Next Article in Journal
Electroencephalogram-Based Familiar and Unfamiliar Face Perception Classification Underlying Event-Related Potential Analysis and Confident Learning
Previous Article in Journal
A Data-Driven Methodology for Industrial Design Optimization and Consumer Preference Modeling: An Application of Computer-Aided Design in Sustainable Refrigerator Design Research
Previous Article in Special Issue
On Symmetrical Equivelar Polyhedra of Type {3, 7} and Embeddings of Regular Maps
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra †

1
Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D-64289 Darmstadt, Germany
2
Independent Researcher, “CodeParade”, Los Angeles, CA 91403, USA
*
Author to whom correspondence should be addressed.
Dedicated to Prof. Dr. Dr. (h.c.) Jörg M. Wills, University Siegen, on the occasion of his 88th birthday, in recognition of his long commitment to polyhedral embeddings of regular maps.
Symmetry 2025, 17(4), 622; https://doi.org/10.3390/sym17040622
Submission received: 18 February 2025 / Revised: 21 March 2025 / Accepted: 24 March 2025 / Published: 19 April 2025
(This article belongs to the Special Issue Symmetry in Combinatorial Structures)

Abstract

:
This article provides a survey of polyhedral embeddings of triangular regular maps of genus g, 2 g 14 , and of neighborly spatial polyhedra. An old conjecture of Grünbaum from 1967, although disproved in 2000, lies behind this investigation. We discuss all duals of these polyhedra as well, whereby we accept, e.g., the Szilassi torus with its non-convex faces to be a dual of the Möbius torus. A numerical optimization approach by the second author for finding such embeddings was first applied to finding (unsuccessfully) a dual polyhedron of one of the 59 closed oriented surfaces with the complete graph of 12 vertices as their edge graph. The same method has been successfully applied for finding polyhedral embeddings of triangular regular maps of genus g, 2 g 14 . The effectiveness of the new method has led to ten additional new polyhedral embeddings of triangular regular maps and their duals. There do exist symmetrical polyhedral embeddings of all triangular regular maps with genus g, 2 g 14 , except in a single undecided case of genus 13. Among these results, there are three new Leonardo polyhedra, each with 156 vertices, 546 edges, and 364 triangular faces, based on the Hurwitz triplet of genus 14 with Conder notation R14.1, R14.2, and R14.3.

1. Introduction

This article provides a contribution to the field of computational synthetic geometry, which explores methods for realizing abstract geometric objects in concrete vector spaces [1]. Our focus lies in the construction and analysis of triangular regular maps of genus g, 2 g 14 , and of neighborly spatial polyhedra and of all these embeddings. These spatial polyhedra are all related to an old conjecture of Branko Grünbaum from 1967 [2], p. 253, who conjectured that all oriented simplicial 2-manifolds have polyhedral embeddings in R 3 . This conjecture was not believed by many experts. However, a proof of a counterexample was only first given in 2000 [3], and additional counterexamples were provided by Lars Schewe in his Ph.D. thesis; see his publication in 2010 [4]. When we study convex polytopes with their convex faces, we have the polar dual polytopes with convex faces again. However, for polyhedra with a higher genus, there are instances where the dual embeddings require non-convex faces. A famous example for such an embedding is Szilassi’s polyhedron with a dual face lattice compared with the seven-vertex torus of Möbius. We do allow non-convex faces when we use duality in this paper.
The use of the second author’s numerical optimization approach has led to all but one embedding of triangular regular maps of genus g, 2 g 14 . We recall that a regular map generalizes in a topological manner what we know from Platonic solids. A regular map is a decomposition of a two-dimensional manifold into topological disks such that every flag (an incident vertex–edge–face triple) can be transformed into any other flag by a combinatorial symmetry of the decomposition. We use the result of M. Conder [5] and his notation for triangular-oriented regular maps of genus g, 2 g 14 , with multiplicity 1. These 14 regular maps are listed in Table 1. For only five of them, polyhedral embeddings were known. For the remaining cases, we now have eight new polyhedral embeddings of regular maps, and for two former polyhedral embeddings, the symmetry properties have been improved. This has even led to detecting an error in a previous paper [6].
The geometrical symmetry of three new polyhedral embeddings based on the Hurwitz triplet of genus 14 are chiral tetrahedral, telling us that they are all solutions to a long-standing question of Jörg M. Wills that was posed again in [7,8]. These polyhedral embeddings are new Leonardo polyhedra, each with 156 vertices, 546 edges, and 364 triangular faces, based on the regular maps with Conder notation R14.1, R14.2, and R14.3.
In the next two sections, we provide tables with the list of triangular regular maps and neighborly polyhedra that were tested according to Grünbaum’s conjecture.
Afterward, we describe the algorithm of the second author.

