, 99) |
56 | −27 | −33 | 4 | 134 | −33 | −19 | 7 | (65, 129, 110) | (66, 91, 100) | (66, 95, 130) | (66, 130, 91) |
57 | 10 | −14 | −2 | 135 | 30 | 35 | −14 | (67, 71, 117) | (67, 117, 88) | (68, 70, 116) | (68, 116, 108) |
58 | 4 | −1 | 3 | 136 | −13 | −26 | −1 | (69, 88, 128) | (69, 94, 88) | (69, 128, 95) | (70, 91, 116) |
59 | 41 | 12 | −32 | 137 | −33 | 4 | −27 | (71, 111, 117) | (72, 103, 134) | (72, 134, 105) | (73, 104, 137) |
60 | −14 | −30 | −35 | 138 | 32 | 1 | 19 | (73, 137, 143) | (74, 99, 110) | (74, 101, 138) | (74, 138, 149) |
61 | −8 | 7 | −16 | 139 | −12 | 32 | 41 | (74, 149, 99) | (75, 105, 139) | (75, 139, 125) | (76, 89, 140) |
62 | 30 | −35 | 14 | 140 | −30 | 35 | 14 | (76, 119, 111) | (76, 140, 148) | (76, 148, 119) | (77, 106, 115) |
63 | −31 | 16 | 23 | 141 | 7 | −16 | −8 | (77, 115, 152) | (77, 121, 109) | (77, 152, 121) | (78, 92, 151) |
64 | −13 | 26 | 1 | 142 | 32 | 29 | 10 | (78, 107, 92) | (78, 131, 101) | (78, 151, 131) | (79, 132, 102) |
65 | 16 | −23 | 31 | 143 | −29 | 10 | −32 | (79, 141, 132) | (80, 123, 133) | (80, 133, 103) | (81, 108, 112) |
66 | −1 | −13 | −26 | 144 | −33 | 19 | −7 | (81, 112, 150) | (81, 135, 86) | (81, 150, 135) | (82, 108, 145) |
67 | 3 | 4 | −1 | 145 | −9 | −18 | −29 | (82, 112, 108) | (82, 145, 93) | (83, 113, 127) | (83, 127, 146) |
68 | 2 | 10 | 14 | 146 | −19 | −32 | 1 | (83, 146, 118) | (84, 98, 147) | (84, 111, 119) | (84, 147, 111) |
69 | 1 | −13 | 26 | 147 | −14 | 30 | 35 | (85, 114, 146) | (85, 129, 120) | (85, 146, 129) | (86, 109, 121) |
70 | −2 | 10 | −14 | 148 | 7 | 33 | 19 | (86, 135, 109) | (87, 90, 136) | (87, 136, 107) | (88, 117, 128) |
71 | −3 | 4 | 1 | 149 | 33 | 19 | 7 | (89, 106, 140) | (89, 115, 106) | (90, 110, 136) | (91, 130, 116) |
72 | −32 | −1 | 19 | 150 | −7 | 33 | −19 | (92, 124, 150) | (92, 150, 151) | (93, 120, 129) | (93, 133, 120) |
73 | −12 | −32 | −41 | 151 | −32 | 29 | −10 | (93, 145, 133) | (94, 125, 151) | (94, 151, 144) | (95, 128, 132) |
74 | 29 | 10 | 32 | 152 | 16 | −8 | −7 | (95, 132, 137) | (95, 137, 130) | (96, 109, 135) | (96, 135, 155) |
75 | −33 | −4 | 27 | 153 | −19 | −7 | 33 | (96, 138, 126) | (96, 155, 138) | (97, 126, 131) | (97, 131, 156) |
76 | −23 | 31 | 16 | 154 | −35 | −14 | −30 | (97, 140, 106) | (97, 156, 140) | (98, 113, 139) | (98, 127, 113) |
77 | 14 | −2 | −10 | 155 | 29 | 9 | −18 | (98, 139, 147) | (99, 148, 122) | (99, 149, 148) | (100, 142, 149) |
78 | −7 | −16 | 8 | 156 | −32 | 41 | 12 | (100, 149, 123) | (101, 126, 138) | (101, 131, 126) | (102, 128, 153) |
(102, 132, 128) | (102, 153, 114) | (103, 133, 145) | (103, 145, 154) | ||||||||
(103, 154, 134) | (104, 118, 154) | (104, 130, 137) | (104, 154, 130) | ||||||||
(105, 134, 153) | (105, 147, 139) | (105, 153, 147) | (107, 136, 127) | ||||||||
(108, 116, 145) | (110, 129, 136) | (111, 147, 117) | (112, 143, 144) | ||||||||
(112, 144, 150) | (113, 122, 156) | (113, 156, 139) | (114, 118, 146) | ||||||||
(114, 134, 118) | (114, 153, 134) | (115, 143, 152) | (115, 144, 143) | ||||||||
(116, 130, 154) | (116, 154, 145) | (117, 147, 153) | (117, 153, 128) | ||||||||
(118, 134, 154) | (119, 142, 141) | (119, 148, 142) | (120, 133, 155) | ||||||||
(120, 155, 124) | (121, 141, 142) | (121, 152, 141) | (122, 140, 156) | ||||||||
(122, 148, 140) | (123, 138, 155) | (123, 149, 138) | (123, 155, 133) | ||||||||
(124, 135, 150) | (124, 155, 135) | (125, 131, 151) | (125, 139, 156) | ||||||||
(125, 156, 131) | (127, 136, 146) | (129, 146, 136) | (132, 141, 152) | ||||||||
(132, 152, 137) | (137, 152, 143) | (142, 148, 149) | (144, 151, 150) | ||||||||
Vertex Permutation Groups | |||||||||||
(1, 144) (2, 151) (3, 150) (4, 94) (5, 112) (6, 92) (7, 63) (8, 143) (9, 81) (10, 125) | |||||||||||
(11, 78) (12, 115) (13, 124) (14, 60) (15, 88) (16, 135) (17, 46) (18, 131) (19, 108) (20, 44) | |||||||||||
(21, 152) (22, 107) (23, 89) (24, 82) (25, 38) (26, 69) (27, 73) (28, 53) (29, 156) (30, 155) | |||||||||||
(31, 86) (32, 75) (33, 101) (34, 64) (35, 137) (36, 47) (37, 106) (39, 58) (40, 77) (41, 87) | |||||||||||
(42, 128) (43, 145) (45, 67) (48, 139) (49, 120) (50, 109) (51, 68) (52, 126) (54, 97) (55, 96) | |||||||||||
(56, 121) (57, 127) (59, 104) (61, 132) (62, 140) (65, 117) (66, 116) (70, 95) (71, 93) (72, 138) | |||||||||||
(74, 105) (76, 85) (79, 113) (80, 133) (83, 141) (84, 136) (90, 98) (91, 130) (99, 153) (100, 154) | |||||||||||
(102, 122) (103, 123) (110, 147) (111, 129) (114, 148) (118, 142) (119, 146) (134, 149) | |||||||||||
(1, 153, 150) (2, 105, 81) (3, 134, 112) (4, 147, 135) (5, 114, 144) (6, 72, 108) (7, 117, 124) (8, 102, 151) | |||||||||||
(9, 118, 143) (10, 139, 86) (11, 33, 53) (12, 128, 92) (13, 103, 82) (14, 62, 94) (15, 111, 155) (16, 154, 60) | |||||||||||
(17, 98, 109) (18, 75, 36) (19, 146, 115) (20, 30, 145) (21, 132, 78) (22, 52, 68) (23, 88, 44) (24, 85, 63) | |||||||||||
(25, 71, 120) (26, 84, 96) (27, 29, 125) (28, 83, 152) (31, 104, 73) (32, 113, 121) (34, 55, 116) (35, 79, 131) | |||||||||||
(37, 69, 64) (38, 67, 58) (39, 80, 93) (40, 95, 107) (41, 54, 46) (42, 119, 138) (43, 129, 89) (45, 49, 133) | |||||||||||
(47, 56, 137) (48, 156, 59) (50, 130, 87) (51, 127, 77) (57, 126, 70) (61, 141, 101) (65, 76, 123) (66, 136, 106) | |||||||||||
(74, 122, 142) (90, 97, 91) (99, 148, 149) (100, 110, 140) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | −14.3465 | 27.0673 | 57.5445 | 183 | 32.2324 | −8.7896 | 15.0480 | (1, 2, 9, 11, 12, 10, 8) |
2 | −8.8935 | 25.8301 | 55.5410 | 184 | −86.5014 | −42.0503 | −40.8553 | (1, 3, 5, 7, 6, 4, 2) |
3 | −47.4112 | 47.4112 | 47.4112 | 185 | −31.6778 | 5.8089 | 17.9725 | (1, 8, 14, 16, 15, 13, 3) |
4 | 19.8327 | 5.3502 | 69.2122 | 186 | 31.6778 | −5.8089 | 17.9725 | (2, 4, 17, 19, 20, 18, 9) |
5 | −27.0673 | 57.5445 | 14.3465 | 187 | 4.5157 | 16.8894 | −30.4400 | (3, 13, 22, 24, 23, 21, 5) |
6 | 20.7967 | 10.9315 | 58.7948 | 188 | −53.8950 | −48.8649 | −64.9078 | (4, 6, 29, 31, 32, 30, 17) |
7 | 9.4777 | 13.8570 | 62.3333 | 189 | −35.1737 | −53.4792 | −46.8969 | (5, 21, 34, 36, 35, 33, 7) |
8 | −62.3333 | −9.4777 | 13.8570 | 190 | 49.7044 | 4.2693 | −5.1748 | (6, 7, 33, 49, 51, 50, 29) |
9 | −15.6824 | 22.4329 | 51.6523 | 191 | −32.2324 | 8.7896 | 15.0480 | (8, 10, 25, 28, 27, 26, 14) |
10 | −53.4791 | −46.8969 | −35.1737 | 192 | 34.4237 | −6.0325 | −16.2422 | (9, 18, 41, 44, 43, 42, 11) |
11 | 2.2898 | −6.7089 | 12.6467 | 193 | −2.2898 | −6.7089 | −12.6467 | (10, 12, 45, 47, 48, 46, 25) |
12 | −34.4237 | −6.0325 | 16.2422 | 194 | 15.7647 | 21.5260 | −1.7738 | (11, 42, 71, 73, 72, 45, 12) |
13 | −57.5445 | 14.3465 | 27.0673 | 195 | 16.8894 | 30.4400 | −4.5157 | (13, 15, 37, 40, 39, 38, 22) |
14 | −58.7948 | −20.7967 | 10.9315 | 196 | −40.8553 | 86.5014 | 42.0503 | (14, 26, 53, 55, 54, 52, 16) |
15 | −55.5410 | 8.8935 | 25.8301 | 197 | −48.8649 | 64.9078 | 53.8950 | (15, 16, 52, 64, 66, 65, 37) |
16 | −69.2122 | −19.8327 | 5.3502 | 198 | 107.3927 | −15.2830 | 13.2827 | (17, 30, 60, 63, 62, 61, 19) |
17 | 28.0894 | −11.5917 | 72.2588 | 199 | 107.3927 | 15.2830 | −13.2827 | (18, 20, 67, 69, 70, 68, 41) |
18 | −16.8135 | 20.6825 | 50.9099 | 200 | 6.8189 | 3.1294 | −12.5608 | (19, 61, 101, 103, 102, 67, 20) |
19 | 25.2379 | −24.3087 | 69.7239 | 201 | −16.8135 | −20.6825 | −50.9099 | (21, 23, 56, 59, 58, 57, 34) |
20 | 23.8441 | −24.0476 | 69.0021 | 202 | −15.6824 | −22.4329 | −51.6523 | (22, 38, 75, 77, 76, 74, 24) |
21 | −25.8301 | 55.5410 | 8.8935 | 203 | 2.2898 | 6.7089 | −12.6467 | (23, 24, 74, 94, 96, 95, 56) |
22 | −13.8570 | 62.3333 | −9.4777 | 204 | 20.6825 | −50.9099 | 16.8135 | (25, 46, 87, 88, 89, 86, 28) |
23 | −5.3502 | 69.2122 | −19.8327 | 205 | 22.4328 | −51.6523 | 15.6824 | (26, 27, 78, 81, 80, 79, 53) |
24 | −10.9315 | 58.7948 | −20.7967 | 206 | 5.3502 | −69.2122 | −19.8327 | (27, 28, 86, 130, 132, 131, 78) |
25 | −48.8649 | −64.9078 | −53.8950 | 207 | 25.8301 | −55.5410 | 8.8935 | (29, 50, 90, 93, 92, 91, 31) |
26 | −54.1753 | −42.5331 | −24.8003 | 208 | −16.7825 | −38.4452 | 4.4587 | (30, 32, 97, 100, 99, 98, 60) |
27 | −42.1011 | −77.4780 | −17.9177 | 209 | −16.2422 | −34.4237 | 6.0325 | (31, 91, 142, 144, 143, 97, 32) |
28 | −40.8553 | −86.5014 | −42.0503 | 210 | 69.2122 | −19.8327 | −5.3502 | (33, 35, 82, 85, 84, 83, 49) |
29 | 42.5331 | −24.8003 | 54.1753 | 211 | 55.5410 | 8.8935 | −25.8301 | (34, 57, 105, 106, 107, 104, 36) |
30 | 16.9192 | −15.5143 | 106.3922 | 212 | −28.0894 | 11.5917 | 72.2588 | (35, 36, 104, 133, 135, 134, 82) |
31 | 15.7089 | −16.6121 | 111.0495 | 213 | −42.5331 | 24.8003 | 54.1753 | (37, 65, 121, 122, 123, 120, 40) |
32 | 15.2830 | −13.2827 | 107.3926 | 214 | −19.8327 | −5.3502 | 69.2122 | (38, 39, 110, 111, 109, 108, 75) |
33 | 46.8969 | −35.1737 | 53.4791 | 215 | −20.7967 | −10.9315 | 58.7948 | (39, 40, 120, 170, 172, 171, 110) |
34 | −22.4329 | 51.6523 | 15.6824 | 216 | 40.8553 | 86.5014 | −42.0503 | (41, 68, 108, 109, 125, 124, 44) |
35 | 6.0325 | 16.2422 | 34.4237 | 217 | −15.0480 | 32.2324 | 8.7896 | (42, 43, 112, 115, 114, 113, 71) |
36 | 6.7089 | 12.6467 | −2.2898 | 218 | −17.9725 | 31.6778 | 5.8089 | (43, 44, 124, 173, 175, 174, 112) |
37 | −51.6523 | 15.6824 | 22.4329 | 219 | 15.5143 | −106.3922 | 16.9192 | (45, 72, 126, 128, 129, 127, 47) |
38 | 35.1737 | 53.4792 | −46.8969 | 220 | −5.3502 | −69.2122 | 19.8327 | (46, 48, 136, 137, 106, 105, 87) |
39 | −16.2422 | 34.4237 | −6.0325 | 221 | 11.5917 | −72.2588 | 28.0894 | (47, 127, 187, 188, 189, 136, 48) |
40 | −12.6467 | −2.2898 | −6.7089 | 222 | 23.8441 | 24.0476 | −69.0021 | (49, 83, 147, 148, 149, 138, 51) |
41 | 1.7062 | −12.6045 | 7.8102 | 223 | 4.2693 | 5.1748 | −49.7044 | (50, 51, 138, 141, 140, 139, 90) |
42 | 6.8189 | −3.1294 | 12.5608 | 224 | −8.7896 | −15.0480 | −32.2324 | (52, 54, 116, 119, 118, 117, 64) |
43 | 7.7558 | −7.7558 | 7.7558 | 225 | −13.2827 | 107.3926 | 15.2830 | (53, 79, 98, 99, 146, 145, 55) |
44 | 3.1294 | −12.5608 | 6.8189 | 226 | −16.6121 | 111.0495 | 15.7089 | (54, 55, 145, 178, 177, 176, 116) |
45 | −38.4452 | −4.4587 | 16.7825 | 227 | 5.8089 | 17.9725 | −31.6778 | (56, 95, 160, 161, 163, 162, 59) |
46 | 16.8894 | −30.4400 | 4.5157 | 228 | −42.0503 | −40.8553 | −86.5014 | (57, 58, 150, 151, 88, 87, 105) |
47 | −79.5698 | −79.5698 | −79.5698 | 229 | −25.2379 | 24.3087 | 69.7239 | (58, 59, 162, 216, 218, 217, 150) |
48 | 16.7825 | −38.4452 | −4.4587 | 230 | −17.9177 | 42.1011 | 77.4780 | (60, 98, 79, 80, 165, 164, 63) |
49 | 64.9078 | −53.8950 | 48.8649 | 231 | −42.0503 | 40.8553 | 86.5014 | (61, 62, 154, 155, 153, 152, 101) |
50 | 77.4780 | −17.9177 | 42.1011 | 232 | 8.7896 | 15.0480 | −32.2324 | (62, 63, 164, 219, 221, 220, 154) |
51 | 86.5014 | −42.0503 | 40.8553 | 233 | −15.5143 | 106.3922 | 16.9192 | (64, 117, 184, 185, 191, 179, 66) |
52 | −72.2588 | −28.0894 | −11.5917 | 234 | −20.7967 | 10.9315 | −58.7948 | (65, 66, 179, 180, 148, 147, 121) |
53 | −111.0495 | −15.7089 | −16.6121 | 235 | −9.4777 | 13.8570 | −62.3333 | (67, 102, 166, 168, 169, 167, 69) |
54 | −106.3922 | −16.9192 | −15.5143 | 236 | −3.1294 | −12.5608 | −6.8189 | (68, 70, 182, 181, 77, 75, 108) |
55 | −107.3927 | −15.2830 | −13.2827 | 237 | −6.7089 | −12.6467 | −2.2898 | (69, 167, 229, 230, 231, 182, 70) |
56 | 11.5917 | 72.2588 | −28.0894 | 238 | −25.8301 | −55.5410 | −8.8935 | (71, 113, 139, 140, 190, 183, 73) |
57 | −20.6825 | 50.9099 | 16.8135 | 239 | −27.0673 | −57.5445 | −14.3465 | (72, 73, 183, 186, 185, 184, 126) |
58 | 24.0476 | 69.0021 | −23.8441 | 240 | 46.8969 | 35.1737 | −53.4791 | (74, 76, 156, 159, 158, 157, 94) |
59 | 24.3087 | 69.7239 | −25.2379 | 241 | 9.4777 | −13.8570 | −62.3333 | (76, 77, 181, 224, 223, 222, 156) |
60 | 17.1932 | −19.9554 | 101.1987 | 242 | −6.7089 | 12.6467 | 2.2898 | (78, 131, 204, 205, 207, 206, 81) |
61 | 17.9177 | −42.1011 | 77.4780 | 243 | −3.1294 | 12.5608 | 6.8189 | (80, 81, 206, 265, 266, 264, 165) |
62 | 24.8003 | −54.1753 | 42.5331 | 244 | −72.2588 | 28.0894 | 11.5917 | (82, 134, 152, 153, 209, 208, 85) |
63 | 16.6121 | −111.0495 | 15.7089 | 245 | −54.1753 | 42.5331 | 24.8003 | (83, 84, 192, 193, 122, 121, 147) |
64 | −69.7239 | −25.2379 | −24.3087 | 246 | −58.7948 | 20.7967 | −10.9315 | (84, 85, 208, 267, 269, 268, 192) |