2. Polyhedral Embeddings of Triangulated Orientable Regular Maps with Genus g, 2 g 14 , and Some of Their Duals

We have listed in Table 1 all polyhedral embeddings of triangulated orientable regular maps with genus g, 2 g 14 , and some of their duals. Geometric symmetries are listed with Schoenflies notation. All triangular polyhedral embeddings in Table 1 are new for genus g, g 8 . The embeddings of genera 6 and 7 have higher geometrical symmetries compared to those that were known before. A former embedding of R6.1 of Brehm has never been published. It had no geometric symmetries according to a private communication of J.M.Wills.
The Appendix A contains coordinates for the cases with the highest symmetry order. Additional embeddings by the second author, including all available symmetries and regular maps of higher genus, can be interactively viewed and downloaded at http://codeparade.net/embeddings (accessed on 20 March 2025).

3. Polyhedral Embeddings of Neighborly Spatial Polyhedra with Complete Graphs as Their Edge Graph and Their Duals

In Table 2, we have listed neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds. For complete graphs with 9 and 10 vertices, we have polyhedra with pseudo-manifolds as their boundaries: a vertex can have more than one circular sequence of incident faces. For the seven-vertex torus of Möbius, you can download a video with all four embeddings at http://science-to-touch.com/ForJB/MoebiusTorus.mov (accessed on 20 March 2025).
The investigation of the second author to study the dual cases, which have been investigated by Bokowski, Guedes de Oliveira, and Schewe, did not find additional embeddings in this area.

4. Polyhedral Embeddings as an Optimization Problem

Finding a polyhedral embedding of a simplicial complex without intersections is, in general, a difficult problem. While solutions can be easily verified in polynomial time, there are no efficient algorithms to generate them or prove their non-existence without a full search of the space. For small vertex counts, there has been some success using SAT solvers with oriented matroids [4]; however, this can take significant computational resources and becomes intractable for larger complexes.
There are methods that are more efficient at solving NP problems of this sort if we introduce heuristics and non-determinism to our search. As a consequence, we will not be able to guarantee that a solution will be found for a given complex, and questions about which symmetries can be realized will remain open. This compromise is acceptable as we are looking for any embeddable examples where none exist currently.
We choose to focus on triangular regular maps specifically. This is because a polyhedron with all triangle faces can be completely defined by its set of three-dimensional vertices and triangulation with no additional constraints. This greatly simplifies the optimization. By contrast, faces with polygons of more than three vertices need additional constraints to find embeddings since the points may be skew and not all lie on a common plane.
Duals of triangular maps are also equally efficient since these polyhedra can be entirely described by a set of planes and a vertex adjacency list. Since the edge graph is cubic, the vertices of the dual are simply the intersection of the three planes that share the vertex.
Enforcing a geometric symmetry helps reduce the search space, speed up the computation, and in general seems to produce the best results when a suitable symmetry is used. All embeddings found so far have had some non-trivial geometric symmetry, and there have been no cases where an asymmetric solution has had fewer intersections than a symmetric one for a non-embeddable example. Therefore, we conjecture that if a regular map is embeddable, it will also be embeddable with at least one non-trivial geometric symmetry.
Possible geometric symmetries can be inferred from the automorphisms of the regular map. Some examples are in Table 3.
To enforce a geometric symmetry, the first point of a permutation becomes the reference and the other points in the permutation get defined relative to the first one by the given symmetry type.
The solver works in two stages: First, a large random search is conducted to find low-intersection candidates; then, a second stage is used to refine each solution to both reduce the intersections if they are non-zero and improve the aesthetics of the shape to eliminate things like large-scale differences between edges, near intersections, or very skinny polygons. This stage can also truncate the vertex positions to produce small integer coordinates.
The heuristic used for the large search is simply the number of edge-polygon intersections plus the number of self-crossings of each polygon, as illustrated in Figure 1. For triangular maps, self-crossings are always zero, but duals may have crossings.
The second-stage heuristic includes the penalty from the first stage plus one minus the minimum of the following metrics:
Length Quality : minimum side length maximum side length for each polygon Distance Quality : closest distance between non - neighboring edges farthest distance between 2 points Angle Quality : 1 cos ( smallest angle in any polygon ) Plane Quality : 1 cos ( smallest angle between neighboring faces )
The general algorithm is listed in Algorithm 1.
Algorithm 1 Primary search for embeddings
Input: List of index triplets representing the triangles T
 1:
Procedure SearchEmbeddings (T, i t e r s , c l u s t e r s , σ = 1.0, β = 0.997, γ = 1.25)
 2:
for i in c l u s t e r s  do
 3:
    V i ApplySymmetry(RandomVertices())
 4:
    p i Penalty(T,Vi)
 5:
end for
 6:
for j in i t e r s  do
 7:
    m ArgMinimum(p)
 8:
   for i in c l u s t e r s  do
 9:
     if  p i > p m γ  then
10:
         r =  RandomIndex()
11:
         V i V r
12:
         p i p r
13:
     end if
14:
      V n e w β ( V i + R A N D O M N O I S E ( σ ) )
15:
      V n e w A P P L Y S Y M M E T R Y ( V n e w )
16:
      p n e w P E N A L T Y ( T , V n e w )
17:
     if  p n e w p i   or   ( i m   and   p n e w p m γ )  then
18:
         V i V n e w
19:
         p i p n e w
20:
     end if
21:
   end for
22:
end for
23:
return  V m
24:
End Procedure
Depending on the complexity of the problem, the optimizer can usually find solutions within only seconds or minutes for the smallest examples such as R3.2 and about a day for the largest ones like R14.2 on a standard desktop computer. Again, for dual problems, the algorithm is nearly identical, but each point represents a plane instead, which has the same degrees of freedom. These are generally slower and harder to find since the placement of the planes is more sensitive than the vertex positions.
For any undecided cases, the best results are Kepler–Poinsot-like with a low intersection count. R13.2 has been realized with as few as 64 edge intersections with S4 symmetry.