65 | −50.9099 | 16.8135 | 20.6825 | 247 | −69.2122 | 19.8327 | −5.3502 | (86, 89, 196, 197, 195, 194, 130) |
66 | −69.0021 | −23.8441 | −24.0476 | 248 | −86.5014 | 42.0503 | 40.8553 | (88, 151, 270, 272, 271, 196, 89) |
67 | 4.2693 | −5.1748 | 49.7044 | 249 | −21.5260 | −1.7738 | −15.7647 | (90, 139, 113, 114, 211, 210, 93) |
68 | −1.7738 | −15.7647 | −21.5261 | 250 | −64.9078 | 53.8950 | 48.8649 | (91, 92, 198, 199, 161, 160, 142) |
69 | −4.2693 | 5.1748 | 49.7044 | 251 | −30.4400 | −4.5157 | −16.8894 | (92, 93, 210, 273, 275, 274, 198) |
70 | 8.7896 | −15.0480 | 32.2324 | 252 | 48.8649 | 64.9078 | −53.8950 | (94, 157, 176, 177, 233, 225, 96) |
71 | 7.8102 | −1.7062 | 12.6045 | 253 | 53.4791 | 46.8969 | −35.1737 | (95, 96, 225, 226, 144, 142, 160) |
72 | −30.4400 | 4.5157 | 16.8894 | 254 | 38.4452 | 4.4587 | 16.7825 | (97, 143, 212, 214, 215, 213, 100) |
73 | −21.5260 | 1.7738 | 15.7647 | 255 | 34.4237 | 6.0325 | 16.2422 | (99, 100, 213, 281, 282, 244, 146) |
74 | 24.8003 | 54.1753 | −42.5331 | 256 | 16.2422 | 34.4237 | 6.0325 | (101, 152, 134, 135, 232, 227, 103) |
75 | 53.8950 | 48.8649 | −64.9078 | 257 | 16.7825 | 38.4452 | 4.4587 | (102, 103, 227, 228, 188, 187, 166) |
76 | 17.9177 | 42.1011 | −77.4780 | 258 | −15.2830 | −13.2827 | −107.3926 | (104, 107, 200, 203, 202, 201, 133) |
77 | 42.0503 | 40.8553 | −86.5014 | 259 | 15.2830 | 13.2827 | −107.3926 | (106, 137, 260, 277, 276, 200, 107) |
78 | −24.3087 | −69.7239 | −25.2379 | 260 | 51.6523 | −15.6824 | 22.4329 | (109, 111, 254, 310, 311, 240, 125) |
79 | −19.9554 | −101.1987 | −17.1932 | 261 | 13.8570 | −62.3333 | −9.4777 | (110, 171, 252, 253, 255, 254, 111) |
80 | −15.5143 | −106.3922 | −16.9192 | 262 | 57.5445 | −14.3465 | 27.0673 | (112, 174, 194, 195, 257, 256, 115) |
81 | −11.5917 | −72.2588 | −28.0894 | 263 | 55.5410 | −8.8935 | 25.8301 | (114, 115, 256, 313, 314, 312, 211) |
82 | 4.4587 | 16.7825 | 38.4452 | 264 | −16.6121 | −111.0495 | −15.7089 | (116, 176, 157, 158, 259, 258, 119) |
83 | 30.4400 | 4.5157 | −16.8894 | 265 | 10.9315 | −58.7948 | −20.7967 | (117, 118, 234, 235, 128, 126, 184) |
84 | 38.4452 | −4.4587 | −16.7825 | 266 | −24.8003 | −54.1753 | −42.5331 | (118, 119, 258, 315, 317, 316, 234) |
85 | 79.5698 | −79.5698 | 79.5698 | 267 | −16.8894 | −30.4400 | −4.5157 | (120, 123, 236, 237, 205, 204, 170) |
86 | 17.9725 | −31.6778 | 5.8089 | 268 | 53.4791 | −46.8969 | 35.1737 | (122, 193, 318, 320, 319, 236, 123) |
87 | 15.7647 | −21.5260 | 1.7738 | 269 | 48.8649 | −64.9078 | 53.8950 | (124, 125, 240, 241, 239, 238, 173) |
88 | 15.0480 | 32.2324 | −8.7896 | 270 | −24.0476 | 69.0021 | 23.8441 | (127, 129, 242, 243, 168, 166, 187) |
89 | 17.9725 | 31.6778 | −5.8089 | 271 | −42.1011 | 77.4780 | 17.9177 | (128, 235, 321, 323, 322, 242, 129) |
90 | 69.7239 | −25.2379 | 24.3087 | 272 | −24.3087 | 69.7239 | 25.2379 | (130, 194, 174, 175, 283, 278, 132) |
91 | 101.1987 | −17.1932 | 19.9554 | 273 | 58.7948 | −20.7967 | −10.9315 | (131, 132, 278, 279, 172, 170, 204) |
92 | 106.3922 | −16.9192 | 15.5143 | 274 | 111.0495 | −15.7089 | 16.6121 | (133, 201, 222, 223, 284, 232, 135) |
93 | 72.2588 | −28.0894 | 11.5917 | 275 | 54.1753 | −42.5331 | 24.8003 | (136, 189, 261, 262, 263, 260, 137) |
94 | 16.6121 | 111.0495 | −15.7089 | 276 | 7.8102 | 1.7062 | −12.6045 | (138, 149, 248, 250, 251, 249, 141) |
95 | 15.5143 | 106.3922 | −16.9192 | 277 | 50.9099 | −16.8135 | 20.6825 | (140, 141, 249, 276, 277, 295, 190) |
96 | 13.2827 | 107.3926 | −15.2830 | 278 | 5.1748 | −49.7044 | 4.2693 | (143, 144, 226, 280, 230, 229, 212) |
97 | −15.2830 | 13.2827 | 107.3926 | 279 | −15.0480 | −32.2324 | −8.7896 | (145, 146, 244, 247, 246, 245, 178) |
98 | −32.4484 | −32.4484 | 32.4484 | 280 | −24.8003 | 54.1753 | 42.5331 | (148, 180, 299, 282, 281, 248, 149) |
99 | −101.1987 | 17.1932 | 19.9554 | 281 | −77.4780 | 17.9177 | 42.1011 | (150, 217, 303, 304, 305, 270, 151) |
100 | −15.7089 | 16.6121 | 111.0495 | 282 | −69.7239 | 25.2379 | 24.3087 | (153, 155, 306, 348, 349, 330, 209) |
101 | 42.0503 | −40.8553 | 86.5014 | 283 | 24.0475 | −69.0021 | 23.8441 | (154, 220, 238, 239, 307, 306, 155) |
102 | −8.7896 | 15.0480 | 32.2324 | 284 | −4.2693 | −5.1748 | −49.7044 | (156, 222, 201, 202, 309, 308, 159) |
103 | −5.8089 | 17.9725 | 31.6778 | 285 | 58.7948 | 20.7967 | 10.9315 | (158, 159, 308, 351, 352, 350, 259) |
104 | 3.1294 | 12.5608 | −6.8189 | 286 | 62.3333 | 9.4777 | 13.8570 | (161, 199, 344, 354, 353, 285, 163) |
105 | 12.6045 | 7.8102 | −1.7062 | 287 | 19.9554 | −101.1987 | 17.1932 | (162, 163, 285, 286, 253, 252, 216) |
106 | 12.5608 | 6.8189 | −3.1294 | 288 | 32.4484 | −32.4484 | −32.4484 | (164, 165, 264, 289, 288, 287, 219) |
107 | 7.7558 | 7.7558 | −7.7558 | 289 | −17.1932 | −19.9554 | −101.1987 | (167, 169, 290, 291, 214, 212, 229) |
108 | −4.5157 | −16.8894 | −30.4400 | 290 | 15.6824 | −22.4329 | 51.6523 | (168, 243, 357, 356, 355, 290, 169) |
109 | 4.4587 | −16.7825 | −38.4452 | 291 | 8.8935 | −25.8301 | 55.5410 | (171, 172, 279, 324, 218, 216, 252) |
110 | −16.7825 | 38.4452 | −4.4587 | 292 | −53.8950 | 48.8649 | 64.9078 | (173, 238, 220, 221, 326, 283, 175) |
111 | 79.5698 | 79.5698 | −79.5698 | 293 | 1.7738 | −15.7647 | 21.5261 | (177, 178, 245, 271, 272, 327, 233) |
112 | 12.5608 | −6.8189 | 3.1294 | 294 | 4.5157 | −16.8894 | 30.4400 | (179, 191, 300, 301, 302, 299, 180) |
113 | 50.9099 | 16.8135 | −20.6825 | 295 | 69.0021 | 23.8441 | −24.0476 | (181, 182, 231, 292, 294, 293, 224) |
114 | 51.6523 | 15.6824 | −22.4329 | 296 | 86.5014 | 42.0503 | −40.8553 | (183, 190, 295, 297, 298, 296, 186) |
115 | 12.6467 | −2.2898 | 6.7089 | 297 | 69.7239 | 25.2379 | −24.3087 | (185, 186, 296, 311, 310, 300, 191) |
116 | −101.1987 | −17.1932 | −19.9554 | 298 | 77.4780 | 17.9177 | −42.1011 | (188, 228, 325, 266, 265, 261, 189) |
117 | −77.4780 | −17.9177 | −42.1011 | 299 | −69.0021 | 23.8441 | 24.0476 | (192, 268, 333, 332, 341, 318, 193) |
118 | −42.5331 | −24.8003 | −54.1753 | 300 | 21.5260 | −1.7738 | 15.7647 | (195, 197, 342, 346, 347, 361, 257) |
119 | −15.7089 | −16.6121 | −111.0495 | 301 | −7.8102 | 1.7062 | 12.6045 | (196, 271, 245, 246, 343, 342, 197) |
120 | −12.5608 | −6.8189 | −3.1294 | 302 | −50.9099 | −16.8135 | −20.6825 | (198, 274, 287, 288, 345, 344, 199) |
121 | −7.8102 | −1.7062 | −12.6045 | 303 | −15.7647 | −21.5260 | −1.7738 | (200, 276, 249, 251, 347, 346, 203) |
122 | −6.8189 | −3.1294 | −12.5608 | 304 | −12.6045 | 7.8102 | 1.7062 | (202, 203, 346, 342, 343, 363, 309) |
123 | −7.7558 | −7.7558 | −7.7558 | 305 | 20.6825 | 50.9099 | −16.8135 | (205, 237, 362, 336, 335, 328, 207) |
124 | 6.7089 | −12.6467 | 2.2898 | 306 | −57.5445 | −14.3465 | −27.0673 | (206, 207, 328, 329, 262, 261, 265) |
125 | 6.0325 | −16.2422 | −34.4237 | 307 | −47.4112 | −47.4112 | −47.4112 | (208, 209, 330, 331, 304, 303, 267) |
126 | −64.9078 | −53.8950 | −48.8649 | 308 | 19.8327 | −5.3502 | −69.2122 | (210, 211, 312, 334, 332, 333, 273) |
127 | −4.4587 | 16.7825 | −38.4452 | 309 | −8.8935 | −25.8301 | −55.5410 | (213, 215, 335, 336, 250, 248, 281) |
128 | −46.8969 | −35.1737 | −53.4791 | 310 | 30.4400 | −4.5157 | 16.8894 | (214, 291, 364, 329, 328, 335, 215) |
129 | −6.0325 | 16.2422 | −34.4237 | 311 | 64.9078 | 53.8950 | −48.8649 | (217, 218, 324, 358, 269, 267, 303) |
130 | 15.0480 | −32.2324 | 8.7896 | 312 | 57.5445 | 14.3465 | −27.0673 | (219, 287, 274, 275, 359, 326, 221) |
131 | −24.0476 | −69.0021 | −23.8441 | 313 | −35.1737 | 53.4792 | 46.8969 | (223, 224, 293, 319, 320, 337, 284) |
132 | −5.1748 | −49.7044 | −4.2693 | 314 | 13.8570 | 62.3333 | 9.4777 | (225, 233, 327, 340, 339, 280, 226) |
133 | 1.7062 | 12.6045 | −7.8102 | 315 | −16.9192 | −15.5143 | −106.3922 | (227, 232, 284, 337, 338, 325, 228) |
134 | −4.5157 | 16.8894 | 30.4400 | 316 | −19.8327 | 5.3502 | −69.2122 | (230, 280, 339, 314, 313, 292, 231) |
135 | −1.7738 | 15.7647 | 21.5260 | 317 | −28.0894 | −11.5917 | −72.2588 | (234, 316, 341, 332, 334, 321, 235) |
136 | 16.2422 | −34.4237 | −6.0325 | 318 | 15.6824 | 22.4329 | −51.6523 | (236, 319, 293, 294, 360, 362, 237) |
137 | 12.6467 | 2.2898 | −6.7089 | 319 | −1.7062 | −12.6045 | −7.8102 | (239, 241, 351, 308, 309, 363, 307) |
138 | 31.6778 | 5.8089 | −17.9725 | 320 | 16.8135 | 20.6825 | −50.9099 | (240, 311, 296, 298, 352, 351, 241) |
139 | 69.0021 | −23.8441 | 24.0476 | 321 | 27.0673 | 57.5445 | −14.3465 | (242, 322, 305, 304, 331, 357, 243) |
140 | 49.7044 | −4.2693 | 5.1748 | 322 | 22.4329 | 51.6523 | −15.6824 | (244, 282, 299, 302, 349, 348, 247) |
141 | 32.2324 | 8.7896 | −15.0480 | 323 | 25.8301 | 55.5410 | −8.8935 | (246, 247, 348, 306, 307, 363, 343) |
142 | 32.4484 | 32.4484 | 32.4484 | 324 | −17.9725 | −31.6778 | −5.8089 | (250, 336, 362, 360, 361, 347, 251) |
143 | −16.9192 | 15.5143 | 106.3922 | 325 | −17.9177 | −42.1011 | −77.4780 | (253, 286, 364, 291, 290, 355, 255) |
144 | −17.1932 | 19.9554 | 101.1987 | 326 | 24.3087 | −69.7239 | 25.2379 | (254, 255, 355, 356, 301, 300, 310) |
145 | −107.3927 | 15.2830 | 13.2827 | 327 | −11.5917 | 72.2588 | 28.0894 | (256, 257, 361, 360, 294, 292, 313) |
146 | −106.3922 | 16.9192 | 15.5143 | 328 | 27.0673 | −57.5445 | 14.3465 | (258, 259, 350, 345, 288, 289, 315) |
147 | 21.5260 | 1.7738 | −15.7647 | 329 | 47.4112 | −47.4112 | 47.4112 | (260, 263, 353, 354, 297, 295, 277) |
148 | −32.2324 | −8.7896 | −15.0480 | 330 | −12.6467 | 2.2898 | 6.7089 | (262, 329, 364, 286, 285, 353, 263) |
149 | −31.6778 | −5.8089 | −17.9725 | 331 | −12.5608 | 6.8189 | 3.1294 | (264, 266, 325, 338, 317, 315, 289) |
150 | 5.1748 | 49.7044 | −4.2693 | 332 | 14.3465 | 27.0673 | −57.5445 | (268, 269, 358, 359, 275, 273, 333) |
151 | −5.1748 | 49.7044 | 4.2693 | 333 | 62.3333 | −9.4777 | −13.8570 | (270, 305, 322, 323, 340, 327, 272) |
152 | 53.8950 | −48.8649 | 64.9078 | 334 | 47.4112 | 47.4112 | −47.4112 | (278, 283, 326, 359, 358, 324, 279) |
153 | 35.1737 | −53.4792 | 46.8969 | 335 | −9.4777 | −13.8570 | 62.3333 | (297, 354, 344, 345, 350, 352, 298) |
154 | −10.9315 | −58.7948 | 20.7967 | 336 | −46.8969 | 35.1737 | 53.4791 | (301, 356, 357, 331, 330, 349, 302) |
155 | −13.8570 | −62.3333 | 9.4777 | 337 | −23.8441 | −24.0476 | −69.0021 | (312, 314, 339, 340, 323, 321, 334) |
156 | 25.2379 | 24.3087 | −69.7239 | 338 | −25.2379 | −24.3087 | −69.7239 | (316, 317, 338, 337, 320, 318, 341) |
157 | 17.1932 | 19.9554 | −101.1987 | 339 | 10.9315 | 58.7948 | 20.7967 | |
158 | 16.9192 | 15.5143 | −106.3922 | 340 | 5.3502 | 69.2122 | 19.8327 | |
159 | 28.0894 | 11.5917 | −72.2588 | 341 | 8.8935 | 25.8301 | −55.5410 | |
160 | 19.9554 | 101.1987 | −17.1932 | 342 | −53.4791 | 46.8969 | 35.1737 | |
161 | 111.0495 | 15.7089 | −16.6121 | 343 | −62.3333 | 9.4777 | −13.8570 | |
162 | 42.1011 | 77.4780 | −17.9177 | 344 | 106.3922 | 16.9192 | −15.5143 | |
163 | 54.1753 | 42.5331 | −24.8003 | 345 | 101.1987 | 17.1932 | −19.9554 | |
164 | 13.2827 | −107.3926 | 15.2830 | 346 | −34.4237 | 6.0325 | −16.2422 | |
165 | −13.2827 | −107.3926 | −15.2830 | 347 | −38.4452 | 4.4587 | −16.7825 | |
166 | 1.7738 | 15.7647 | −21.5261 | 348 | −55.5410 | −8.8935 | −25.8301 | |
167 | −23.8441 | 24.0476 | 69.0021 | 349 | −51.6523 | −15.6824 | −22.4329 | |
168 | −1.7062 | 12.6045 | 7.8102 | 350 | 15.7089 | 16.6121 | −111.0495 | |
169 | 16.8135 | −20.6825 | 50.9099 | 351 | 20.7967 | −10.9315 | −58.7948 | |
170 | −12.6045 | −7.8102 | −1.7062 | 352 | 42.5331 | 24.8003 | −54.1753 | |
171 | −16.8894 | 30.4400 | 4.5157 | 353 | 69.2122 | 19.8327 | 5.3502 | |
172 | −15.7647 | 21.5260 | 1.7738 | 354 | 72.2588 | 28.0894 | −11.5917 | |
173 | −22.4328 | −51.6523 | −15.6824 | 355 | −2.2898 | 6.7089 | 12.6467 | |
174 | 12.6045 | −7.8102 | 1.7062 | 356 | −6.8189 | 3.1294 | 12.5608 | |
175 | −20.6825 | −50.9099 | −16.8135 | 357 | −7.7558 | 7.7558 | 7.7558 | |
176 | −32.4484 | 32.4484 | −32.4484 | 358 | 40.8553 | −86.5014 | 42.0503 | |
177 | −19.9554 | 101.1987 | 17.1932 | 359 | 42.1011 | −77.4780 | 17.9177 | |
178 | −111.0495 | 15.7089 | 16.6121 | 360 | −4.4587 | −16.7825 | 38.4452 | |
179 | −49.7044 | −4.2693 | −5.1748 | 361 | −79.5698 | 79.5698 | 79.5698 | |
180 | −49.7044 | 4.2693 | 5.1748 | 362 | −6.0325 | −16.2422 | 34.4237 | |
181 | −5.8089 | −17.9725 | −31.6778 | 363 | −14.3465 | −27.0673 | −57.5445 | |
182 | 5.8089 | −17.9725 | 31.6778 | 364 | 14.3465 | −27.0673 | 57.5445 | |