5. Polyhedral Embeddings According to Table 1

5.1. Case R3.1

This regular map R3.1 is also called Felix Klein’s quartic of Schläfli type { 3 , 7 } 8 and genus 3. It is the first element of the infinite sequence of Hurwitz of type { 3 , 7 } [18]. Its abstract symmetry group has an order of 336. References are [19,20]. Polyhedral embeddings are shown in Figure 2.
The corresponding polyhedron is an example of a regular Leonardo polyhedron; i.e., it is a polyhedral embedding of a regular map with a geometrical symmetry group of the rotational symmetry group of a Platonic solid. This polyhedral embedding is due to Schulte and Wills [21]. For additional articles about regular Leonardo polyhedra, see [7,8,22,23,24,25]. We also provide a section describing new Leonardo polyhedra in Section 6. Figure 3 shows the regular map R3.1 on a hyperbolic disk.

5.2. The Dual Case R3.1′

An embedding of the dual polyhedron of R3.1 with chiral tetrahedral symmetry is due to D. McCooey [26]. Polyhedral embeddings are shown in Figure 4.

5.3. Case R3.2

The regular map R3.2 is due to W. Dyck [27,28] with Schläfli type { 3 , 8 } 6 and genus 3. The combinatorial symmetry group has order 192. Polyhedral embeddings are shown in Figure 5.
A first embedding was found by J. Bokowski [29]. An embedding with better geometrical symmetries, with the dihedral group D3, is due to U. Brehm [30]. An additional embedding symmetry S2 and an alternative D3 embedding are new and due to the second author. For more details about these embeddings, see Figure 6, Figure 7, Figure 8 and Figure 9.

5.4. Case R5.1

The regular map R5.1, due to Klein and Fricke [33], has type { 3 , 8 } 12 and genus 5 with symmetry group of order 384. Polyhedral embeddings are shown in Figure 10.
The first embedding was found by B. Grünbaum [34]. This is another example of a regular Leonardo polyhedra. Later, U. Brehm and J. M. Wills independently discovered this embedding again.

5.5. The Dual Case R5.1′

The embedding of the dual is a new result of the second author in this paper. Polyhedral embeddings are shown in Figure 11.

5.6. Case R6.1

The regular map R6.1, due to Coxeter and Moser, has type { 3 , 10 } 6 and genus 6 with symmetry group of order 300. Polyhedral embeddings are shown in Figure 12.
According to a private communication by J. M. Wills, a former polyhedral embedding of this regular map without any symmetry was found by U. Brehm. However, it was never published.

5.7. Case R7.1

The regular map R7.1 is due to Hurwitz and has type { 3 , 7 } 18 and genus 7. It is the second element of the infinite Hurwitz sequence with types { 3 , 7 } , also denoted as a Macbeath surface, as she rediscovered it, with symmetry group of order 1008. Polyhedral embeddings are shown in Figure 13. A first embedding without geometrical symmetries was found in 2018 by Bokowski and Cuntz [35]. The symmetry of this new embedding has order 6, although we find in [6] the claim that such a symmetry is not possible. In other words, this example tells us that an error in that paper has been detected. For more details about these embeddings, see Figure 14, Figure 15 and Figure 16.

5.8. The Dual Case R7.1′

Polyhedral embeddings are shown in Figure 17. Additional internal structures are isolated in Figure 18.

5.9. Case R8.1

The regular map R8.1 has Schläfli type { 3 , 8 } 8 and genus 8. Its combinatorial symmetry group has order 672. This regular map has 42 vertices and 112 faces. Polyhedral embeddings are shown in Figure 19.

5.10. Case R8.2

The regular map R8.2 has Schläfli type { 3 , 8 } 14 and genus 8. Its combinatorial symmetry group has order 672. This regular map has 42 vertices and 112 faces. Polyhedral embeddings are shown in Figure 20.

5.11. Case R10.1

The regular map R10.1 has Schläfli type { 3 , 9 } 12 and genus 10. Its combinatorial symmetry group has order 648. Polyhedral embeddings are shown in Figure 21.

5.12. Case R10.2

The regular map R10.2 has type { 3 , 12 } 6 and genus 10 with symmetry group of order 432. Polyhedral embeddings are shown in Figure 22. A combinatorial description of the map is illustrated in Figure 23.

5.13. Case R13.1

The regular map R13.1 has type { 3 , 10 } 30 and genus 13 with symmetry group of order 720. Polyhedral embeddings are shown in Figure 24.

5.14. Case R13.2

The regular map R13.2 has Schläfli type { 3 , 12 } 12 and genus 13. Its combinatorial symmetry group has order 576.
After extensive search, we found that it is the only triangular regular map of genus g, 2 g 14 , that is not likely to be embeddable in R 3 .

5.15. Case R14.1

The regular map R14.1, due to Hurwitz, has type { 3 , 7 } 12 and genus 14 with symmetry group of order 2184. Polyhedral embeddings are shown in Figure 25.
In the theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces (R14.1, R14.2, and R14.3) with the identical automorphism group of the lowest possible genus, here 14. The polyhedral embeddings of the three regular maps from the Hurwitz triplet are all new examples of regular Leonardo polyhedra due to their chiral tetrahedral geometric symmetry.

5.16. The Dual Case R14.1′

Polyhedral embeddings are shown in Figure 26.

5.17. Case R14.2

The regular map R14.2, due to Hurwitz, has type {3,7}26 and genus 14 with symmetry group of order 2184. Polyhedral embeddings are shown in Figure 27.

5.18. The Dual Case R14.2′

Polyhedral embeddings are shown in Figure 28.

5.19. Case R14.3

The regular map R14.3, due to Hurwitz, has type {3,7}14 and genus 14 with symmetry group of order 2184. Polyhedral embeddings are shown in Figure 29.

5.20. The Dual Case R14.3′

Polyhedral embeddings are shown in Figure 30.

6. Three New Leonardo Polyhedra and Understandable Spatial Representation

So far, only six Leonardo Polyhedra were known. You can find them in [7,8] and in the references cited there. Two of them have triangular faces, so they are in Table 1 with Conder notation R3.1 and R5.1.
In Figure 31, we can see a combinatorial description and a colored explanation of the Leonardo polyhedron of R3.1 in a window of the Blender software. We have studied all new polyhedra with Blender. If the reader is interested in viewing the polyhedra of Table 1, it is possible with some basic explanations of Blender to see them rotating on the screen. You need only to download the free Blender software and the corresponding .obj files that are provided at http://codeparade.net/embeddings (accessed on 20 March 2025).
The R3.1 example based on Klein’s quadric with the polyhedral embedding of Schulte and Wills and the second known triangular Leonardo polyhedron of Grünbaum based on the Fricke–Klein regular map R5.1 have geometries that are relatively easy to describe.
For the second example, you start with six small squares at the midpoints of the faces of a cube. All small squares are rotated symmetrically by a small angle. Now, connect these six small squares with triangles in two ways such that it forms two topological spheres. When the small squares are then removed, you obtain the closed triangular 2-manifold of R5.1. See the description of this Leonardo polyhedron in Figure 32.
Can we explain simply the shape of these three amazing new Leonardo polyhedra? They all have 156 vertices, 546 edges, and 364 triangular faces! The inner and outer parts of the regular map R14.2 can be seen in Figure 33; however, the Leonardo polyhedron is the union of all seven of these parts. We encourage the reader to view and rotate these Leonardo polyhedra in three dimensions to fully admire them. The regular maps with maximal spatial geometric symmetries as generalizations of Platonic solids now provide at least nine Leonardo polyhedra, i.e., polyhedral embeddings that have again the rotational geometric symmetry of a Platonic solid.

7. Complete Graphs with 4, 7, and 12 Vertices on Closed Oriented 2-Manifolds, No Diagonals

In general, a k-neighborly polytope is a convex polytope where any k or fewer vertices form a face. We concentrate on the spatial case (k = 2), where a polyhedron need not be convex or have convex faces and it is considered neighborly if either its edge graph is complete (no diagonals) or each face shares exactly one edge with every other face (face-sharing property). These two properties are linked through duality: The dual of a neighborly polyhedron with a complete edge graph is a neighborly polyhedron with the face-sharing property and vice versa.
Crucially, we are interested in embeddings of these neighborly polyhedra that are free of self-intersections. This requires us to consider only oriented closed surfaces for our polyhedra, as non-orientable surfaces cannot be embedded in R 3 . Furthermore, neighborly polyhedra with complete edge graphs necessarily have triangular faces. Therefore, our investigation centers on embeddings of triangular complete graphs on surfaces and their duals. These topological embeddings have played a significant role in results like the map color theorem [17].
While we do not assume familiarity with oriented matroids, it is worth noting that all such triangular complete graph embeddings can be obtained by naturally extending the concept of pseudoline arrangements to curve arrangements on surfaces [36].
Computing combinatorially possible embeddings is a second step before we discuss possible polyhedral embeddings.
We find in this section the solution to a long-standing conjecture of Branco Grünbaum, which is that there does exist a cell decomposition of a triangulated orientable surface that cannot have an embedding in R 3 .