Face Permutation Groups | ||||||||
(1, 144) (2, 151) (3, 150) (4, 94) (5, 112) (6, 92) (7, 63) (8, 143) (9, 81) (10, 125) | ||||||||
(11, 78) (12, 115) (13, 124) (14, 60) (15, 88) (16, 135) (17, 46) (18, 131) (19, 108) (20, 44) | ||||||||
(21, 152) (22, 107) (23, 89) (24, 82) (25, 38) (26, 69) (27, 73) (28, 53) (29, 156) (30, 155) | ||||||||
(31, 86) (32, 75) (33, 101) (34, 64) (35, 137) (36, 47) (37, 106) (39, 58) (40, 77) (41, 87) | ||||||||
(42, 128) (43, 145) (45, 67) (48, 139) (49, 120) (50, 109) (51, 68) (52, 126) (54, 97) (55, 96) | ||||||||
(56, 121) (57, 127) (59, 104) (61, 132) (62, 140) (65, 117) (66, 116) (70, 95) (71, 93) (72, 138) | ||||||||
(74, 105) (76, 85) (79, 113) (80, 133) (83, 141) (84, 136) (90, 98) (91, 130) (99, 153) (100, 154) | ||||||||
(102, 122) (103, 123) (110, 147) (111, 129) (114, 148) (118, 142) (119, 146) (134, 149) | ||||||||
(1, 153, 150) (2, 105, 81) (3, 134, 112) (4, 147, 135) (5, 114, 144) (6, 72, 108) (7, 117, 124) (8, 102, 151) | ||||||||
(9, 118, 143) (10, 139, 86) (11, 33, 53) (12, 128, 92) (13, 103, 82) (14, 62, 94) (15, 111, 155) (16, 154, 60) | ||||||||
(17, 98, 109) (18, 75, 36) (19, 146, 115) (20, 30, 145) (21, 132, 78) (22, 52, 68) (23, 88, 44) (24, 85, 63) | ||||||||
(25, 71, 120) (26, 84, 96) (27, 29, 125) (28, 83, 152) (31, 104, 73) (32, 113, 121) (34, 55, 116) (35, 79, 131) | ||||||||
(37, 69, 64) (38, 67, 58) (39, 80, 93) (40, 95, 107) (41, 54, 46) (42, 119, 138) (43, 129, 89) (45, 49, 133) | ||||||||
(47, 56, 137) (48, 156, 59) (50, 130, 87) (51, 127, 77) (57, 126, 70) (61, 141, 101) (65, 76, 123) (66, 136, 106) | ||||||||
(74, 122, 142) (90, 97, 91) (99, 148, 149) (100, 110, 140) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −6 | −40 | −16 | 79 | −16 | −6 | −40 | (1, 2, 3) | (1, 3, 5) | (1, 4, 2) | (1, 5, 13) |
2 | −13 | −6 | 2 | 80 | 12 | −52 | 14 | (1, 8, 10) | (1, 10, 4) | (1, 13, 8) | (2, 4, 14) |
3 | −14 | 1 | −4 | 81 | 6 | 2 | 13 | (2, 6, 11) | (2, 9, 3) | (2, 11, 9) | (2, 14, 6) |
4 | −8 | −10 | −1 | 82 | −27 | −20 | −16 | (3, 7, 15) | (3, 9, 18) | (3, 15, 5) | (3, 18, 7) |
5 | −11 | −32 | −19 | 83 | 20 | 16 | −27 | (4, 10, 21) | (4, 12, 30) | (4, 21, 12) | (4, 30, 14) |
6 | −2 | −13 | 6 | 84 | 14 | 1 | 4 | (5, 15, 31) | (5, 16, 36) | (5, 31, 16) | (5, 36, 13) |
7 | −18 | 5 | −5 | 85 | −12 | −17 | 5 | (6, 14, 43) | (6, 28, 49) | (6, 32, 28) | (6, 43, 32) |
8 | 27 | −20 | 16 | 86 | −11 | 32 | 19 | (6, 49, 11) | (7, 18, 55) | (7, 19, 29) | (7, 29, 60) |
9 | −10 | −1 | −8 | 87 | 4 | 1 | 54 | (7, 55, 19) | (7, 60, 15) | (8, 13, 42) | (8, 20, 38) |
10 | −8 | −52 | −15 | 88 | 4 | 14 | 1 | (8, 38, 48) | (8, 42, 20) | (8, 48, 10) | (9, 11, 33) |
11 | −6 | −2 | 13 | 89 | 2 | 13 | 6 | (9, 17, 39) | (9, 33, 17) | (9, 39, 18) | (10, 22, 40) |
12 | 2 | −13 | −6 | 90 | −54 | 4 | −1 | (10, 40, 21) | (10, 48, 22) | (11, 23, 41) | (11, 41, 33) |
13 | 32 | −19 | 11 | 91 | −5 | 12 | −17 | (11, 49, 23) | (12, 21, 79) | (12, 26, 68) | (12, 27, 26) |
14 | 8 | −10 | 1 | 92 | −27 | 20 | 16 | (12, 68, 30) | (12, 79, 27) | (13, 24, 42) | (13, 36, 51) |
15 | −20 | 7 | 3 | 93 | −13 | 6 | −2 | (13, 51, 24) | (14, 25, 43) | (14, 30, 52) | (14, 52, 25) |
16 | 16 | 6 | −40 | 94 | −4 | −1 | 54 | (15, 34, 53) | (15, 53, 31) | (15, 60, 34) | (16, 26, 37) |
17 | −6 | 2 | −13 | 95 | 5 | 12 | 17 | (16, 31, 78) | (16, 37, 88) | (16, 78, 26) | (16, 88, 36) |
18 | −52 | −15 | −8 | 96 | −19 | 11 | 32 | (17, 27, 69) | (17, 33, 93) | (17, 37, 27) | (17, 69, 39) |
19 | −52 | −14 | −12 | 97 | −5 | −12 | 17 | (17, 93, 37) | (18, 35, 55) | (18, 39, 63) | (18, 63, 35) |
20 | 7 | −3 | 20 | 98 | −20 | −16 | −27 | (19, 22, 50) | (19, 50, 29) | (19, 55, 77) | (19, 66, 22) |
21 | −4 | −14 | 1 | 99 | −4 | 1 | −54 | (19, 77, 66) | (20, 23, 62) | (20, 42, 92) | (20, 62, 38) |
22 | 1 | −54 | −4 | 100 | 6 | 40 | −16 | (20, 67, 23) | (20, 92, 67) | (21, 40, 64) | (21, 45, 79) |
23 | 1 | 4 | 14 | 101 | 52 | −14 | 12 | (21, 64, 45) | (22, 48, 101) | (22, 66, 40) | (22, 101, 50) |
24 | −1 | −4 | 14 | 102 | −15 | 8 | 52 | (23, 49, 102) | (23, 67, 41) | (23, 102, 62) | (24, 28, 54) |
25 | 8 | −52 | 15 | 103 | 40 | 16 | −6 | (24, 51, 81) | (24, 54, 107) | (24, 81, 28) | (24, 107, 42) |
26 | 1 | 8 | −10 | 104 | 5 | −5 | −18 | (25, 29, 50) | (25, 50, 108) | (25, 52, 82) | (25, 82, 29) |
27 | −1 | −8 | −10 | 105 | −5 | 5 | −18 | (25, 108, 43) | (26, 27, 37) | (26, 59, 68) | (26, 78, 59) |
28 | 1 | −8 | 10 | 106 | 16 | 27 | −20 | (27, 56, 69) | (27, 79, 56) | (28, 32, 54) | (28, 81, 89) |
29 | −38 | −18 | −16 | 107 | −5 | −5 | 18 | (28, 89, 49) | (29, 70, 60) | (29, 82, 70) | (30, 46, 84) |
30 | 13 | −6 | −2 | 108 | 5 | −18 | −5 | (30, 68, 46) | (30, 84, 52) | (31, 44, 78) | (31, 53, 85) |
31 | −16 | −27 | −20 | 109 | 13 | 6 | 2 | (31, 85, 44) | (32, 34, 54) | (32, 43, 76) | (32, 76, 86) |
32 | 16 | −6 | 40 | 110 | −7 | −3 | −20 | (32, 86, 34) | (33, 41, 65) | (33, 57, 93) | (33, 65, 57) |
33 | −10 | 1 | 8 | 111 | 52 | −15 | 8 | (34, 60, 115) | (34, 86, 53) | (34, 115, 54) | (35, 38, 62) |
34 | −16 | 27 | 20 | 112 | 11 | −32 | 19 | (35, 62, 118) | (35, 63, 95) | (35, 95, 38) | (35, 118, 55) |
35 | −18 | 16 | 38 | 113 | −18 | −5 | 5 | (36, 58, 83) | (36, 83, 51) | (36, 88, 58) | (37, 61, 88) |
36 | 19 | 11 | −32 | 114 | 32 | 19 | −11 | (37, 93, 61) | (38, 71, 48) | (38, 95, 71) | (39, 47, 96) |
37 | −2 | 13 | −6 | 115 | −16 | 38 | 18 | (39, 69, 47) | (39, 96, 63) | (40, 44, 97) | (40, 66, 44) |
38 | 17 | 5 | 12 | 116 | 8 | 52 | −15 | (40, 97, 64) | (41, 45, 98) | (41, 67, 45) | (41, 98, 65) |
39 | −40 | −16 | −6 | 117 | −8 | 10 | 1 | (42, 72, 92) | (42, 107, 72) | (43, 73, 76) | (43, 108, 73) |
40 | −5 | −18 | 5 | 118 | −14 | 12 | 52 | (44, 66, 123) | (44, 85, 97) | (44, 123, 78) | (45, 64, 98) |
41 | −40 | 16 | 6 | 119 | 16 | 38 | −18 | (45, 67, 124) | (45, 124, 79) | (46, 51, 111) | (46, 68, 127) |
42 | −7 | 3 | 20 | 120 | 3 | 20 | −7 | (46, 81, 51) | (46, 111, 84) | (46, 127, 81) | (47, 52, 112) |
43 | 4 | −14 | −1 | 121 | 20 | −16 | 27 | (47, 69, 128) | (47, 82, 52) | (47, 112, 96) | (47, 128, 82) |
44 | −16 | −38 | −18 | 122 | −18 | −16 | −38 | (48, 71, 74) | (48, 74, 101) | (49, 75, 102) | (49, 89, 75) |
45 | −19 | −11 | −32 | 123 | 4 | −1 | −54 | (50, 80, 108) | (50, 101, 80) | (51, 83, 111) | (52, 84, 112) |
46 | 10 | −1 | 8 | 124 | 11 | 32 | −19 | (53, 57, 113) | (53, 86, 57) | (53, 113, 85) | (54, 87, 107) |
47 | −32 | −19 | −11 | 125 | 14 | −12 | 52 | (54, 115, 87) | (55, 90, 77) | (55, 118, 90) | (56, 79, 106) |
48 | 38 | −18 | 16 | 126 | 16 | −38 | 18 | (56, 99, 104) | (56, 104, 69) | (56, 106, 119) | (56, 119, 99) |
49 | −1 | 8 | 10 | 127 | 10 | 1 | −8 | (57, 65, 113) | (57, 86, 132) | (57, 132, 93) | (58, 63, 120) |
50 | −1 | −54 | 4 | 128 | 7 | 3 | −20 | (58, 88, 134) | (58, 95, 63) | (58, 120, 83) | (58, 134, 95) |
51 | 40 | −16 | 6 | 129 | 18 | 16 | −38 | (59, 78, 105) | (59, 103, 68) | (59, 105, 110) | (59, 110, 114) |
52 | 6 | −40 | 16 | 130 | 20 | 7 | −3 | (59, 114, 103) | (60, 70, 91) | (60, 91, 115) | (61, 93, 117) |
53 | −20 | −7 | −3 | 131 | −38 | 18 | 16 | (61, 100, 116) | (61, 109, 100) | (61, 116, 88) | (61, 117, 109) |
54 | 15 | −8 | 52 | 132 | −6 | 40 | 16 | (62, 94, 118) | (62, 102, 94) | (63, 96, 120) | (64, 73, 98) |
55 | −54 | −4 | 1 | 133 | −12 | 52 | 14 | (64, 97, 121) | (64, 121, 73) | (65, 90, 113) | (65, 98, 122) |
56 | −15 | −8 | −52 | 134 | 5 | 18 | 5 | (65, 122, 90) | (66, 77, 99) | (66, 99, 123) | (67, 92, 100) |
57 | −14 | −1 | 4 | 135 | −4 | 14 | −1 | (67, 100, 124) | (68, 103, 127) | (69, 104, 128) | (70, 82, 110) |
58 | −3 | 20 | 7 | 136 | 18 | −16 | 38 | (70, 105, 129) | (70, 110, 105) | (70, 129, 91) | (71, 95, 119) |
59 | −1 | 4 | −14 | 137 | 5 | −12 | −17 | (71, 106, 130) | (71, 119, 106) | (71, 130, 74) | (72, 85, 131) |
60 | −12 | 17 | −5 | 138 | 14 | −1 | −4 | (72, 97, 85) | (72, 107, 136) | (72, 131, 92) | (72, 136, 97) |
61 | 8 | 10 | −1 | 139 | 54 | −4 | −1 | (73, 108, 137) | (73, 121, 76) | (73, 137, 98) | (74, 84, 111) |
62 | 5 | 5 | 18 | 140 | 16 | −27 | 20 | (74, 111, 139) | (74, 130, 84) | (74, 139, 101) | (75, 89, 135) |
63 | −20 | 16 | 27 | 141 | −52 | 14 | 12 | (75, 96, 112) | (75, 112, 140) | (75, 135, 96) | (75, 140, 102) |
64 | 3 | −20 | 7 | 142 | 27 | 20 | −16 | (76, 103, 114) | (76, 114, 86) | (76, 121, 103) | (77, 90, 122) |
65 | −52 | 15 | 8 | 143 | 12 | 52 | −14 | (77, 104, 99) | (77, 122, 104) | (78, 123, 105) | (79, 124, 106) |
66 | −12 | −52 | −14 | 144 | −5 | 18 | −5 | (80, 87, 94) | (80, 94, 126) | (80, 101, 125) | (80, 125, 87) |
67 | −32 | 19 | 11 | 145 | 52 | 15 | −8 | (80, 126, 108) | (81, 109, 89) | (81, 127, 109) | (82, 128, 110) |
68 | 6 | −2 | −13 | 146 | 17 | −5 | −12 | (83, 91, 129) | (83, 120, 91) | (83, 129, 111) | (84, 130, 112) |
69 | 1 | −4 | −14 | 147 | 14 | 12 | −52 | (85, 113, 131) | (86, 114, 132) | (87, 115, 133) | (87, 125, 107) |
70 | −17 | 5 | −12 | 148 | 20 | −7 | 3 | (87, 133, 94) | (88, 116, 134) | (89, 109, 117) | (89, 117, 135) |
71 | 12 | 17 | 5 | 149 | −1 | 54 | −4 | (90, 118, 141) | (90, 141, 113) | (91, 120, 144) | (91, 144, 115) |
72 | −17 | −5 | 12 | 150 | −8 | 52 | 15 | (92, 116, 100) | (92, 131, 116) | (93, 132, 117) | (94, 102, 126) |
73 | −3 | −20 | −7 | 151 | 54 | 4 | 1 | (94, 133, 118) | (95, 134, 119) | (96, 135, 120) | (97, 136, 121) |
74 | 18 | 5 | 5 | 152 | 12 | −17 | −5 | (98, 137, 122) | (99, 119, 143) | (99, 143, 123) | (100, 109, 138) |
75 | −16 | 6 | 40 | 153 | 1 | 54 | 4 | (100, 138, 124) | (101, 139, 125) | (102, 140, 126) | (103, 121, 145) |
76 | 19 | −11 | 32 | 154 | 38 | 18 | −16 | (103, 145, 127) | (104, 122, 146) | (104, 146, 128) | (105, 123, 147) |
77 | −14 | −12 | −52 | 155 | 52 | 14 | −12 | (105, 147, 129) | (106, 124, 148) | (106, 148, 130) | (107, 125, 136) |
78 | 15 | 8 | −52 | 156 | 18 | −5 | −5 | (108, 126, 137) | (109, 127, 138) | (110, 128, 142) | (110, 142, 114) |
(111, 129, 139) | (112, 130, 140) | (113, 141, 131) | (114, 142, 132) | ||||||||
(115, 144, 133) | (116, 131, 149) | (116, 149, 134) | (117, 132, 150) | ||||||||
(117, 150, 135) | (118, 133, 141) | (119, 134, 143) | (120, 135, 144) | ||||||||
(121, 136, 145) | (122, 137, 146) | (123, 143, 147) | (124, 138, 148) | ||||||||
(125, 139, 151) | (125, 151, 136) | (126, 140, 152) | (126, 152, 137) | ||||||||
(127, 145, 138) | (128, 146, 142) | (129, 147, 139) | (130, 148, 140) | ||||||||
(131, 141, 149) | (132, 142, 150) | (133, 144, 153) | (133, 153, 141) | ||||||||
(134, 149, 143) | (135, 150, 144) | (136, 151, 145) | (137, 152, 146) | ||||||||
(138, 145, 156) | (138, 156, 148) | (139, 147, 151) | (140, 148, 152) | ||||||||
(141, 153, 149) | (142, 146, 154) | (142, 154, 150) | (143, 149, 155) | ||||||||
(143, 155, 147) | (144, 150, 153) | (145, 151, 156) | (146, 152, 154) | ||||||||
(147, 155, 151) | (148, 156, 152) | (149, 153, 155) | (150, 154, 153) | ||||||||
(151, 155, 156) | (152, 156, 154) | (153, 154, 155) | (154, 156, 155) | ||||||||
Vertex Permutation Groups | |||||||||||
(1, 100) (2, 109) (3, 138) (4, 61) (5, 124) (6, 89) (7, 156) (8, 92) (9, 127) (10, 116) | |||||||||||
(11, 81) (12, 37) (13, 67) (14, 117) (15, 148) (16, 79) (17, 68) (18, 145) (19, 155) (20, 42) | |||||||||||
(21, 88) (22, 149) (23, 24) (25, 150) (26, 27) (28, 49) (29, 154) (30, 93) (31, 106) (32, 75) | |||||||||||
(33, 46) (34, 140) (35, 136) (36, 45) (38, 72) (39, 103) (40, 134) (41, 51) (43, 135) (44, 119) | |||||||||||
(47, 114) (48, 131) (50, 153) (52, 132) (53, 130) (54, 102) (55, 151) (56, 78) (57, 84) (58, 64) | |||||||||||
(59, 69) (60, 152) (62, 107) (63, 121) (65, 111) (66, 143) (70, 146) (71, 85) (73, 120) (74, 113) | |||||||||||
(76, 96) (77, 147) (80, 133) (82, 142) (83, 98) (86, 112) (87, 94) (90, 139) (91, 137) (95, 97) | |||||||||||
(99, 123) (101, 141) (104, 105) (108, 144) (110, 128) (115, 126) (118, 125) (122, 129) | |||||||||||
(1, 39, 79) (2, 17, 12) (3, 69, 21) (4, 9, 27) (5, 47, 45) (6, 93, 68) (7, 104, 40) (8, 63, 106) | |||||||||||
(10, 18, 56) (11, 37, 30) (13, 96, 124) (14, 33, 26) (15, 128, 64) (16, 52, 41) (19, 77, 66) (20, 58, 130) | |||||||||||
(22, 55, 99) (23, 88, 84) (24, 135, 138) (25, 65, 78) (28, 117, 127) (29, 122, 44) (31, 82, 98) (32, 132, 103) | |||||||||||
(34, 142, 121) (35, 119, 48) (36, 112, 67) (38, 95, 71) (42, 120, 148) (43, 57, 59) (46, 49, 61) (50, 90, 123) | |||||||||||