7.1. The Tetrahedron

The Tetrahedron has a complete graph with four vertices as its edge graph. This is the easiest example of a neighborly polyhedron.

7.2. The Seven Vertex Torus of Möbius

For the seven vertex torus of Möbius in his collected works [9], Császár in [10] was the first to find an embedding for Möbius’s combinatorial description, although he was not aware of this former reference. Here, the edge graph has seven vertices. In 1991, Bokowski and Eggert [11] found via oriented matroid techniques additional three symmetrical polyhedral embeddings of this seven vertex torus of Möbius. One such embedding is shown in Figure 34.
In this video, we see another embedding as a YouTube video: https://youtu.be/LGUyT6xfTFs (accessed on 20 March 2025). We also find all four symmetric embeddings of this neighborly seven-vertex torus in [37]. The best version might be a video from 1986 that can be downloaded from http://science-to-touch.com/ForJB/MoebiusTorus.mov (accessed on 20 March 2025).

7.3. The 59 Examples of the Complete Graph with 12 Vertices

The 59 combinatorial different examples of candidates for a triangular embedding with the complete graph with 12 vertices have been published in 1994 [14]. These 59 surfaces can be drawn topologically on this ceramic model in Figure 35. It is a shape that is topologically a sphere with six handles.
A crucial first proof that an oriented closed triangular 2-manifold does not allow an embedding in 3-space was provided by Bokowski and Guedes de Oliveira in 2000 [3]. The theory of oriented matroids helped decisively: the set of possible 12 vertex neighborly oriented matroids that are not forbidden because of edge–face intersections turned out (after long computations) to be the empty set. Several models of the corresponding topological embedding of the corresponding surface have been produced by Bokowski. See Die Geschichte eines Modells, in [37], p. 88ff.

7.4. Neighborly Spatial Pseudo-Manifolds with 9 and 10 Vertices

We have additional spatial polyhedra without diagonals with nine vertices in [14]. In Figure 36, we see an example from this paper.
We have additional spatial polyhedra without diagonals with 10 vertices in [15]. Among these examples are embeddings of four pinched spheres. The polyhedra in all these cases are orientable neighborly 2-pseudomanifolds. There are several circular sequences of triangles around a vertex.

8. The Dual Case of the Former Section

8.1. The Tetrahedron

The Tetrahedron also has the face-sharing property. It is the only dual case with convex faces.

8.2. Szilassi’s Polyhedron

The combinatorial property of Szilassi’s polyhedron is dual to the seven-vertex torus of Möbius with non-convex faces and can be seen in Figure 37. That this embedding of Szilassi is essentially unique was shown via oriented matroid techniques in [13].

8.3. The 59 Examples of the Complete Graph with 12 Vertices Used for Its 59 Duals

No embeddings of the 59 dual abstract polyhedra with 12 eleven-gons and 44 vertices were found with methods of the second author. Therefore, a Kepler–Poinsot version of an embedding with a low number of intersections is of interest. Such a polyhedron has been depicted in Figure 38. The two orthogonal projections along the x-, y-, and z-axes are shown in the four columns. The lower part shows an exploded view of all 12 eleven-gons.

9. Conclusions

Compared with former progress in finding polyhedral embeddings of regular maps, these new results provide a huge step forward. Finding the maximal order of symmetry is in many cases still open. So far, we have proofs for the non-embeddable cases of the 59 neighborly polyhedra with 12 vertices. For the open case R13.2, we have 24 vertices. We cannot hope that this open case is easy to tackle. What can still be carried out is the non-triangular case of regular maps. Whether we can still find an additional regular Leonardo polyhedron remains an interesting open problem.
The paper by A. Altshuler and U. Brehm [38] has additional neighborly pseudo-manifolds with 11 vertices. An investigation of their polyhedral embeddings is still open.
We do not have a neighborly spatial polyhedron according to a complete graph embedding with 12 vertices on a 2-manifold; however, we have seen the attempt to find a dual embedding in Figure 38. Another topological embedding for the example with the highest symmetry has been constructed by Carlo Séquin and Ling Xiao; see Figure 39 and the article [39]. When you insert in each topological triangle a vertex and you construct topological eleven-gons around former vertices, you obtain a dual topological embedding.

Author Contributions

The new polyhedral embeddings of regular maps are the result of the second author’s work, prompted by a suggestion from the first author, J.B., to investigate these problems. An intensive two-month collaboration between the authors, J.B. and K.H., led to the findings in this article. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Selected data is contained within this article. Additional embeddings can be downloaded from http://codeparade.net/embeddings (accessed on 20 March 2025).

Acknowledgments

We wish to thank Jörg M. Wills for his advice and stimulating questions for finding polyhedral embeddings of regular maps. We wish to thank Alice Niemeyer and Reymond Akpanya for their support to find for some regular maps their detailed information.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A. Vertex Tables

Table A1. R3.1 with T symmetry.
Table A1. R3.1 with T symmetry.
VertexXYZVertexXYZTriangles
145−61343−4(1, 5, 23)(1, 21, 22)(2, 6, 20)
2−45614−434(2, 22, 21)(3, 7, 21)(3, 23, 20)
3−4−5−615−4−3−4(4, 8, 13)(4, 12, 14)(5, 9, 12)
46−45164−43(5, 13, 15)(6, 10, 15)(6, 14, 12)
564−51744−3(7, 11, 14)(7, 15, 13)(8, 4, 24)
6−64518−443(8, 16, 17)(8, 24, 19)(9, 1, 18)
7−6−4−519−4−4−3(9, 5, 1)(9, 17, 16)(10, 2, 17)
85−64203−44(10, 6, 2)(10, 18, 19)(11, 3, 16)
956−42134−4(11, 7, 3)(11, 19, 18)(12, 4, 5)
10−56422−344(12, 16, 20)(12, 20, 6)(13, 5, 4)
11−5−6−423−3−4−4(13, 17, 21)(13, 21, 7)(14, 6, 7)
124−34244−56(14, 18, 22)(14, 22, 4)(15, 7, 6)
(15, 19, 23)(15, 23, 5)(16, 8, 11)
(16, 12, 9)(17, 9, 10)(17, 13, 8)
(18, 10, 9)(18, 14, 11)(19, 11, 8)
(19, 15, 10)(20, 16, 3)(20, 24, 2)
(21, 1, 3)(21, 17, 2)(22, 2, 24)
(22, 18, 1)(23, 3, 1)(23, 19, 24)
(24, 4, 22)(24, 20, 23)
Vertex Permutation Groups
(1, 3) (2, 24) (4, 6) (5, 7) (8, 10) (9, 11) (12, 14) (13, 15) (16, 18) (17, 19) (20, 22) (21, 23)
(1, 8, 6) (2, 9, 4) (3, 11, 7) (5, 24, 10) (12, 22, 17) (13, 20, 18) (14, 21, 16) (15, 23, 19)
Table A2. R3.1′ with T symmetry.
Table A2. R3.1′ with T symmetry.
VertexXYZVertexXYZPolygons
1513513−233729209−209−855(12, 16, 42, 30, 11, 8, 26)
2−513513233730−209−209855(12, 21, 44, 32, 2, 56, 16)
3−513−513−233731−209209−855(12, 26, 49, 37, 5, 4, 21)
42337−51351332855209209(13, 17, 43, 31, 10, 9, 27)
52337513−51333855−209−209(13, 20, 45, 33, 3, 1, 17)
6−233751351334−855−209209(13, 27, 48, 36, 4, 5, 20)
7−2337−513−51335−855209−209(14, 18, 40, 28, 9, 10, 24)
8513−233751336209855209(14, 23, 46, 34, 56, 2, 18)
95132337−51337209−855−209(14, 24, 51, 39, 7, 6, 23)
10−513233751338−209−855209(15, 19, 41, 29, 8, 11, 25)
11−513−2337−51339−209855−209(15, 22, 47, 35, 1, 3, 19)
122337−2337233740549141549(15, 25, 50, 38, 6, 7, 22)
1323372337−233741549−141−549(52, 40, 18, 2, 32, 33, 45)
14−23372337233742−549−141549(52, 45, 20, 5, 37, 38, 50)