(51, 75, 100) (53, 110, 73) (54, 150, 145) (60, 146, 97) (62, 134, 74) (70, 137, 85) (72, 91, 152) (76, 86, 114) | |||||||||||
(80, 141, 147) (81, 89, 109) (83, 140, 92) (87, 153, 151) (94, 149, 139) (101, 118, 143) (102, 116, 111) (105, 108, 113) | |||||||||||
(107, 144, 156) (115, 154, 136) (125, 133, 155) (126, 131, 129) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | −67.1696 | −37.7383 | 0.3197 | 183 | −63.6127 | 14.8065 | 17.5008 | (1, 2, 9, 11, 10, 12, 8) |
2 | −39.5239 | −66.1383 | −17.1856 | 184 | 2.8284 | 5.2523 | 30.6122 | (1, 3, 5, 7, 6, 4, 2) |
3 | −65.8707 | −36.5518 | 0.2076 | 185 | −6.9099 | 12.2991 | 21.3400 | (1, 8, 16, 15, 14, 13, 3) |
4 | −27.9408 | −66.6446 | −21.3097 | 186 | −22.7092 | −3.4293 | −7.0559 | (2, 4, 17, 18, 19, 20, 9) |
5 | 25.4592 | −21.8571 | −27.0448 | 187 | −22.7092 | 3.4293 | 7.0559 | (3, 13, 22, 23, 24, 21, 5) |
6 | 13.8676 | −28.7893 | −25.0138 | 188 | −10.8853 | 12.7182 | −25.9158 | (4, 6, 35, 46, 45, 44, 17) |
7 | 18.9022 | −31.5091 | −27.5108 | 189 | −25.0138 | 13.8676 | −28.7893 | (5, 21, 57, 56, 55, 36, 7) |
8 | −68.6514 | −37.1265 | −2.4494 | 190 | −2.8284 | 5.2523 | −30.6122 | (6, 7, 36, 38, 37, 39, 35) |
9 | −37.1772 | −63.7264 | 0.9660 | 191 | 6.9099 | 12.2991 | −21.3400 | (8, 12, 40, 41, 42, 43, 16) |
10 | −45.5162 | −45.5162 | 45.5162 | 192 | 4.7532 | 16.1405 | −18.3687 | (9, 20, 60, 59, 58, 26, 11) |
11 | −23.9336 | −67.8008 | 31.3889 | 193 | −25.9158 | 10.8853 | −12.7182 | (10, 11, 26, 29, 27, 28, 25) |
12 | −67.8008 | −31.3889 | 23.9336 | 194 | −65.8707 | 36.5518 | −0.2076 | (10, 25, 48, 47, 49, 40, 12) |
13 | −65.7888 | −20.0361 | −24.0362 | 195 | −67.1696 | 37.7383 | −0.3197 | (13, 14, 30, 63, 62, 61, 22) |
14 | −60.9117 | −24.7830 | −10.8927 | 196 | 10.3655 | 61.3791 | −4.7627 | (14, 15, 31, 33, 32, 34, 30) |
15 | −25.9158 | −10.8853 | 12.7182 | 197 | −2.5586 | 57.8118 | 28.0172 | (15, 16, 43, 76, 75, 74, 31) |
16 | −66.1050 | −17.2187 | −28.5881 | 198 | 2.5586 | 57.8118 | −28.0172 | (17, 44, 87, 88, 89, 50, 18) |
17 | −28.5881 | −66.1050 | −17.2187 | 199 | 10.8927 | 60.9117 | −24.7830 | (18, 50, 53, 51, 52, 54, 19) |
18 | −2.4493 | −68.6514 | −37.1265 | 200 | 17.5008 | 63.6127 | −14.8065 | (19, 54, 116, 117, 118, 60, 20) |
19 | 23.9336 | −67.8008 | −31.3889 | 201 | 37.7383 | −0.3197 | −67.1696 | (21, 24, 67, 139, 138, 137, 57) |
20 | 37.1772 | −63.7264 | −0.9660 | 202 | 10.8853 | −12.7182 | −25.9158 | (22, 61, 121, 120, 119, 66, 23) |
21 | 23.9206 | −23.9206 | −23.9206 | 203 | 36.5518 | −0.2076 | −65.8707 | (23, 66, 65, 64, 68, 67, 24) |
22 | −58.2855 | −33.7344 | −4.3995 | 204 | 24.7830 | 10.8927 | −60.9117 | (25, 28, 112, 175, 176, 94, 48) |
23 | 27.5108 | −18.9022 | −31.5091 | 205 | 20.0361 | 24.0362 | −65.7888 | (26, 58, 103, 156, 155, 124, 29) |
24 | 27.0448 | −25.4592 | −21.8571 | 206 | −29.2064 | 29.2064 | −29.2064 | (27, 29, 124, 125, 123, 122, 111) |
25 | −31.3889 | −23.9336 | 67.8008 | 207 | −36.4244 | 41.5047 | −3.0957 | (27, 111, 96, 97, 113, 112, 28) |
26 | 2.4494 | −68.6514 | 37.1265 | 208 | 28.5881 | 66.1050 | −17.2187 | (30, 34, 114, 206, 207, 131, 63) |
27 | 17.1856 | −39.5239 | 66.1383 | 209 | −37.1772 | 63.7264 | −0.9660 | (31, 74, 134, 187, 186, 80, 33) |
28 | −0.9660 | −37.1772 | 63.7264 | 210 | 39.5239 | 66.1383 | −17.1856 | (32, 33, 80, 81, 78, 77, 79) |
29 | −0.3197 | −67.1696 | 37.7383 | 211 | 27.9408 | 66.6446 | −21.3097 | (32, 79, 101, 102, 115, 114, 34) |
30 | −63.6127 | −14.8065 | −17.5008 | 212 | 37.1772 | 63.7264 | 0.9660 | (35, 39, 142, 173, 174, 91, 46) |
31 | −30.6122 | −2.8284 | 5.2523 | 213 | −2.8284 | −5.2523 | 30.6122 | (36, 55, 98, 154, 153, 85, 38) |
32 | −29.4733 | −8.2908 | 8.5824 | 214 | −3.9711 | −4.6752 | 31.8784 | (37, 38, 85, 86, 83, 82, 84) |
33 | −31.8784 | −3.9711 | 4.6752 | 215 | −4.3995 | 58.2855 | 33.7344 | (37, 84, 132, 133, 143, 142, 39) |
34 | −49.6773 | 8.7774 | −15.9166 | 216 | −2.5586 | −57.8118 | −28.0172 | (40, 49, 126, 127, 128, 71, 41) |
35 | 16.1405 | −18.3687 | 4.7532 | 217 | 2.5586 | −57.8118 | 28.0172 | (41, 71, 72, 69, 70, 73, 42) |
36 | 33.7344 | −4.3995 | 58.2855 | 218 | −10.3655 | −61.3791 | −4.7627 | (42, 73, 144, 145, 146, 76, 43) |
37 | −4.7627 | 10.3655 | 61.3791 | 219 | −30.6122 | 2.8284 | −5.2523 | (44, 45, 90, 147, 148, 149, 87) |
38 | 28.0172 | −2.5586 | 57.8118 | 220 | −21.3400 | −6.9099 | −12.2991 | (45, 46, 91, 92, 77, 78, 90) |
39 | 29.2379 | −6.1465 | 49.4394 | 221 | −18.3687 | −4.7532 | −16.1405 | (47, 48, 94, 95, 82, 83, 93) |
40 | −63.7264 | −0.9660 | 37.1773 | 222 | −4.2140 | 0.2406 | −29.0699 | (47, 93, 150, 151, 152, 126, 49) |
41 | −63.7264 | 0.9660 | −37.1773 | 223 | −3.4293 | −7.0559 | −22.7092 | (50, 89, 162, 260, 189, 110, 53) |
42 | −66.1383 | −17.1856 | −39.5239 | 224 | −18.9022 | 31.5091 | −27.5108 | (51, 53, 110, 109, 70, 69, 106) |
43 | −66.6446 | −21.3097 | −27.9408 | 225 | −25.4592 | 21.8571 | −27.0448 | (51, 106, 64, 65, 108, 107, 52) |
44 | 12.7182 | −25.9158 | −10.8853 | 226 | 66.1383 | 17.1856 | −39.5239 | (52, 107, 201, 226, 165, 116, 54) |
45 | 5.2523 | −30.6122 | −2.8284 | 227 | −24.7830 | −10.8927 | −60.9117 | (55, 56, 99, 97, 96, 100, 98) |
46 | 12.2991 | −21.3400 | 6.9099 | 228 | 4.7627 | 10.3655 | −61.3791 | (56, 57, 137, 179, 164, 163, 99) |
47 | −37.7383 | −0.3197 | 67.1696 | 229 | −3.0957 | 36.4244 | −41.5047 | (58, 59, 105, 102, 101, 104, 103) |
48 | −37.1265 | 2.4494 | 68.6514 | 230 | 14.8065 | 17.5008 | −63.6127 | (59, 60, 118, 180, 169, 168, 105) |
49 | −66.1383 | 17.1856 | 39.5239 | 231 | −8.7774 | 15.9166 | −49.6773 | (61, 62, 129, 181, 182, 183, 121) |
50 | 0.3197 | −67.1696 | −37.7383 | 232 | 63.6127 | −14.8065 | 17.5008 | (62, 63, 131, 130, 122, 123, 129) |
51 | 0.9660 | −37.1772 | −63.7264 | 233 | 36.4244 | 41.5047 | 3.0957 | (64, 106, 69, 72, 141, 140, 68) |
52 | 31.3889 | −23.9336 | −67.8008 | 234 | 49.4394 | 29.2379 | −6.1465 | (65, 66, 119, 158, 259, 202, 108) |
53 | −17.1856 | −39.5239 | −66.1383 | 235 | 61.3791 | −4.7627 | 10.3655 | (67, 68, 140, 208, 278, 199, 139) |
54 | 45.5162 | −45.5162 | −45.5162 | 236 | −29.2064 | −29.2064 | 29.2064 | (70, 109, 188, 227, 170, 144, 73) |
55 | 20.0361 | −24.0362 | 65.7888 | 237 | −41.5047 | −3.0957 | 36.4244 | (71, 128, 195, 287, 209, 141, 72) |
56 | 36.5518 | 0.2076 | 65.8707 | 238 | −29.2379 | 6.1465 | 49.4394 | (74, 75, 136, 133, 132, 135, 134) |
57 | 21.8571 | −27.0448 | −25.4592 | 239 | −3.0957 | −36.4244 | 41.5047 | (75, 76, 146, 215, 197, 196, 136) |
58 | 28.5881 | −66.1050 | 17.2187 | 240 | −8.7774 | −15.9166 | 49.6773 | (77, 92, 177, 178, 104, 101, 79) |
59 | 27.9408 | −66.6446 | 21.3097 | 241 | 4.3995 | −58.2855 | 33.7344 | (78, 81, 222, 223, 157, 147, 90) |
60 | 39.5239 | −66.1383 | 17.1856 | 242 | 10.3655 | −61.3791 | 4.7627 | (80, 186, 256, 258, 257, 222, 81) |
61 | −57.8118 | −28.0172 | −2.5586 | 243 | 17.5008 | −63.6127 | 14.8065 | (82, 95, 213, 214, 135, 132, 84) |
62 | −57.8118 | 28.0172 | 2.5586 | 244 | 25.9158 | −10.8853 | −12.7182 | (83, 86, 224, 225, 161, 150, 93) |
63 | −61.3791 | −4.7627 | −10.3655 | 245 | 60.9117 | −24.7830 | 10.8927 | (85, 153, 238, 286, 285, 224, 86) |
64 | 17.1856 | 39.5239 | −66.1383 | 246 | 31.8784 | −3.9711 | −4.6752 | (87, 149, 218, 217, 216, 160, 88) |
65 | 21.3097 | 27.9408 | −66.6446 | 247 | 30.6122 | −2.8284 | −5.2523 | (88, 160, 151, 150, 161, 162, 89) |
66 | 25.0138 | −13.8676 | −28.7893 | 248 | 0.3197 | 67.1696 | 37.7383 | (91, 174, 246, 298, 264, 177, 92) |
67 | −0.2076 | 65.8707 | −36.5518 | 249 | −27.0448 | −25.4592 | 21.8571 | (94, 176, 251, 299, 288, 213, 95) |
68 | −0.3197 | 67.1696 | −37.7383 | 250 | 0.2076 | 65.8707 | 36.5518 | (96, 111, 122, 130, 185, 184, 100) |
69 | −31.3889 | 23.9336 | −67.8008 | 251 | −25.0138 | −13.8676 | 28.7893 | (97, 99, 163, 166, 267, 266, 113) |
70 | −37.1265 | −2.4494 | −68.6514 | 252 | −27.5108 | −18.9022 | 31.5091 | (98, 100, 184, 276, 308, 240, 154) |
71 | −67.8008 | 31.3889 | −23.9336 | 253 | 23.9206 | 23.9206 | 23.9206 | (102, 105, 168, 171, 268, 228, 115) |
72 | −45.5162 | 45.5162 | −45.5162 | 254 | 21.8571 | 27.0448 | 25.4592 | (103, 104, 178, 265, 309, 243, 156) |
73 | −37.7383 | 0.3197 | −67.1696 | 255 | 31.5091 | 27.5108 | 18.9022 | (107, 108, 202, 204, 205, 203, 201) |
74 | −21.3400 | 6.9099 | 12.2991 | 256 | −28.2053 | 1.7439 | −4.1118 | (109, 110, 189, 192, 191, 190, 188) |
75 | −18.3687 | 4.7532 | 16.1405 | 257 | −3.9711 | 4.6752 | −31.8784 | (112, 113, 266, 279, 280, 248, 175) |
76 | −28.7893 | −25.0138 | 13.8676 | 258 | −8.2908 | 8.5824 | −29.4733 | (114, 115, 228, 230, 231, 229, 206) |
77 | −7.0559 | −22.7092 | −3.4293 | 259 | 2.8284 | −5.2523 | −30.6122 | (116, 165, 166, 163, 164, 167, 117) |
78 | 0.2406 | −29.0699 | −4.2140 | 260 | −27.5108 | 18.9022 | −31.5091 | (117, 167, 244, 245, 272, 180, 118) |
79 | −4.1118 | −28.2053 | 1.7439 | 261 | 3.4293 | −7.0559 | 22.7092 | (119, 120, 159, 148, 147, 157, 158) |
80 | −29.0699 | −4.2140 | 0.2406 | 262 | 4.2140 | 0.2406 | 29.0699 | (120, 121, 183, 273, 237, 236, 159) |
81 | −12.6261 | −12.6261 | −12.6260 | 263 | −1.7439 | −4.1118 | 28.2053 | (123, 125, 253, 274, 194, 181, 129) |
82 | −24.7830 | 10.8927 | 60.9117 | 264 | 12.6260 | −12.6261 | 12.6261 | (124, 155, 241, 255, 254, 253, 125) |
83 | −20.0361 | 24.0362 | 65.7888 | 265 | −8.5824 | −29.4733 | 8.2908 | (126, 152, 221, 220, 219, 193, 127) |
84 | −14.8065 | 17.5008 | 63.6127 | 266 | 45.5162 | 45.5162 | 45.5162 | (127, 193, 182, 181, 194, 195, 128) |
85 | −28.0172 | 2.5586 | 57.8118 | 267 | 67.8008 | 31.3889 | 23.9336 | (130, 131, 207, 283, 317, 277, 185) |
86 | −33.7344 | 4.3995 | 58.2855 | 268 | −28.0172 | −2.5586 | −57.8118 | (133, 136, 196, 200, 290, 233, 143) |
87 | −10.8927 | −60.9117 | −24.7830 | 269 | −10.3655 | 61.3791 | 4.7627 | (134, 135, 214, 289, 322, 282, 187) |
88 | −24.0362 | −65.7888 | −20.0361 | 270 | 6.1465 | 49.4394 | −29.2379 | (137, 138, 198, 269, 270, 271, 179) |
89 | 0.2076 | −65.8707 | −36.5518 | 271 | 18.3687 | 4.7532 | −16.1405 | (138, 139, 199, 200, 196, 197, 198) |
90 | 4.6752 | −31.8783 | −3.9711 | 272 | 65.7888 | −20.0361 | 24.0362 | (140, 141, 209, 212, 210, 211, 208) |
91 | 4.1118 | −28.2053 | −1.7439 | 273 | −49.6772 | −8.7774 | 15.9166 | (142, 143, 233, 234, 235, 232, 173) |
92 | 7.0559 | −22.7092 | 3.4293 | 274 | 25.4592 | 21.8571 | 27.0448 | (144, 170, 171, 168, 169, 172, 145) |
93 | −36.5518 | −0.2076 | 65.8707 | 275 | −3.4293 | 7.0559 | 22.7092 | (145, 172, 249, 250, 291, 215, 146) |
94 | −17.2187 | 28.5881 | 66.1050 | 276 | 3.9711 | 4.6752 | 31.8784 | (148, 159, 236, 239, 292, 218, 149) |
95 | −10.8853 | −12.7182 | 25.9158 | 277 | 1.7439 | 4.1118 | 28.2053 | (151, 160, 216, 242, 293, 221, 152) |
96 | 17.2187 | −28.5881 | 66.1050 | 278 | −12.7182 | 25.9158 | −10.8853 | (153, 154, 240, 239, 236, 237, 238) |
97 | 37.1265 | −2.4494 | 68.6514 | 279 | 23.9336 | 67.8008 | 31.3889 | (155, 156, 243, 242, 216, 217, 241) |
98 | 24.7830 | −10.8927 | 60.9117 | 280 | −2.4494 | 68.6514 | 37.1265 | (157, 223, 295, 327, 304, 259, 158) |
99 | 37.7383 | 0.3197 | 67.1696 | 281 | −31.8784 | 3.9711 | −4.6752 | (161, 225, 297, 328, 306, 260, 162) |
100 | 10.8853 | 12.7182 | 25.9158 | 282 | −29.0699 | 4.2140 | −0.2406 | (164, 179, 271, 313, 247, 244, 167) |
101 | −12.2991 | −21.3400 | −6.9099 | 283 | −15.9166 | 49.6772 | −8.7774 | (165, 226, 301, 333, 310, 267, 166) |
102 | −16.1405 | −18.3687 | −4.7532 | 284 | −17.5008 | 63.6127 | 14.8065 | (169, 180, 272, 314, 252, 249, 172) |
103 | −12.7182 | −25.9158 | 10.8853 | 285 | −13.8676 | 28.7893 | −25.0138 | (170, 227, 303, 334, 312, 268, 171) |
104 | −5.2523 | −30.6122 | 2.8284 | 286 | −16.1405 | 18.3687 | 4.7532 | (173, 232, 245, 244, 247, 246, 174) |
105 | −13.8676 | −28.7893 | 25.0138 | 287 | −39.5239 | 66.1383 | 17.1856 | (175, 248, 250, 249, 252, 251, 176) |
106 | −0.9660 | 37.1772 | −63.7264 | 288 | 6.9099 | −12.2991 | 21.3400 | (177, 264, 262, 261, 263, 265, 178) |
107 | 37.1265 | 2.4493 | −68.6514 | 289 | −4.2140 | −0.2406 | 29.0699 | (182, 193, 219, 281, 315, 273, 183) |
108 | 17.2187 | 28.5881 | −66.1050 | 290 | 15.9166 | 49.6772 | 8.7774 | (184, 185, 277, 275, 261, 262, 276) |
109 | −17.2187 | −28.5881 | −66.1050 | 291 | −24.0362 | 65.7888 | 20.0361 | (186, 187, 282, 281, 219, 220, 256) |
110 | −21.3097 | −27.9408 | −66.6446 | 292 | 6.1465 | −49.4394 | 29.2379 | (188, 190, 257, 258, 302, 303, 227) |
111 | 21.3097 | −27.9408 | 66.6446 | 293 | −6.1465 | −49.4394 | −29.2379 | (189, 260, 306, 307, 235, 234, 192) |
112 | 0.9660 | 37.1772 | 63.7264 | 294 | −1.7439 | 4.1118 | −28.2053 | (190, 191, 294, 295, 223, 222, 257) |
113 | 31.3889 | 23.9336 | 67.8008 | 295 | 3.4293 | 7.0559 | −22.7092 | (191, 192, 234, 233, 290, 323, 294) |
114 | −41.5047 | 3.0957 | −36.4244 | 296 | 67.1696 | 37.7383 | 0.3197 | (194, 274, 316, 338, 320, 287, 195) |
115 | −29.2379 | −6.1465 | −49.4394 | 297 | 65.8707 | 36.5518 | 0.2076 | (197, 215, 291, 324, 284, 269, 198) |
116 | 67.8008 | −31.3889 | −23.9336 | 298 | 29.0699 | −4.2140 | −0.2406 | (199, 278, 319, 341, 323, 290, 200) |
117 | 68.6514 | −37.1265 | 2.4494 | 299 | 4.7532 | −16.1405 | 18.3687 | (201, 203, 254, 255, 300, 301, 226) |
118 | 67.1696 | −37.7383 | −0.3197 | 300 | 28.7893 | 25.0138 | 13.8676 | (202, 259, 304, 305, 231, 230, 204) |
119 | −4.7532 | −16.1405 | −18.3687 | 301 | 66.6446 | 21.3097 | −27.9408 | (203, 205, 311, 316, 274, 253, 254) |
120 | −49.4394 | −29.2379 | −6.1465 | 302 | 8.7774 | −15.9166 | −49.6773 | (204, 230, 228, 268, 312, 311, 205) |
121 | −61.3791 | 4.7627 | 10.3655 | 303 | −14.8065 | −17.5008 | −63.6127 | (206, 229, 270, 269, 284, 283, 207) |
122 | 25.0138 | 13.8676 | 28.7893 | 304 | 3.9711 | −4.6752 | −31.8784 | (208, 211, 285, 286, 318, 319, 278) |
123 | 27.5108 | 18.9022 | 31.5091 | 305 | 8.2908 | −8.5824 | −29.4733 | (209, 287, 320, 321, 280, 279, 212) |
124 | −0.2076 | −65.8707 | 36.5518 | 306 | 58.2855 | 33.7344 | −4.3995 | (210, 212, 279, 266, 267, 310, 296) |
125 | 27.0448 | 25.4592 | 21.8571 | 307 | 57.8118 | 28.0172 | −2.5586 | (210, 296, 297, 225, 224, 285, 211) |
126 | −66.6446 | 21.3097 | 27.9408 | 308 | 8.2908 | 8.5824 | 29.4733 | (213, 288, 263, 261, 275, 289, 214) |
127 | −66.1050 | 17.2187 | 28.5880 | 309 | 15.9166 | −49.6772 | −8.7774 | (217, 218, 292, 325, 300, 255, 241) |
128 | −68.6514 | 37.1265 | 2.4494 | 310 | 68.6514 | 37.1265 | −2.4494 | (220, 221, 293, 326, 302, 258, 256) |
129 | −58.2855 | 33.7344 | 4.3995 | 311 | 33.7344 | 4.3995 | −58.2855 | (229, 231, 305, 335, 313, 271, 270) |
130 | −4.7532 | 16.1405 | 18.3687 | 312 | 28.0172 | 2.5586 | −57.8118 | (232, 235, 307, 336, 314, 272, 245) |
131 | −49.4394 | 29.2379 | 6.1465 | 313 | 21.3400 | 6.9099 | −12.2991 | (237, 273, 315, 337, 318, 286, 238) |
132 | 8.7774 | 15.9166 | 49.6772 | 314 | 58.2855 | −33.7344 | 4.3995 | (239, 240, 308, 329, 343, 325, 292) |
133 | 3.0957 | 36.4244 | 41.5047 | 315 | −29.4733 | 8.2908 | −8.5824 | (242, 243, 309, 331, 344, 326, 293) |
134 | −28.2053 | −1.7439 | 4.1118 | 316 | 18.9022 | 31.5091 | 27.5108 | (246, 247, 313, 335, 347, 330, 298) |
135 | −8.2908 | −8.5824 | 29.4733 | 317 | 8.5824 | 29.4733 | 8.2908 | (248, 280, 321, 342, 324, 291, 250) |
136 | −6.1465 | 49.4394 | 29.2379 | 318 | −12.2991 | 21.3400 | 6.9099 | (251, 252, 314, 336, 348, 332, 299) |
137 | 31.5091 | −27.5108 | −18.9022 | 319 | −5.2523 | 30.6122 | −2.8284 | (262, 264, 298, 330, 329, 308, 276) |
138 | 4.3995 | 58.2855 | −33.7344 | 320 | −27.9408 | 66.6446 | 21.3097 | (263, 288, 299, 332, 331, 309, 265) |
139 | 24.0362 | 65.7888 | −20.0361 | 321 | −28.5881 | 66.1050 | 17.2187 | (275, 277, 317, 340, 339, 322, 289) |
140 | 2.4494 | 68.6514 | −37.1265 | 322 | −12.6261 | 12.6260 | 12.6261 | (281, 282, 322, 339, 349, 337, 315) |
141 | −23.9336 | 67.8008 | −31.3889 | 323 | −8.5824 | 29.4733 | −8.2908 | (283, 284, 324, 342, 354, 340, 317) |
142 | 41.5047 | 3.0957 | 36.4244 | 324 | −10.8927 | 60.9117 | 24.7830 | (294, 323, 341, 353, 352, 327, 295) |
143 | 29.2064 | 29.2064 | 29.2064 | 325 | 18.3687 | −4.7532 | 16.1405 | (296, 310, 333, 345, 346, 328, 297) |
144 | −36.5518 | 0.2076 | −65.8707 | 326 | 3.0957 | −36.4244 | −41.5047 | (300, 325, 343, 355, 345, 333, 301) |
145 | −21.8571 | −27.0448 | 25.4592 | 327 | 4.2140 | −0.2406 | −29.0699 | (302, 326, 344, 356, 350, 334, 303) |
146 | −31.5091 | −27.5108 | 18.9022 | 328 | 65.7888 | 20.0361 | −24.0362 | (304, 327, 352, 357, 347, 335, 305) |
147 | 8.5824 | −29.4733 | −8.2908 | 329 | 28.2053 | 1.7439 | 4.1118 | (306, 328, 346, 358, 348, 336, 307) |
148 | −15.9166 | −49.6772 | 8.7774 | 330 | 22.7092 | −3.4293 | 7.0559 | (311, 312, 334, 350, 351, 338, 316) |
149 | −17.5008 | −63.6127 | −14.8065 | 331 | 36.4244 | −41.5047 | −3.0957 | (318, 337, 349, 359, 353, 341, 319) |
150 | −21.8571 | 27.0448 | −25.4592 | 332 | 49.4394 | −29.2379 | 6.1465 | (320, 338, 351, 360, 354, 342, 321) |
151 | −31.5091 | 27.5108 | −18.9022 | 333 | 66.1050 | 17.2187 | −28.5880 | (329, 330, 347, 357, 361, 355, 343) |
152 | −28.7893 | 25.0138 | −13.8676 | 334 | −4.7627 | −10.3655 | −61.3791 | (331, 332, 348, 358, 362, 356, 344) |
153 | 4.7627 | −10.3655 | 61.3791 | 335 | 28.2053 | −1.7439 | −4.1118 | (339, 340, 354, 360, 363, 359, 349) |
154 | 14.8065 | −17.5008 | 63.6127 | 336 | 57.8118 | −28.0172 | 2.5586 | (345, 355, 361, 364, 362, 358, 346) |
155 | 24.0362 | −65.7888 | 20.0361 | 337 | −4.1118 | 28.2053 | −1.7439 | (350, 356, 362, 364, 363, 360, 351) |
156 | 10.8927 | −60.9117 | 24.7830 | 338 | 13.8676 | 28.7893 | 25.0138 | (352, 353, 359, 363, 364, 361, 357) |
157 | 1.7439 | −4.1118 | −28.2053 | 339 | 0.2406 | 29.0699 | 4.2140 | |
158 | −6.9099 | −12.2991 | −21.3400 | 340 | 4.6752 | 31.8784 | 3.9711 | |
159 | −36.4244 | −41.5047 | 3.0957 | 341 | −4.6752 | 31.8783 | −3.9711 | |
160 | −4.3995 | −58.2855 | −33.7344 | 342 | 12.7182 | 25.9158 | 10.8853 | |
161 | −23.9206 | 23.9206 | −23.9206 | 343 | 21.3400 | −6.9099 | 12.2991 | |
162 | −27.0448 | 25.4592 | −21.8571 | 344 | 29.2064 | −29.2064 | −29.2064 | |
163 | 66.1383 | −17.1856 | 39.5239 | 345 | 25.9158 | 10.8853 | 12.7182 | |
164 | 66.6446 | −21.3097 | 27.9408 | 346 | 60.9117 | 24.7830 | −10.8927 | |
165 | 63.7264 | −0.9660 | −37.1773 | 347 | 22.7092 | 3.4293 | −7.0559 | |
166 | 63.7264 | 0.9660 | 37.1773 | 348 | 61.3791 | 4.7627 | −10.3655 | |
167 | 66.1050 | −17.2187 | 28.5880 | 349 | −7.0559 | 22.7092 | 3.4293 | |
168 | −18.9022 | −31.5091 | 27.5108 | 350 | 29.2379 | 6.1465 | −49.4394 | |
169 | −25.4592 | −21.8571 | 27.0448 | 351 | 16.1405 | 18.3687 | −4.7532 | |
170 | −20.0361 | −24.0362 | −65.7888 | 352 | 12.6260 | 12.6261 | −12.6261 | |
171 | −33.7344 | −4.3995 | −58.2855 | 353 | −0.2406 | 29.0699 | −4.2140 | |
172 | −23.9206 | −23.9206 | 23.9206 | 354 | 5.2523 | 30.6122 | 2.8284 | |
173 | 49.6772 | 8.7774 | 15.9166 | 355 | 30.6122 | 2.8284 | 5.2523 | |
174 | 29.4733 | −8.2908 | −8.5824 | 356 | 41.5047 | −3.0957 | −36.4244 | |
175 | −17.1856 | 39.5239 | 66.1383 | 357 | 29.0699 | 4.2140 | 0.2406 | |
176 | −21.3097 | 27.9408 | 66.6446 | 358 | 63.6127 | 14.8065 | −17.5008 | |
177 | −0.2406 | −29.0699 | 4.2140 | 359 | 7.0559 | 22.7092 | −3.4293 | |
178 | −4.6752 | −31.8783 | 3.9711 | 360 | 12.2991 | 21.3400 | −6.9099 | |
179 | 28.7893 | −25.0138 | −13.8676 | 361 | 31.8784 | 3.9711 | 4.6752 | |
180 | 65.8707 | −36.5518 | −0.2076 | 362 | 49.6772 | −8.7774 | −15.9166 | |
181 | −65.7888 | 20.0361 | 24.0362 | 363 | 4.1118 | 28.2053 | 1.7439 | |
182 | −60.9117 | 24.7830 | 10.8927 | 364 | 29.4733 | 8.2908 | 8.5824 | |
Face Permutation Groups | ||||||||
(1, 100) (2, 109) (3, 138) (4, 61) (5, 124) (6, 89) (7, 156) (8, 92) (9, 127) (10, 116) | ||||||||
(11, 81) (12, 37) (13, 67) (14, 117) (15, 148) (16, 79) (17, 68) (18, 145) (19, 155) (20, 42) | ||||||||
(21, 88) (22, 149) (23, 24) (25, 150) (26, 27) (28, 49) (29, 154) (30, 93) (31, 106) (32, 75) | ||||||||
(33, 46) (34, 140) (35, 136) (36, 45) (38, 72) (39, 103) (40, 134) (41, 51) (43, 135) (44, 119) | ||||||||
(47, 114) (48, 131) (50, 153) (52, 132) (53, 130) (54, 102) (55, 151) (56, 78) (57, 84) (58, 64) | ||||||||
(59, 69) (60, 152) (62, 107) (63, 121) (65, 111) (66, 143) (70, 146) (71, 85) (73, 120) (74, 113) | ||||||||
(76, 96) (77, 147) (80, 133) (82, 142) (83, 98) (86, 112) (87, 94) (90, 139) (91, 137) (95, 97) | ||||||||
(99, 123) (101, 141) (104, 105) (108, 144) (110, 128) (115, 126) (118, 125) (122, 129) | ||||||||
(1, 39, 79) (2, 17, 12) (3, 69, 21) (4, 9, 27) (5, 47, 45) (6, 93, 68) (7, 104, 40) (8, 63, 106) | ||||||||
(10, 18, 56) (11, 37, 30) (13, 96, 124) (14, 33, 26) (15, 128, 64) (16, 52, 41) (19, 77, 66) (20, 58, 130) | ||||||||
(22, 55, 99) (23, 88, 84) (24, 135, 138) (25, 65, 78) (28, 117, 127) (29, 122, 44) (31, 82, 98) (32, 132, 103) | ||||||||
(34, 142, 121) (35, 119, 48) (36, 112, 67) (38, 95, 71) (42, 120, 148) (43, 57, 59) (46, 49, 61) (50, 90, 123) | ||||||||
(51, 75, 100) (53, 110, 73) (54, 150, 145) (60, 146, 97) (62, 134, 74) (70, 137, 85) (72, 91, 152) (76, 86, 114) | ||||||||
(80, 141, 147) (81, 89, 109) (83, 140, 92) (87, 153, 151) (94, 149, 139) (101, 118, 143) (102, 116, 111) (105, 108, 113) | ||||||||
(107, 144, 156) (115, 154, 136) (125, 133, 155) (126, 131, 129) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Triangles | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 7 | −1 | 42 | 79 | 16 | −6 | −45 | (1, 2, 3) | (1, 3, 20) | (1, 13, 51) | (1, 20, 43) |
2 | 2 | −13 | 22 | 80 | 12 | −3 | −28 | (1, 21, 2) | (1, 43, 13) | (1, 51, 21) | (2, 6, 34) |
3 | 10 | −3 | 14 | 81 | 13 | 22 | −2 | (2, 21, 42) | (2, 30, 3) | (2, 34, 30) | (2, 42, 6) |
4 | −3 | −4 | −41 | 82 | −16 | 6 | −45 | (3, 12, 33) | (3, 30, 60) | (3, 33, 20) | (3, 60, 12) |
5 | −28 | 12 | −3 | 83 | 42 | −7 | 1 | (4, 10, 14) | (4, 12, 50) | (4, 14, 12) | (4, 17, 19) |
6 | −37 | −35 | −27 | 84 | −2 | −2 | −16 | (4, 19, 10) | (4, 50, 66) | (4, 66, 17) | (5, 6, 31) |
7 | −35 | −27 | −37 | 85 | 0 | −12 | 7 | (5, 7, 6) | (5, 15, 7) | (5, 18, 29) | (5, 29, 15) |
8 | 35 | −27 | 37 | 86 | 14 | 10 | −3 | (5, 31, 67) | (5, 67, 18) | (6, 7, 45) | (6, 42, 31) |
9 | 27 | −37 | 35 | 87 | −12 | 3 | −28 | (6, 45, 34) | (7, 15, 22) | (7, 17, 80) | (7, 22, 17) |
10 | −7 | 0 | −12 | 88 | −12 | −7 | 0 | (7, 80, 45) | (8, 9, 16) | (8, 11, 9) | (8, 13, 11) |
11 | −12 | −3 | 28 | 89 | 2 | 41 | 23 | (8, 16, 18) | (8, 18, 81) | (8, 61, 13) | (8, 81, 61) |
12 | 7 | 0 | −12 | 90 | 26 | −10 | 6 | (9, 11, 25) | (9, 23, 38) | (9, 25, 35) | (9, 35, 23) |
13 | 13 | −12 | 50 | 91 | 3 | 28 | 12 | (9, 38, 16) | (10, 19, 36) | (10, 24, 14) | (10, 26, 39) |
14 | 3 | 4 | −41 | 92 | 0 | 12 | 7 | (10, 36, 26) | (10, 39, 24) | (11, 13, 32) | (11, 27, 25) |
15 | −13 | 22 | 2 | 93 | 10 | 6 | −26 | (11, 32, 87) | (11, 87, 27) | (12, 14, 44) | (12, 44, 33) |
16 | 37 | −35 | 27 | 94 | 13 | 12 | −50 | (12, 60, 50) | (13, 43, 32) | (13, 61, 51) | (14, 24, 27) |
17 | −13 | −12 | −50 | 95 | −12 | 7 | 0 | (14, 27, 94) | (14, 94, 44) | (15, 28, 57) | (15, 29, 54) |
18 | 28 | 12 | 3 | 96 | −6 | 26 | 10 | (15, 54, 28) | (15, 57, 22) | (16, 38, 40) | (16, 40, 100) |
19 | −7 | −1 | −42 | 97 | −7 | 1 | 42 | (16, 48, 18) | (16, 100, 48) | (17, 22, 47) | (17, 47, 19) |
20 | 7 | 0 | 12 | 98 | −4 | 41 | 3 | (17, 66, 80) | (18, 48, 29) | (18, 67, 81) | (19, 40, 36) |
21 | 6 | −26 | 10 | 99 | −41 | 23 | −2 | (19, 47, 109) | (19, 109, 40) | (20, 33, 75) | (20, 41, 72) |
22 | −45 | 16 | −6 | 100 | 6 | −45 | −16 | (20, 72, 43) | (20, 75, 41) | (21, 51, 74) | (21, 52, 90) |
23 | 12 | −50 | 13 | 101 | 22 | −2 | 13 | (21, 74, 52) | (21, 90, 42) | (22, 53, 99) | (22, 57, 53) |
24 | −10 | 5 | 4 | 102 | 4 | 10 | −5 | (22, 99, 47) | (23, 35, 76) | (23, 70, 38) | (23, 76, 113) |
25 | −22 | 2 | 13 | 103 | −41 | −23 | 2 | (23, 112, 70) | (23, 113, 112) | (24, 39, 58) | (24, 58, 114) |
26 | −10 | 3 | 14 | 104 | −10 | −5 | −4 | (24, 63, 27) | (24, 114, 63) | (25, 27, 63) | (25, 53, 35) |
27 | −16 | 2 | 2 | 105 | 2 | 13 | −22 | (25, 63, 119) | (25, 119, 53) | (26, 36, 77) | (26, 71, 39) |
28 | −1 | 42 | 7 | 106 | −12 | −50 | −13 | (26, 77, 97) | (26, 97, 120) | (26, 120, 71) | (27, 87, 94) |
29 | −2 | 16 | 2 | 107 | 16 | 2 | −2 | (28, 54, 92) | (28, 89, 57) | (28, 92, 98) | (28, 98, 111) |
30 | 2 | −2 | 16 | 108 | 1 | 42 | −7 | (28, 111, 89) | (29, 48, 110) | (29, 58, 54) | (29, 110, 58) |
31 | −50 | −13 | −12 | 109 | −6 | −26 | −10 | (30, 34, 91) | (30, 59, 73) | (30, 73, 60) | (30, 91, 59) |
32 | −16 | −2 | −2 | 110 | 41 | −3 | 4 | (31, 42, 103) | (31, 56, 67) | (31, 68, 56) | (31, 103, 68) |
33 | 10 | 3 | −14 | 111 | −12 | 50 | 13 | (32, 43, 104) | (32, 49, 87) | (32, 69, 49) | (32, 104, 69) |