15−2337−2337−233743−549141−549(52, 50, 25, 11, 30, 28, 40)
1634257153944549549141(53, 41, 19, 3, 33, 32, 44)
17342−57−153945549−549−141(53, 44, 21, 4, 36, 39, 51)
18−342−57153946−549−549141(53, 51, 24, 10, 31, 29, 41)
19−34257−153947−549549−141(54, 42, 16, 56, 34, 35, 47)
2015393425748141549549(54, 47, 22, 7, 39, 36, 48)
211539−342−5749141−549−549(54, 48, 27, 9, 28, 30, 42)
22−1539−3425750−141−549549(55, 43, 17, 1, 35, 34, 46)
23−1539342−5751−141549−549(55, 46, 23, 6, 38, 37, 49)
2457153934252342−342342(55, 49, 26, 8, 29, 31, 43)
2557−1539−34253342342−342
26−57−153934254−342342342
27−571539−34255−342−342−342
2820920985556513−5132337
Face Permutation Groups
(1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12) (13, 19) (14, 20) (15, 21) (16, 22) (17, 23) (18, 24)
(1, 8, 6) (2, 9, 4) (3, 7, 5) (10, 11, 12) (13, 21, 17) (14, 19, 18) (15, 20, 16) (22, 24, 23)
Table A3. R3.2 with D3 symmetry.
Table A3. R3.2 with D3 symmetry.
VertexXYZTriangles
1−4.19151.6830−8.1706(1, 2, 3)(1, 3, 5)(1, 4, 2)
2−10.39760.1024−4.5518(1, 5, 8)(1, 7, 4)(1, 8, 11)
35.28758.9535−4.5518(1, 10, 7)(1, 11, 10)(2, 4, 9)
43.5533−2.78858.1706(2, 6, 3)(2, 8, 6)(2, 9, 10)
50.63824.47148.1706(2, 10, 12)(2, 12, 8)(3, 6, 7)
65.11029.05584.5518(3, 7, 12)(3, 9, 5)(3, 11, 9)
75.2875−8.95354.5518(3, 12, 11)(4, 5, 9)(4, 6, 11)
8−10.3976−0.10244.5518(4, 7, 6)(4, 11, 12)(4, 12, 5)
9−4.1915−1.68308.1706(5, 6, 8)(5, 10, 6)(5, 12, 10)
100.6382−4.4714−8.1706(6, 10, 11)(7, 8, 12)(7, 9, 8)
113.55332.7885−8.1706(7, 10, 9)(8, 9, 11)
125.1102−9.0558−4.5518
Vertex Permutation Groups
(1, 9) (2, 8) (3, 7) (4, 11) (5, 10) (6, 12)
(1, 10, 11) (2, 12, 3) (4, 5, 9) (6, 8, 7)
Table A4. R5.1 with O symmetry.
Table A4. R5.1 with O symmetry.
VertexXYZTriangles
1−3192(1, 2, 3)(1, 2, 4)(1, 3, 5)
2−2319(1, 4, 7)(1, 5, 8)(1, 7, 12)
3−1923(1, 8, 14)(1, 12, 14)(2, 3, 6)
43219(2, 4, 10)(2, 6, 11)(2, 10, 20)
5−219−3(2, 11, 18)(2, 20, 18)(3, 5, 9)
6−19−32(3, 6, 13)(3, 9, 16)(3, 13, 21)
72193(3, 16, 21)(4, 7, 15)(4, 10, 17)
83−2−19(4, 15, 16)(4, 16, 21)(4, 17, 21)
9−193−2(5, 8, 15)(5, 9, 19)(5, 15, 20)
1019−3−2(5, 19, 18)(5, 20, 18)(6, 11, 17)
11−3−219(6, 12, 14)(6, 13, 19)(6, 14, 19)
12−19−2−3(6, 17, 12)(7, 9, 11)(7, 11, 18)
132−19−3(7, 12, 9)(7, 15, 22)(7, 18, 22)
1423−19(8, 10, 13)(8, 13, 21)(8, 14, 10)
151932(8, 15, 23)(8, 21, 23)(9, 12, 23)
162−319(9, 16, 11)(9, 19, 23)(10, 14, 22)
17−2−193(10, 17, 22)(10, 20, 13)(11, 16, 24)
18319−2(11, 17, 24)(12, 17, 21)(12, 23, 21)
19−32−19(13, 19, 24)(13, 20, 24)(14, 19, 18)
2019−23(14, 22, 18)(15, 16, 20)(15, 22, 23)
21−3−19−2(16, 24, 20)(17, 22, 24)(19, 23, 24)
22192−3(22, 23, 24)
23−2−3−19
243−192
Vertex Permutation Groups
(1, 16, 22) (2, 20, 18) (3, 24, 14) (4, 15, 7)
(5, 11, 10) (6, 13, 19) (8, 9, 17) (12, 21, 23)
 