34 | −3 | −28 | 12 | 112 | 4 | −41 | 3 | (33, 44, 105) | (33, 70, 75) | (33, 105, 70) | (34, 45, 106) |
35 | −16 | −6 | 45 | 113 | 1 | −42 | 7 | (34, 71, 91) | (34, 106, 71) | (35, 53, 96) | (35, 96, 121) |
36 | −10 | −3 | −14 | 114 | 12 | 7 | 0 | (35, 121, 76) | (36, 40, 84) | (36, 84, 122) | (36, 122, 77) |
37 | 14 | −10 | 3 | 115 | 27 | 37 | −35 | (37, 50, 88) | (37, 66, 50) | (37, 69, 128) | (37, 83, 101) |
38 | 3 | −28 | −12 | 116 | 4 | −10 | 5 | (37, 88, 69) | (37, 101, 66) | (37, 128, 83) | (38, 70, 129) |
39 | −5 | 4 | 10 | 117 | 41 | 23 | 2 | (38, 84, 40) | (38, 129, 84) | (39, 71, 130) | (39, 85, 58) |
40 | −2 | −13 | −22 | 118 | 45 | −16 | −6 | (39, 130, 85) | (40, 109, 100) | (41, 75, 102) | (41, 86, 107) |
41 | 10 | 5 | −4 | 119 | −42 | 7 | 1 | (41, 95, 86) | (41, 102, 95) | (41, 107, 72) | (42, 76, 103) |
42 | −6 | −45 | 16 | 120 | −2 | 13 | 22 | (42, 90, 76) | (43, 72, 77) | (43, 77, 104) | (44, 62, 78) |
43 | 3 | −4 | 41 | 121 | −23 | −2 | 41 | (44, 78, 105) | (44, 94, 62) | (45, 55, 79) | (45, 79, 106) |
44 | 7 | 1 | −42 | 122 | −5 | −4 | −10 | (45, 80, 55) | (46, 61, 81) | (46, 64, 123) | (46, 78, 93) |
45 | −27 | −37 | −35 | 123 | −6 | 45 | −16 | (46, 81, 108) | (46, 93, 61) | (46, 108, 64) | (46, 123, 78) |
46 | 26 | 10 | −6 | 124 | 2 | −41 | −23 | (47, 64, 82) | (47, 82, 109) | (47, 99, 64) | (48, 65, 83) |
47 | −23 | 2 | −41 | 125 | 12 | 3 | 28 | (48, 83, 110) | (48, 100, 65) | (49, 68, 127) | (49, 69, 68) |
48 | 50 | −13 | 12 | 126 | 3 | 14 | −10 | (49, 82, 115) | (49, 115, 87) | (49, 127, 82) | (50, 60, 116) |
49 | −22 | −2 | −13 | 127 | −10 | −6 | −26 | (50, 116, 88) | (51, 61, 117) | (51, 89, 74) | (51, 117, 89) |
50 | 10 | −5 | 4 | 128 | 12 | −7 | 0 | (52, 65, 118) | (52, 74, 101) | (52, 83, 65) | (52, 101, 83) |
51 | 23 | 2 | 41 | 129 | −3 | 28 | −12 | (52, 118, 90) | (53, 57, 96) | (53, 119, 99) | (54, 58, 85) |
52 | 10 | −6 | 26 | 130 | −4 | −41 | −3 | (54, 85, 131) | (54, 131, 92) | (55, 80, 107) | (55, 86, 132) |
53 | −10 | 6 | 26 | 131 | 3 | −14 | 10 | (55, 93, 79) | (55, 107, 86) | (55, 132, 93) | (56, 68, 88) |
54 | −3 | 14 | 10 | 132 | 42 | 7 | −1 | (56, 88, 134) | (56, 95, 102) | (56, 102, 67) | (56, 134, 95) |
55 | 22 | 2 | −13 | 133 | 35 | 27 | −37 | (57, 89, 135) | (57, 135, 96) | (58, 110, 114) | (59, 64, 108) |
56 | −41 | −3 | −4 | 134 | −41 | 3 | 4 | (59, 82, 64) | (59, 91, 115) | (59, 108, 73) | (59, 115, 82) |
57 | −26 | 10 | 6 | 135 | 6 | 45 | 16 | (60, 73, 92) | (60, 92, 116) | (61, 93, 117) | (62, 65, 124) |
58 | −4 | 10 | 5 | 136 | −13 | 12 | 50 | (62, 79, 78) | (62, 94, 118) | (62, 118, 65) | (62, 124, 79) |
59 | 12 | 50 | −13 | 137 | 0 | 12 | −7 | (63, 86, 95) | (63, 95, 119) | (63, 114, 86) | (64, 99, 123) |
60 | 5 | −4 | 10 | 138 | −26 | −10 | −6 | (65, 100, 124) | (66, 101, 125) | (66, 125, 80) | (67, 102, 126) |
61 | 45 | 16 | 6 | 139 | −27 | 37 | 35 | (67, 126, 81) | (68, 69, 88) | (68, 103, 127) | (69, 104, 128) |
62 | 23 | −2 | −41 | 140 | 0 | −12 | −7 | (70, 105, 129) | (70, 112, 75) | (71, 106, 130) | (71, 120, 91) |
63 | −14 | 10 | 3 | 141 | 13 | −22 | 2 | (72, 97, 77) | (72, 107, 136) | (72, 136, 97) | (73, 98, 92) |
64 | −2 | 41 | −23 | 142 | 41 | 3 | −4 | (73, 108, 137) | (73, 137, 98) | (74, 89, 111) | (74, 111, 139) |
65 | 41 | −23 | −2 | 143 | −50 | 13 | 12 | (74, 139, 101) | (75, 112, 140) | (75, 140, 102) | (76, 90, 113) |
66 | 16 | −2 | 2 | 144 | 37 | 35 | −27 | (76, 121, 103) | (77, 122, 104) | (78, 79, 93) | (78, 123, 105) |
67 | 2 | 16 | −2 | 145 | −45 | −16 | 6 | (79, 124, 106) | (80, 125, 107) | (81, 126, 108) | (82, 127, 109) |
68 | −42 | −7 | −1 | 146 | −4 | −10 | −5 | (83, 128, 110) | (84, 98, 122) | (84, 111, 98) | (84, 129, 111) |
69 | −14 | −10 | −3 | 147 | −37 | 35 | 27 | (85, 112, 113) | (85, 113, 131) | (85, 130, 112) | (86, 114, 132) |
70 | 2 | 2 | −16 | 148 | −1 | −42 | −7 | (87, 115, 133) | (87, 133, 94) | (88, 116, 134) | (89, 117, 135) |
71 | −2 | 2 | 16 | 149 | 2 | −16 | 2 | (90, 118, 141) | (90, 141, 113) | (91, 120, 144) | (91, 144, 115) |
72 | −3 | 4 | 41 | 150 | 50 | 13 | −12 | (92, 131, 116) | (93, 132, 117) | (94, 133, 118) | (95, 134, 119) |
73 | 4 | 41 | −3 | 151 | −35 | 27 | 37 | (96, 97, 121) | (96, 120, 97) | (96, 135, 120) | (97, 136, 121) |
74 | 16 | 6 | 45 | 152 | −3 | −14 | −10 | (98, 137, 122) | (99, 119, 143) | (99, 143, 123) | (100, 109, 138) |
75 | 5 | 4 | −10 | 153 | 28 | −12 | −3 | (100, 138, 124) | (101, 139, 125) | (102, 140, 126) | (103, 121, 145) |
76 | −2 | −41 | 23 | 154 | −2 | −16 | −2 | (103, 145, 127) | (104, 122, 146) | (104, 146, 128) | (105, 123, 147) |
77 | −7 | 0 | 12 | 155 | −28 | −12 | 3 | (105, 147, 129) | (106, 124, 148) | (106, 148, 130) | (107, 125, 136) |
78 | 6 | 26 | −10 | 156 | −13 | −22 | −2 | (108, 126, 137) | (109, 127, 138) | (110, 128, 142) | (110, 142, 114) |
(111, 129, 139) | (112, 130, 140) | (113, 141, 131) | (114, 142, 132) | ||||||||
(115, 144, 133) | (116, 131, 149) | (116, 149, 134) | (117, 132, 150) | ||||||||
(117, 150, 135) | (118, 133, 141) | (119, 134, 143) | (120, 135, 144) | ||||||||
(121, 136, 145) | (122, 137, 146) | (123, 143, 147) | (124, 138, 148) | ||||||||
(125, 139, 151) | (125, 151, 136) | (126, 140, 152) | (126, 152, 137) | ||||||||
(127, 145, 138) | (128, 146, 142) | (129, 147, 139) | (130, 148, 140) | ||||||||
(131, 141, 149) | (132, 142, 150) | (133, 144, 153) | (133, 153, 141) | ||||||||
(134, 149, 143) | (135, 150, 144) | (136, 151, 145) | (137, 152, 146) | ||||||||
(138, 145, 156) | (138, 156, 148) | (139, 147, 151) | (140, 148, 152) | ||||||||
(141, 153, 149) | (142, 146, 154) | (142, 154, 150) | (143, 149, 155) | ||||||||
(143, 155, 147) | (144, 150, 153) | (145, 151, 156) | (146, 152, 154) | ||||||||
(147, 155, 151) | (148, 156, 152) | (149, 153, 155) | (150, 154, 153) | ||||||||
(151, 155, 156) | (152, 156, 154) | (153, 154, 155) | (154, 156, 155) | ||||||||
Vertex Permutation Groups | |||||||||||
(1, 97) (2, 120) (3, 26) (4, 14) (5, 153) (6, 144) (7, 133) (8, 151) (9, 139) (10, 12) | |||||||||||
(11, 125) (13, 136) (15, 141) (16, 147) (17, 94) (18, 155) (19, 44) (20, 77) (21, 96) (22, 118) | |||||||||||
(23, 111) (24, 50) (25, 101) (27, 66) (28, 113) (29, 149) (30, 71) (31, 150) (32, 107) (33, 36) | |||||||||||
(34, 91) (35, 74) (37, 63) (38, 129) (39, 60) (40, 105) (41, 104) (42, 135) (43, 72) (45, 115) | |||||||||||
(46, 138) (47, 62) (48, 143) (49, 55) (51, 121) (52, 53) (54, 131) (56, 142) (57, 90) (58, 116) | |||||||||||
(59, 106) (61, 145) (64, 124) (65, 99) (67, 154) (68, 132) (69, 86) (70, 84) (73, 130) (75, 122) | |||||||||||
(76, 89) (78, 109) (79, 82) (80, 87) (81, 156) (83, 119) (85, 92) (88, 114) (93, 127) (95, 128) | |||||||||||
(98, 112) (100, 123) (102, 146) (103, 117) (108, 148) (110, 134) (126, 152) (137, 140) | |||||||||||
(1, 28, 132) (2, 15, 55) (3, 54, 86) (4, 130, 56) (5, 80, 34) (6, 7, 45) (8, 139, 144) (9, 147, 133) | |||||||||||
(10, 140, 88) (11, 129, 153) (12, 85, 95) (13, 111, 150) (14, 112, 134) (16, 151, 115) (17, 106, 31) (18, 125, 91) | |||||||||||
(19, 148, 68) (20, 92, 114) (21, 57, 93) (22, 79, 42) (23, 143, 94) (24, 75, 116) (25, 105, 141) (26, 126, 37) | |||||||||||
(27, 70, 149) (29, 107, 30) (32, 84, 154) (33, 131, 63) (35, 123, 118) (36, 152, 69) (38, 155, 87) (39, 102, 50) | |||||||||||
(40, 156, 49) (41, 60, 58) (43, 98, 142) (44, 113, 119) (46, 52, 96) (47, 124, 103) (48, 136, 59) (51, 89, 117) | |||||||||||
(53, 78, 90) (61, 74, 135) (62, 76, 99) (64, 65, 121) (66, 71, 67) (72, 73, 110) (77, 137, 128) (81, 101, 120) | |||||||||||
(82, 100, 145) (83, 97, 108) (104, 122, 146) (109, 138, 127) |
Vertex | X | Y | Z | Vertex | X | Y | Z | Polygons |
---|---|---|---|---|---|---|---|---|
1 | 21.4177 | −3.6598 | 31.8517 | 183 | −17.9964 | −19.3042 | 61.1346 | (1, 2, 7, 5, 4, 6, 3) |
2 | 16.6072 | −4.0898 | 33.1114 | 184 | −40.8005 | 51.7478 | 20.3949 | (1, 3, 15, 13, 14, 16, 8) |
3 | 23.9611 | −13.7842 | −62.0303 | 185 | −19.2334 | 59.5177 | −31.9562 | (1, 8, 12, 9, 10, 11, 2) |
4 | −52.2105 | −20.8178 | −44.1150 | 186 | −44.1150 | 52.2105 | 20.8178 | (2, 11, 87, 90, 89, 88, 7) |
5 | −51.7478 | −20.3949 | −40.8005 | 187 | −31.8517 | −21.4177 | −3.6598 | (3, 6, 86, 84, 85, 83, 15) |
6 | −4.0698 | −18.8954 | −78.1554 | 188 | −33.1114 | −16.6072 | −4.0898 | (4, 5, 63, 41, 40, 55, 62) |
7 | 20.6979 | −13.9415 | −59.9652 | 189 | −48.8637 | −18.6302 | 53.5041 | (4, 62, 129, 167, 166, 86, 6) |
8 | 7.7959 | −28.2938 | 28.7781 | 190 | −31.1563 | −9.2795 | −18.4051 | (5, 7, 88, 195, 196, 194, 63) |
9 | 16.1921 | 56.9874 | 50.5519 | 191 | −50.5519 | −16.1921 | 56.9874 | (8, 16, 124, 122, 123, 121, 12) |
10 | 18.6302 | 53.5041 | 48.8638 | 192 | 21.9910 | −21.9910 | 21.9910 | (9, 12, 121, 137, 138, 136, 33) |
11 | 9.2795 | −18.4051 | 31.1563 | 193 | 35.0540 | −12.1578 | 24.0295 | (9, 33, 31, 24, 25, 32, 10) |
12 | −0.9243 | −33.9832 | 29.6692 | 194 | −63.9625 | 26.9536 | −19.7522 | (10, 32, 125, 165, 164, 87, 11) |
13 | 26.2816 | 8.8699 | 56.9010 | 195 | 26.9536 | −19.7522 | −63.9625 | (13, 15, 83, 134, 135, 133, 60) |
14 | 11.1685 | −20.8514 | 38.1558 | 196 | −52.3780 | −52.3780 | −52.3780 | (13, 60, 59, 19, 20, 61, 14) |
15 | 26.2816 | −8.8699 | −56.9010 | 197 | −59.9652 | −20.6979 | 13.9415 | (14, 61, 192, 226, 225, 124, 16) |
16 | 4.1872 | −32.6368 | 41.9679 | 198 | −61.1346 | −17.9964 | 19.3041 | (17, 18, 21, 22, 23, 20, 19) |
17 | −0.2999 | −24.6705 | 81.1942 | 199 | 31.1563 | −9.2795 | 18.4051 | (17, 19, 59, 66, 65, 64, 50) |
18 | 4.0698 | −18.8954 | 78.1554 | 200 | 33.1114 | −16.6072 | 4.0898 | (17, 50, 52, 54, 53, 51, 18) |
19 | 0.2999 | 24.6705 | 81.1942 | 201 | 22.7654 | −15.2838 | 8.5687 | (18, 51, 80, 81, 82, 75, 21) |
20 | 51.8299 | 7.0753 | 44.6237 | 202 | −13.5708 | 13.5708 | 13.5708 | (20, 23, 145, 146, 193, 192, 61) |
21 | 52.2105 | −20.8178 | 44.1150 | 203 | 59.9652 | 20.6979 | 13.9415 | (21, 75, 76, 35, 36, 77, 22) |
22 | 57.2395 | 4.8863 | 40.7816 | 204 | −20.8514 | 38.1558 | 11.1685 | (22, 77, 238, 239, 147, 145, 23) |
23 | 54.7230 | 8.3399 | 42.5898 | 205 | 8.8699 | 56.9010 | 26.2816 | (24, 26, 27, 28, 29, 30, 25) |
24 | 50.8263 | 56.7792 | 12.1979 | 206 | −8.8699 | −56.9010 | 26.2816 | (24, 31, 37, 36, 35, 34, 26) |
25 | 51.0267 | 60.2731 | 10.9565 | 207 | 31.1563 | 9.2795 | −18.4051 | (25, 30, 126, 127, 128, 125, 32) |
26 | 56.9874 | 50.5519 | 16.1921 | 208 | 29.6692 | −0.9243 | −33.9832 | (26, 34, 67, 69, 68, 70, 27) |
27 | −33.9832 | 29.6692 | −0.9243 | 209 | 28.7781 | 7.7959 | −28.2938 | (27, 70, 119, 120, 118, 78, 28) |
28 | −44.6623 | 52.2139 | −12.2069 | 210 | 31.8517 | 21.4177 | −3.6598 | (28, 78, 71, 42, 43, 79, 29) |
29 | 44.6623 | 52.2139 | 12.2069 | 211 | 33.1114 | 16.6072 | −4.0898 | (29, 79, 240, 241, 212, 126, 30) |
30 | 44.0157 | 58.8021 | 9.5860 | 212 | 42.5898 | 54.7230 | 8.3399 | (31, 33, 136, 173, 171, 172, 37) |
31 | 35.4601 | 35.4601 | 35.4601 | 213 | 78.1555 | 4.0698 | −18.8954 | (34, 35, 76, 91, 93, 92, 67) |
32 | 19.7340 | 62.4434 | 45.0319 | 214 | 81.1942 | −0.2999 | −24.6705 | (36, 37, 172, 208, 266, 238, 77) |
33 | 12.1980 | 50.8263 | 56.7792 | 215 | 44.6236 | 51.8299 | 7.0753 | (38, 39, 46, 48, 47, 49, 45) |
34 | 53.5041 | 48.8638 | 18.6302 | 216 | 81.1942 | 0.2999 | 24.6705 | (38, 40, 41, 44, 43, 42, 39) |
35 | 62.4434 | 45.0320 | 19.7340 | 217 | −19.3041 | −61.1346 | 17.9964 | (38, 45, 56, 57, 58, 55, 40) |
36 | 60.2731 | 10.9565 | 51.0267 | 218 | −8.5687 | 22.7654 | 15.2838 | (39, 42, 71, 74, 73, 72, 46) |
37 | 56.7792 | 12.1980 | 50.8263 | 219 | −44.6237 | 51.8299 | −7.0753 | (41, 63, 194, 227, 175, 174, 44) |
38 | −56.7792 | 12.1980 | −50.8263 | 220 | −31.9562 | −19.2334 | 59.5177 | (43, 44, 174, 180, 267, 240, 79) |
39 | −35.4601 | 35.4601 | −35.4601 | 221 | 20.3949 | −40.8005 | 51.7478 | (45, 49, 104, 105, 106, 103, 56) |
40 | −60.2731 | 10.9565 | −51.0267 | 222 | 20.8178 | −44.1150 | 52.2105 | (46, 72, 152, 154, 153, 95, 48) |
41 | −62.4434 | 45.0320 | −19.7340 | 223 | −45.0319 | −19.7340 | 62.4434 | (47, 48, 95, 96, 98, 97, 94) |
42 | −50.8263 | 56.7792 | −12.1979 | 224 | −10.9565 | −51.0267 | 60.2731 | (47, 94, 140, 141, 139, 104, 49) |
43 | −56.9874 | 50.5519 | −16.1921 | 225 | −7.0753 | −44.6237 | 51.8299 | (50, 64, 99, 102, 101, 100, 52) |
44 | −53.5041 | 48.8638 | −18.6302 | 226 | 24.0295 | −35.0540 | 12.1578 | (51, 53, 107, 143, 144, 142, 80) |
45 | −50.5519 | 16.1921 | −56.9874 | 227 | −61.1346 | 17.9964 | −19.3041 | (52, 100, 155, 157, 156, 108, 54) |
46 | −12.1980 | 50.8263 | −56.7792 | 228 | −63.9625 | −26.9536 | 19.7522 | (53, 54, 108, 109, 111, 110, 107) |
47 | −45.0319 | 19.7340 | −62.4434 | 229 | −52.3780 | 52.3780 | 52.3780 | (55, 58, 131, 130, 132, 129, 62) |
48 | −10.9565 | 51.0267 | −60.2731 | 230 | 17.9964 | 19.3042 | 61.1346 | (56, 103, 99, 64, 65, 112, 57) |
49 | −48.8637 | 18.6302 | −53.5041 | 231 | 26.9536 | 19.7522 | 63.9625 | (57, 112, 277, 278, 191, 131, 58) |
50 | −51.8299 | −7.0753 | 44.6237 | 232 | −59.5177 | −31.9562 | 19.2334 | (59, 60, 133, 170, 168, 169, 66) |
51 | −23.9611 | −13.7842 | 62.0303 | 233 | 56.9010 | 26.2816 | 8.8699 | (65, 66, 169, 232, 287, 277, 112) |
52 | −12.1578 | 24.0295 | 35.0540 | 234 | −56.9010 | 26.2816 | −8.8699 | (67, 92, 202, 218, 217, 114, 69) |
53 | −26.2816 | −8.8699 | 56.9010 | 235 | 62.0303 | 23.9611 | 13.7842 | (68, 69, 114, 115, 117, 116, 113) |
54 | −11.1685 | 20.8514 | 38.1558 | 236 | 19.7522 | −63.9625 | −26.9536 | (68, 113, 206, 205, 204, 119, 70) |
55 | −58.8021 | 9.5860 | −44.0157 | 237 | −19.7522 | 63.9625 | −26.9536 | (71, 78, 118, 186, 184, 185, 74) |
56 | −29.6692 | −0.9243 | 33.9832 | 238 | 52.2139 | 12.2069 | 44.6623 | (72, 73, 158, 81, 80, 142, 152) |
57 | −52.2139 | −12.2069 | 44.6623 | 239 | 29.6692 | 0.9243 | 33.9832 | (73, 74, 185, 237, 297, 296, 158) |
58 | −52.2139 | 12.2069 | −44.6623 | 240 | 28.2938 | 28.7781 | −7.7959 | (75, 82, 183, 181, 182, 91, 76) |
59 | −4.0698 | 18.8954 | 78.1555 | 241 | 32.6368 | 41.9679 | −4.1872 | (81, 158, 296, 310, 268, 183, 82) |
60 | 23.9611 | 13.7842 | 62.0303 | 242 | 62.0303 | −23.9611 | −13.7842 | (83, 85, 160, 258, 259, 245, 134) |
61 | 12.1578 | −24.0295 | 35.0540 | 243 | 59.9652 | −20.6979 | −13.9415 | (84, 86, 166, 249, 250, 251, 159) |
62 | −57.2395 | 4.8863 | −40.7816 | 244 | −38.1558 | −11.1685 | −20.8514 | (84, 159, 162, 161, 163, 160, 85) |
63 | −59.5177 | 31.9562 | −19.2334 | 245 | −8.3399 | 42.5898 | −54.7230 | (87, 164, 260, 281, 282, 201, 90) |
64 | −54.7230 | −8.3399 | 42.5898 | 246 | −0.9243 | 33.9832 | −29.6692 | (88, 89, 199, 256, 257, 255, 195) |
65 | −57.2395 | −4.8863 | 40.7816 | 247 | 0.9243 | 33.9832 | 29.6692 | (89, 90, 201, 198, 197, 200, 199) |
66 | −52.2105 | 20.8178 | 44.1150 | 248 | 4.8863 | 40.7815 | 57.2395 | (91, 182, 236, 295, 294, 203, 93) |
67 | −18.4051 | 31.1563 | 9.2795 | 249 | 4.0698 | 18.8954 | −78.1554 | (92, 93, 203, 105, 104, 139, 202) |
68 | −3.6598 | 31.8517 | 21.4177 | 250 | 52.2105 | 20.8178 | −44.1150 | (94, 97, 260, 164, 165, 261, 140) |
69 | −4.0898 | 33.1114 | 16.6072 | 251 | 57.2395 | −4.8863 | −40.7816 | (95, 153, 246, 135, 134, 245, 96) |
70 | −28.2938 | 28.7781 | 7.7959 | 252 | −24.6705 | −81.1942 | 0.2999 | (96, 245, 259, 314, 274, 273, 98) |
71 | −51.0267 | 60.2731 | −10.9565 | 253 | 24.6705 | −81.1942 | −0.2999 | (97, 98, 273, 275, 315, 281, 260) |
72 | −16.1921 | 56.9874 | −50.5519 | 254 | 18.8954 | −78.1555 | 4.0698 | (99, 103, 106, 235, 233, 234, 102) |
73 | −18.6302 | 53.5041 | −48.8638 | 255 | 31.9562 | −19.2334 | −59.5177 | (100, 101, 219, 120, 119, 204, 155) |
74 | −19.7340 | 62.4434 | −45.0319 | 256 | 48.8638 | −18.6302 | −53.5041 | (101, 102, 234, 276, 316, 311, 219) |
75 | 51.7478 | −20.3949 | 40.8005 | 257 | 45.0319 | −19.7340 | −62.4434 | (105, 203, 294, 323, 288, 235, 106) |
76 | 59.5177 | 31.9562 | 19.2334 | 258 | 24.0295 | 35.0540 | −12.1578 | (107, 110, 249, 166, 167, 262, 143) |
77 | 58.8021 | 9.5860 | 44.0157 | 259 | −7.0753 | 44.6237 | −51.8299 | (108, 156, 248, 138, 137, 247, 109) |
78 | −44.0157 | 58.8021 | −9.5860 | 260 | 13.9415 | 59.9652 | 20.6979 | (109, 247, 284, 324, 291, 289, 111) |
79 | 33.9832 | 29.6692 | 0.9243 | 261 | 52.3780 | 52.3780 | −52.3780 | (110, 111, 289, 290, 292, 250, 249) |
80 | −21.4177 | −3.6598 | −31.8517 | 262 | −12.1578 | −24.0295 | −35.0540 | (113, 116, 252, 225, 226, 285, 206) |
81 | −16.6072 | −4.0898 | −33.1114 | 263 | 15.2838 | 8.5687 | −22.7654 | (114, 217, 280, 196, 195, 255, 115) |
82 | −20.6979 | −13.9415 | 59.9652 | 264 | 9.2795 | 18.4051 | −31.1563 | (115, 255, 257, 313, 272, 270, 117) |
83 | 11.1685 | 20.8514 | −38.1558 | 265 | 31.9562 | 19.2334 | 59.5177 | (116, 117, 270, 271, 293, 253, 252) |
84 | 51.8299 | −7.0753 | −44.6237 | 266 | 52.2139 | −12.2069 | −44.6623 | (118, 120, 219, 311, 312, 269, 186) |
85 | 12.1578 | 24.0295 | −35.0540 | 267 | 3.6598 | 31.8517 | −21.4177 | (121, 123, 224, 283, 284, 247, 137) |
86 | 0.2999 | −24.6705 | −81.1941 | 268 | −15.2838 | −8.5687 | −22.7654 | (122, 124, 225, 252, 253, 254, 222) |
87 | 8.5687 | −22.7654 | 15.2838 | 269 | −78.1555 | 4.0698 | 18.8954 | (122, 222, 221, 220, 223, 224, 123) |
88 | 17.9964 | −19.3042 | −61.1346 | 270 | 4.8863 | −40.7815 | −57.2395 | (125, 128, 243, 301, 300, 261, 165) |
89 | 15.2838 | −8.5687 | 22.7654 | 271 | 8.3399 | −42.5898 | −54.7230 | (126, 212, 215, 216, 214, 213, 127) |
90 | 13.5708 | −13.5708 | 13.5708 | 272 | 9.5860 | −44.0157 | −58.8021 | (127, 213, 242, 187, 188, 243, 128) |
91 | 63.9625 | 26.9536 | 19.7522 | 273 | 18.8954 | 78.1555 | −4.0698 | (129, 132, 244, 303, 302, 262, 167) |
92 | −22.7654 | 15.2838 | 8.5687 | 274 | 24.6705 | 81.1941 | 0.2999 | (130, 131, 191, 189, 190, 188, 187) |
93 | 61.1346 | 17.9964 | 19.3041 | 275 | 13.7842 | 62.0303 | 23.9611 | (130, 187, 242, 148, 149, 244, 132) |
94 | −31.9562 | 19.2334 | −59.5177 | 276 | −62.0303 | 23.9611 | −13.7842 | (133, 135, 246, 305, 304, 264, 170) |
95 | −9.5860 | 44.0157 | −58.8021 | 277 | −60.2731 | −10.9565 | 51.0267 | (136, 138, 248, 307, 306, 265, 173) |
96 | −4.8863 | 40.7815 | −57.2395 | 278 | −56.7792 | −12.1980 | 50.8263 | (139, 141, 290, 289, 291, 218, 202) |
97 | 20.3949 | 40.8005 | −51.7478 | 279 | 44.6236 | −51.8299 | −7.0753 | (140, 261, 300, 325, 292, 290, 141) |
98 | 20.8178 | 44.1150 | −52.2105 | 280 | −19.7522 | −63.9625 | 26.9536 | (142, 144, 271, 270, 272, 154, 152) |
99 | −41.9679 | 4.1872 | 32.6368 | 281 | 4.0898 | −33.1114 | 16.6072 | (143, 262, 302, 326, 293, 271, 144) |
100 | −21.9910 | 21.9910 | 21.9910 | 282 | 18.4051 | −31.1563 | 9.2795 | (145, 147, 150, 151, 149, 148, 146) |
101 | −35.0540 | 12.1578 | 24.0295 | 283 | −12.1980 | −50.8263 | 56.7792 | (146, 148, 242, 213, 214, 279, 193) |
102 | −38.1558 | 11.1685 | 20.8514 | 284 | −16.1921 | −56.9874 | 50.5519 | (147, 239, 298, 256, 199, 200, 150) |
103 | −28.7781 | 7.7959 | 28.2938 | 285 | 20.8514 | −38.1558 | 11.1685 | (149, 151, 269, 312, 334, 303, 244) |
104 | −31.1563 | 9.2795 | 18.4051 | 286 | −59.9652 | 20.6979 | −13.9415 | (150, 200, 197, 184, 186, 269, 151) |
105 | −33.1114 | 16.6072 | 4.0898 | 287 | −62.4434 | −45.0320 | 19.7340 | (153, 154, 272, 313, 335, 305, 246) |
106 | −31.8517 | 21.4177 | 3.6598 | 288 | 78.1555 | −4.0698 | 18.8954 | (155, 204, 205, 275, 273, 274, 157) |
107 | −26.2816 | 8.8699 | −56.9010 | 289 | −16.6072 | 4.0898 | 33.1114 | (156, 157, 274, 314, 336, 307, 248) |
108 | −4.1872 | 32.6368 | 41.9679 | 290 | −20.6979 | 13.9415 | −59.9652 | (159, 251, 308, 266, 208, 209, 162) |
109 | −7.7959 | 28.2938 | 28.7781 | 291 | −9.2795 | 18.4051 | 31.1563 | (160, 163, 215, 212, 241, 299, 258) |
110 | −23.9611 | 13.7842 | −62.0303 | 292 | 51.7478 | 20.3949 | −40.8005 | (161, 162, 209, 210, 276, 234, 233) |
111 | −21.4177 | 3.6598 | 31.8517 | 293 | 7.0753 | −44.6237 | −51.8299 | (161, 233, 235, 288, 216, 215, 163) |
112 | −58.8021 | −9.5860 | 44.0157 | 294 | 40.8005 | −51.7478 | 20.3949 | (168, 170, 264, 179, 178, 263, 230) |
113 | −13.7842 | −62.0303 | 23.9611 | 295 | 19.2334 | −59.5177 | −31.9562 | (168, 230, 231, 229, 228, 232, 169) |
114 | −13.9415 | −59.9652 | 20.6979 | 296 | −8.5687 | −22.7654 | −15.2838 | (171, 173, 265, 231, 230, 263, 207) |
115 | −20.3949 | −40.8005 | −51.7478 | 297 | −19.3041 | 61.1346 | −17.9964 | (171, 207, 211, 210, 209, 208, 172) |
116 | −18.8954 | −78.1555 | −4.0698 | 298 | 50.5519 | −16.1921 | −56.9874 | (174, 175, 178, 179, 177, 176, 180) |
117 | −20.8178 | −44.1150 | −52.2105 | 299 | 20.8514 | 38.1558 | −11.1685 | (175, 227, 286, 211, 207, 263, 178) |
118 | −40.7816 | 57.2395 | −4.8863 | 300 | 63.9625 | −26.9536 | −19.7522 | (176, 177, 236, 182, 181, 220, 221) |
119 | −32.6368 | 41.9679 | 4.1872 | 301 | 61.1346 | −17.9964 | −19.3042 | (176, 221, 222, 254, 309, 267, 180) |
120 | −42.5898 | 54.7230 | −8.3399 | 302 | −21.9910 | −21.9910 | −21.9910 | (177, 179, 264, 304, 327, 295, 236) |
121 | −12.2069 | −44.6623 | 52.2139 | 303 | −35.0540 | −12.1578 | −24.0295 | (181, 183, 268, 190, 189, 223, 220) |
122 | −4.8863 | −40.7815 | 57.2395 | 304 | 18.6302 | −53.5041 | −48.8638 | (184, 197, 198, 228, 229, 237, 185) |
123 | −9.5860 | −44.0157 | 58.8021 | 305 | 16.1921 | −56.9874 | −50.5519 | (188, 190, 268, 310, 333, 301, 243) |
124 | −8.3399 | −42.5898 | 54.7230 | 306 | −20.3949 | 40.8005 | 51.7478 | (189, 191, 278, 317, 283, 224, 223) |
125 | 19.2334 | 59.5177 | 31.9562 | 307 | −20.8178 | 44.1150 | 52.2105 | (192, 193, 279, 319, 318, 285, 226) |
126 | 40.7815 | 57.2395 | 4.8863 | 308 | 58.8021 | −9.5860 | −44.0157 | (194, 196, 280, 321, 320, 286, 227) |
127 | 44.1150 | 52.2105 | −20.8178 | 309 | 13.7842 | −62.0303 | −23.9611 | (198, 201, 282, 322, 287, 232, 228) |
128 | 40.8005 | 51.7478 | −20.3949 | 310 | −13.5708 | −13.5708 | −13.5708 | (205, 206, 285, 318, 337, 315, 275) |
129 | −54.7230 | 8.3399 | −42.5898 | 311 | −81.1942 | 0.2999 | −24.6705 | (210, 211, 286, 320, 338, 316, 276) |
130 | −28.7781 | −7.7959 | −28.2938 | 312 | −81.1942 | −0.2999 | 24.6705 | (214, 216, 288, 323, 341, 319, 279) |
131 | −29.6692 | 0.9243 | −33.9832 | 313 | 10.9565 | −51.0267 | −60.2731 | (217, 218, 291, 324, 342, 321, 280) |
132 | −41.9679 | −4.1872 | −32.6368 | 314 | −24.6705 | 81.1942 | −0.2999 | (229, 231, 265, 306, 328, 297, 237) |
133 | 21.4177 | 3.6598 | −31.8517 | 315 | 3.6598 | −31.8517 | 21.4177 | (238, 266, 308, 329, 330, 298, 239) |
134 | 4.1872 | 32.6368 | −41.9679 | 316 | −78.1555 | −4.0698 | −18.8954 | (240, 267, 309, 331, 332, 299, 241) |
135 | 7.7959 | 28.2938 | −28.7781 | 317 | −35.4601 | −35.4601 | 35.4601 | (250, 292, 325, 343, 329, 308, 251) |
136 | 10.9565 | 51.0267 | 60.2731 | 318 | 32.6368 | −41.9679 | 4.1872 | (253, 293, 326, 344, 331, 309, 254) |
137 | 12.2069 | 44.6623 | 52.2139 | 319 | 42.5898 | −54.7230 | −8.3399 | (256, 298, 330, 347, 335, 313, 257) |
138 | 9.5860 | 44.0157 | 58.8021 | 320 | −40.8005 | −51.7478 | −20.3949 | (258, 299, 332, 348, 336, 314, 259) |
139 | −15.2838 | 8.5687 | 22.7654 | 321 | −19.2334 | −59.5177 | 31.9562 | (277, 287, 322, 339, 340, 317, 278) |
140 | −26.9536 | 19.7522 | −63.9625 | 322 | −53.5041 | −48.8638 | 18.6302 | (281, 315, 337, 349, 339, 322, 282) |
141 | −17.9964 | 19.3041 | −61.1346 | 323 | 44.1150 | −52.2105 | 20.8178 | (283, 317, 340, 354, 342, 324, 284) |
142 | −7.7959 | −28.2938 | −28.7781 | 324 | −18.6302 | −53.5041 | 48.8638 | (294, 295, 327, 352, 353, 341, 323) |
143 | −11.1685 | −20.8514 | −38.1558 | 325 | 59.5177 | −31.9562 | −19.2334 | (296, 297, 328, 346, 345, 333, 310) |
144 | −4.1872 | −32.6368 | −41.9679 | 326 | −24.0295 | −35.0540 | −12.1578 | (300, 301, 333, 345, 355, 343, 325) |
145 | 41.9679 | −4.1872 | 32.6368 | 327 | 19.7340 | −62.4434 | −45.0319 | (302, 303, 334, 350, 356, 344, 326) |
146 | 38.1558 | −11.1685 | 20.8514 | 328 | −13.9415 | 59.9652 | −20.6979 | (304, 305, 335, 347, 357, 352, 327) |
147 | 28.7781 | −7.7959 | 28.2938 | 329 | 60.2731 | −10.9565 | −51.0267 | (306, 307, 336, 348, 358, 346, 328) |
148 | 56.9010 | −26.2816 | −8.8699 | 330 | 56.7792 | −12.1980 | −50.8263 | (311, 316, 338, 351, 350, 334, 312) |
149 | −56.9010 | −26.2816 | 8.8699 | 331 | 8.8699 | −56.9010 | −26.2816 | (318, 319, 341, 353, 359, 349, 337) |
150 | 31.8517 | −21.4177 | 3.6598 | 332 | −8.8699 | 56.9010 | −26.2816 | (320, 321, 342, 354, 360, 351, 338) |
151 | −62.0303 | −23.9611 | 13.7842 | 333 | −22.7654 | −15.2838 | −8.5687 | (329, 343, 355, 361, 357, 347, 330) |
152 | 0.9243 | −33.9832 | −29.6692 | 334 | −44.6236 | −51.8299 | 7.0753 | (331, 344, 356, 362, 358, 348, 332) |
153 | −12.2069 | 44.6623 | −52.2139 | 335 | 12.1980 | −50.8263 | −56.7792 | (339, 349, 359, 363, 360, 354, 340) |
154 | 12.2069 | −44.6623 | −52.2139 | 336 | −18.8954 | 78.1555 | 4.0698 | (345, 346, 358, 362, 364, 361, 355) |
155 | −24.0295 | 35.0540 | 12.1578 | 337 | 28.2938 | −28.7781 | 7.7959 | (350, 351, 360, 363, 364, 362, 356) |
156 | 8.3399 | 42.5898 | 54.7230 | 338 | −44.1150 | −52.2105 | −20.8178 | (352, 357, 361, 364, 363, 359, 353) |
157 | 7.0753 | 44.6237 | 51.8299 | 339 | −56.9874 | −50.5519 | 16.1921 | |
158 | −9.2795 | −18.4051 | −31.1563 | 340 | −50.8263 | −56.7792 | 12.1979 | |
159 | 54.7230 | −8.3399 | −42.5898 | 341 | 40.7815 | −57.2395 | −4.8863 | |
160 | 21.9910 | 21.9910 | −21.9910 | 342 | −19.7340 | −62.4434 | 45.0319 | |
161 | 38.1558 | 11.1685 | −20.8514 | 343 | 62.4434 | −45.0320 | −19.7340 | |
162 | 41.9679 | 4.1872 | −32.6368 | 344 | −20.8514 | −38.1558 | −11.1685 | |
163 | 35.0540 | 12.1578 | −24.0295 | 345 | −18.4051 | −31.1563 | −9.2795 | |
164 | 19.3041 | 61.1346 | 17.9964 | 346 | −4.0898 | −33.1114 | −16.6072 | |
165 | 19.7522 | 63.9625 | 26.9536 | 347 | 35.4601 | −35.4601 | −35.4601 | |
166 | −0.2999 | 24.6705 | −81.1942 | 348 | −13.7842 | 62.0303 | −23.9611 | |
167 | −51.8299 | 7.0753 | −44.6237 | 349 | 33.9832 | −29.6692 | −0.9243 | |
168 | 20.6979 | 13.9415 | 59.9652 | 350 | −42.5898 | −54.7230 | 8.3399 | |
169 | −51.7478 | 20.3949 | 40.8005 | 351 | −40.7815 | −57.2395 | 4.8863 | |
170 | 16.6072 | 4.0898 | −33.1114 | 352 | 51.0267 | −60.2731 | −10.9565 | |
171 | 48.8637 | 18.6302 | 53.5041 | 353 | 44.0157 | −58.8021 | −9.5860 | |
172 | 50.5519 | 16.1921 | 56.9874 | 354 | −51.0267 | −60.2731 | 10.9565 | |
173 | 45.0319 | 19.7340 | 62.4434 | 355 | 53.5041 | −48.8638 | −18.6302 | |
174 | 18.4051 | 31.1563 | −9.2795 | 356 | −32.6368 | −41.9679 | −4.1872 | |
175 | 22.7654 | 15.2838 | −8.5687 | 357 | 50.8263 | −56.7792 | −12.1979 | |
176 | 13.9415 | −59.9652 | −20.6979 | 358 | −3.6598 | −31.8517 | −21.4177 | |
177 | 19.3041 | −61.1346 | −17.9964 | 359 | 44.6623 | −52.2139 | −12.2069 | |
178 | 13.5708 | 13.5708 | −13.5708 | 360 | −44.0157 | −58.8021 | 9.5860 | |
179 | 8.5687 | 22.7654 | −15.2838 | 361 | 56.9874 | −50.5519 | −16.1921 | |
180 | 4.0898 | 33.1114 | −16.6072 | 362 | −28.2938 | −28.7781 | −7.7959 | |
181 | −26.9536 | −19.7522 | 63.9625 | 363 | −44.6623 | −52.2139 | 12.2069 | |
182 | 52.3780 | −52.3780 | 52.3780 | 364 | −33.9832 | −29.6692 | 0.9243 | |
Face Permutation Groups | ||||||||
(1, 97) (2, 120) (3, 26) (4, 14) (5, 153) (6, 144) (7, 133) (8, 151) (9, 139) (10, 12) | ||||||||
(11, 125) (13, 136) (15, 141) (16, 147) (17, 94) (18, 155) (19, 44) (20, 77) (21, 96) (22, 118) | ||||||||
(23, 111) (24, 50) (25, 101) (27, 66) (28, 113) (29, 149) (30, 71) (31, 150) (32, 107) (33, 36) | ||||||||
(34, 91) (35, 74) (37, 63) (38, 129) (39, 60) (40, 105) (41, 104) (42, 135) (43, 72) (45, 115) | ||||||||
(46, 138) (47, 62) (48, 143) (49, 55) (51, 121) (52, 53) (54, 131) (56, 142) (57, 90) (58, 116) | ||||||||
(59, 106) (61, 145) (64, 124) (65, 99) (67, 154) (68, 132) (69, 86) (70, 84) (73, 130) (75, 122) | ||||||||
(76, 89) (78, 109) (79, 82) (80, 87) (81, 156) (83, 119) (85, 92) (88, 114) (93, 127) (95, 128) | ||||||||
(98, 112) (100, 123) (102, 146) (103, 117) (108, 148) (110, 134) (126, 152) (137, 140) | ||||||||
(1, 28, 132) (2, 15, 55) (3, 54, 86) (4, 130, 56) (5, 80, 34) (6, 7, 45) (8, 139, 144) (9, 147, 133) | ||||||||
(10, 140, 88) (11, 129, 153) (12, 85, 95) (13, 111, 150) (14, 112, 134) (16, 151, 115) (17, 106, 31) (18, 125, 91) | ||||||||
(19, 148, 68) (20, 92, 114) (21, 57, 93) (22, 79, 42) (23, 143, 94) (24, 75, 116) (25, 105, 141) (26, 126, 37) | ||||||||
(27, 70, 149) (29, 107, 30) (32, 84, 154) (33, 131, 63) (35, 123, 118) (36, 152, 69) (38, 155, 87) (39, 102, 50) | ||||||||
(40, 156, 49) (41, 60, 58) (43, 98, 142) (44, 113, 119) (46, 52, 96) (47, 124, 103) (48, 136, 59) (51, 89, 117) | ||||||||
(53, 78, 90) (61, 74, 135) (62, 76, 99) (64, 65, 121) (66, 71, 67) (72, 73, 110) (77, 137, 128) (81, 101, 120) | ||||||||
(82, 100, 145) (83, 97, 108) (104, 122, 146) (109, 138, 127) |
References
- Bokowski, J.; Sturmfels, B. Computational Synthetic Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 1355. [Google Scholar]
- Grünbaum, B. Convex Polytopes, Pure and Applied Mathematics; Interscience-Wiley: New York, NY, USA, 1967; Volume 16. [Google Scholar]
- Bokowski, J.; Guedes de Oliveira, A. On the generation of oriented matroids. Discrete Comput. Geom. 2000, 24, 197. [Google Scholar] [CrossRef]
- Schewe, L. Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers. Discrete Comput. Geom. 2010, 43, 289–302. [Google Scholar] [CrossRef]
- Conder, M.D.E. Regular maps and hypermaps of Euler characteristic −1 to −200. J. Comb. Theory Ser. B 2009, 99, 455–459. [Google Scholar] [CrossRef]
- Bokowski, J.; Gévay, G. On Polyhedral Realizations of Hurwitz’s Regular Map {3,7}18 of Genus 7 with Geometric Symmetries. Art Discrete Appl. Math. 2021, 4, P3.09. [Google Scholar] [CrossRef]
- Bokowski, J.; Wills, J.M. Regular Leonardo Polyhedra. Art Discrete Appl. Math. 2022, 5, P3.13. [Google Scholar] [CrossRef]
- Bokowski, J.; Wills, J.M. An E3 embedding of Coxeter’s regular map {8, 4|3} results in a regular Leonardo polyhedron. Art Discrete Appl. Math. 2024, 7, P2.02. [Google Scholar] [CrossRef]
- Möbius, A.F. Gesammelte Werke II. Hrsg. Felix Klein; Reprinted 1967; S.Hirzel Verlag: Leipzig, Germany, 1886; p. 552 ff. [Google Scholar]
- Császár, A. A polyhedron without diagonals. Acta Sci. Math. Szeged 1949, 13, 140–142. [Google Scholar]
- Bokowski, J.; Eggert, A. All Realizations of Möbius’ Torus with 7 Vertices. Struct. Topol. 1991, 17, 59–76. [Google Scholar]
- Szilassi, L. Regular toroids. Struct. Topol. 1986, 13, 69–80. [Google Scholar]
- Bokowski, J.; Schewe, L. On Szilassi’s Torus. Symmetry Cult. Sci. 2002, 13, 211–240. [Google Scholar]
- Altshuler, A.; Bokowski, J.; Schuchert, P. Spatial polyhedra without diagonals. Israel J. Math. 1994, 86, 373–396. [Google Scholar] [CrossRef]
- Altshuler, A.; Bokowski, J.; Schuchert, P. Sphere systems and neighborly spatial polyhedra with 10 vertices. Suppl. Rend. Circ. Mat. Palermo 1994, 2, 35. [Google Scholar]
- Altshuler, A.; Bokowski, J.; Schuchert, P. Neighborly 2-Manifolds with 12 Vertices. J. Comb. Theory, Ser. A 1996, 75, 148–162. [Google Scholar] [CrossRef]
- Ringel, G. Map Color Theorem; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Hurwitz, A. Über algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 1893, 41, 403–442. [Google Scholar] [CrossRef]
- Klein, F. Über die Transformationen siebenter Ordnung der elliptischen Functionen. Math. Ann. 1879, 14, 428–471. [Google Scholar] [CrossRef]
- Klein, F. Vorlesungen Über das Ikosaeder und die Auflösung der Gleichungen Fünften Grades; Teubner: Leipzig, Germany, 1884. [Google Scholar]
- Schulte, E.; Wills, J.M. A polyhedral realization of Felix Klein’s map {3,7}8 on a Riemann surface of genus 3. J. Lond. Math. Soc. 1985, 32, 539–547. [Google Scholar] [CrossRef]
- Schulte, E.; Wills, J.M. Convex-Faced Combinatorially Regular Polyhedra of Small Genus. Symmetry 2012, 4, 1–14. [Google Scholar] [CrossRef]
- Gévay, G.; Wills, J.M. On regular and equivelar Leonardo polyhedra. Ars Math. Contemp. 2013, 6, 1–11. [Google Scholar] [CrossRef]
- Gévay, G.; Schulte, E.; Wills, J.M. The regular Grünbaum polyhedron of genus 5. Adv. Geom. 2014, 14, 465–482. [Google Scholar] [CrossRef]
- Bokowski, J. On Symmetrical Equivelar Polyhedra of Type {3.7} and Embeddings of Regular Maps. Symmetry 2024, 16, 1273. [Google Scholar] [CrossRef]
- McCooey, D.I. A non-self-intersecting polyhedral realization of the all-heptagon Klein map. Symmetry Cult. Sci. 2009, 20, 247–268. [Google Scholar]
- Dyck, W. Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen. Math. Ann. 1880, 17, 473–508. [Google Scholar] [CrossRef]
- Dyck, W. Notiz über eine reguläre Riemann’sche Fläche vom Geschlecht drei und die zugehörige “Normalcurve” vierter Ordnung. Math. Ann. 1880, 17, 510–516. [Google Scholar] [CrossRef]
- Bokowski, J. A geometric realization without self-intersections does exist for Dyck’s regular map. Discrete Comput. Geom. 1989, 6, 583–589. [Google Scholar] [CrossRef]
- Brehm, U. Maximally symmetric polyhedral realizations of Dyck’s regular map. Mathematika 1987, 34, 229–236. [Google Scholar] [CrossRef]
- Van Wijk, J.J. Symmetric tiling of closed surfaces: Visualization of regular maps. Acm Trans. Graph. 2009, 28, 1–12. [Google Scholar] [CrossRef]
- Van Wijk, J.J. Visualization of Regular Maps: The Chase Continues. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2614–2623. [Google Scholar] [CrossRef]
- Klein, F.; Fricke, R. Vorlesungen Über die Theorie der Elliptischen Modulfunktionen; Teubner: Leipzig, Germany, 1890. [Google Scholar]
- Grünbaum, B. Acoptic polyhedra. In Advances in Discrete and Computational Geometry; Chazelle, B., Goodman, J.E., Pollack, R., Eds.; Contemp. Math. 223; American Mathematical Society: Providence, RI, USA, 1999; pp. 163–199. [Google Scholar]
- Bokowski, J.; Cuntz, M. Hurwitz’s regular map (3, 7) of genus 7: A polyhedral realization. Art Discrete Appl. Math. 2018, 1, P1.02. [Google Scholar] [CrossRef]
- Bokowski, J.; Pisanski, T. Oriented matroids and complete-graph embeddings on surfaces. J. Comb. Theory Ser. A 2007, 114, 1–19. [Google Scholar] [CrossRef]
- Bokowski, J. Schöne Fragen aus der Geometrie. In Ein Interaktiver Überblick Über Gelöste und Noch Offene Probleme; Springer Spektrum: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Altshuler, A.; Brehm, U. Neighborly maps with few vertices. Discrete Comput. Geom. 1992, 8, 93–104. [Google Scholar] [CrossRef]
- Séquin, C.; Xiao, L. K12 and the Genus 6 Tiffany Lamp; EECS, CS Division, University of California: Berkeley, CA, USA, 2004. [Google Scholar]
Conder Notation | Genus | Schläfli Type | Map Author | Comb. Sym. | Embedding Symmetries | Dual Embedding | Figure | |||
---|---|---|---|---|---|---|---|---|---|---|
R3.1 | 3 | 24 | 84 | 56 | Klein | 336 PSL(2,7) × | T *, D3 | T *, D3 | Section 5.1 | |
R3.2 | 3 | 12 | 48 | 32 | Dyck | 192 | D3 *, D2, S2 | Section 5.3 | ||
R5.1 | 5 | 24 | 96 | 64 | Fricke, Klein | 384 | O *, S2 | D2, C3 | Section 5.4 | |
R6.1 | 6 | 15 | 75 | 50 | Coxeter, Moser | 300 | C3, C2, C1 * | Section 5.6 | ||
R7.1 | 7 | 72 | 252 | 168 | Hurwitz, Macbeath | 1008 PSL(2,8) × | D3, D2, S2, C1 * | D3, D2 | Section 5.7 | |
R8.1 | 8 | 42 | 168 | 112 | 672 PSL(3,2) ⋊ | D4, D3, S4, S2 | Section 5.9 | |||
R8.2 | 8 | 42 | 168 | 112 | 672 PSL(3,2) ⋊ | D4, D3, S4 | Section 5.10 | |||
R10.1 | 10 | 36 | 162 | 108 | 648 | D2, S4 | Section 5.11 | |||
R10.2 | 10 | 18 | 108 | 72 | 432 | C2 | Section 5.12 | |||
R13.1 | 13 | 36 | 180 | 120 | 720 | C3, C2 | Section 5.13 | |||
R13.2 | 13 | 24 | 144 | 96 | 576 | Section 5.14 | ||||
R14.1 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | T, D3, S4 | T | Section 5.15 | ||
R14.2 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | T | T | Section 5.17 | ||
R14.3 | 14 | 156 | 546 | 364 | 2184 PSL(2,13) | T, D3, S4 | T | Section 5.19 |
Graph | Genus | Number of Embeddings | Combinatorial Polyhedra, Articles | Geometrical Embeddings, Articles | |||
---|---|---|---|---|---|---|---|
0 | 4 | 6 | 4 | 1 | |||
1 | 7 | 21 | 14 | 4 | [9] | [10,11] | |
dual | 1 | 14 | 21 | 7 | 1 | [12,13] | |
– | 9 | 36 | 24 | 16 | [14] | [14] | |
– | 10 | 45 | 30 | 4 | [15] | [15] | |
6 | 12 | 66 | 44 | none | [16] | [3,4] | |
11 | 15 | 105 | 70 | unknown | [17] |
Permutation Group | Possible Geometric Symmetries |
---|---|
(a, b) (c, d) (e, f) | S2, C2, Cs |
(a, b) (c, d) (e) (f) | C2, Cs |
(a, b, c) (d, e, f) | C3 |
(a, b, c, d) (e, f, g, h) | C4, S4 |
(a, b, c, d) (e, f) | S4 |
(a, b, c, d) (e) (f) | C4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokowski, J.; H., K. Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry 2025, 17, 622. https://doi.org/10.3390/sym17040622
Bokowski J, H. K. Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry. 2025; 17(4):622. https://doi.org/10.3390/sym17040622
Chicago/Turabian StyleBokowski, Jürgen, and Kevin H. 2025. "Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra" Symmetry 17, no. 4: 622. https://doi.org/10.3390/sym17040622
APA StyleBokowski, J., & H., K. (2025). Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry, 17(4), 622. https://doi.org/10.3390/sym17040622