(1, 6, 24, 15) (2, 11, 16, 4) (3, 17, 20, 7)
(5, 12, 13, 22) (8, 14, 19, 23) (9, 21, 10, 18)
Table A5. R5.1′ with S4 symmetry.
Table A5. R5.1′ with S4 symmetry.
VertexXYZVertexXYZPolygons
120.6538−21.803730.778133−21.7123−46.6975−23.8636(1, 2, 4, 6, 8, 7, 5, 3)
212.743619.761029.747534−23.7155−42.3821−21.1059(1, 3, 15, 17, 19, 18, 16, 9)
322.4112−22.248726.29243521.803720.6538−30.7781(1, 9, 11, 13, 14, 12, 10, 2)
429.870138.8839−26.550136−19.761012.7436−29.7475(2, 10, 21, 24, 23, 22, 20, 4)
517.18355.220825.611337−60.3072−73.0117−49.4405(3, 5, 25, 27, 29, 28, 26, 15)
624.936454.9657−21.91343838.0925−54.7253−51.9970(4, 20, 38, 39, 37, 35, 36, 6)
733.962841.7103−39.06823933.1120−49.6397−50.2733(5, 7, 41, 40, 42, 44, 43, 25)
833.116150.3384−41.420440−21.8037−20.6538−30.7781(6, 36, 46, 54, 53, 32, 31, 8)
9−73.011760.307249.440541−22.2487−22.4112−26.2924(7, 8, 31, 34, 57, 58, 49, 41)
1054.9657−24.936421.91344260.307273.0117−49.4405(9, 16, 33, 34, 31, 32, 30, 11)
11−49.6397−33.112050.27334349.639733.112050.2733(10, 12, 48, 40, 41, 49, 50, 21)
1238.8839−29.870126.55014454.725338.092451.9970(11, 30, 52, 51, 45, 35, 37, 13)
13−54.7253−38.092451.99704522.248722.4113−26.2924(12, 14, 29, 27, 59, 61, 56, 48)
1446.6975−21.712223.863646−38.883929.870126.5501(13, 37, 39, 58, 57, 28, 29, 14)
15−41.710333.962839.068247−54.965724.936421.9134(15, 26, 47, 46, 36, 35, 45, 17)
16−38.092554.7253−51.99704819.7610−12.7436−29.7475(16, 18, 42, 40, 48, 56, 55, 33)
17−5.220817.1835−25.6113495.2208−17.1835−25.6113(17, 45, 51, 61, 59, 22, 23, 19)
18−33.112049.6397−50.27335041.7103−33.962839.0682(18, 19, 23, 24, 53, 54, 44, 42)
19−31.314339.3571−17.766151−33.9628−41.7103−39.0682(20, 22, 59, 27, 25, 43, 60, 38)
2021.712346.6976−23.863652−17.1835−5.220825.6113(21, 50, 62, 52, 30, 32, 53, 24)
2150.3384−33.116241.420453−42.382123.715521.1059(26, 28, 57, 34, 33, 55, 63, 47)
2223.715542.3821−21.105954−46.697521.712223.8636(38, 60, 64, 62, 50, 49, 58, 39)
2314.616751.0970−18.109655−29.8701−38.8839−26.5501(43, 44, 54, 46, 47, 63, 64, 60)
241.401630.786833.250956−24.9364−54.9657−21.9134(51, 52, 62, 64, 63, 55, 56, 61)
2539.357131.314417.766157−14.6167−51.0970−18.1096
26−50.338433.116141.42045831.3143−39.3571−17.7661
2751.0970−14.616718.10965930.7868−1.4016−33.2509
28−1.4016−30.786833.25096073.0117−60.307249.4405
2942.3821−23.715521.105961−33.1161−50.3384−41.4204
30−39.3571−31.314417.766162−22.411222.248726.2924
31−30.78681.4016−33.250963−12.7436−19.761029.7475
32−51.097014.616718.109664−20.653821.803730.7781
Face Permutation Groups
(1, 9, 24, 10) (2, 7, 23, 13) (3, 11, 22, 8) (4, 12, 19, 20) (5, 16, 17, 14) (6, 18, 15, 21)
Table A6. R6.1 with C3 symmetry.
Table A6. R6.1 with C3 symmetry.
VertexXYZTriangles
1−5.99385.01311.2441(1, 2, 3)(1, 2, 4)(1, 3, 5)
2−18.714320.44399.9060(1, 4, 7)(1, 5, 8)(1, 7, 10)
3−1.3445−7.69741.2441(1, 8, 11)(1, 10, 13)(1, 11, 14)
427.06215.98519.9060(1, 13, 14)(2, 3, 6)(2, 4, 9)
5−12.167029.7607−19.6627(2, 6, 8)(2, 8, 12)(2, 9, 10)
6−8.3478−26.42909.9060(2, 10, 15)(2, 12, 14)(2, 15, 14)
77.33842.68431.2441(3, 5, 9)(3, 6, 7)(3, 7, 12)
8−12.2496−9.5816−9.4864(3, 9, 11)(3, 11, 15)(3, 12, 13)
9−2.173215.3993−9.4864(3, 15, 13)(4, 5, 15)(4, 6, 13)
1031.8570−4.3434−19.6628(4, 7, 6)(4, 9, 5)(4, 11, 12)
11−6.9338−15.9841−1.2142(4, 13, 12)(4, 15, 11)(5, 6, 14)
12−19.6900−25.4173−19.6628(5, 8, 6)(5, 10, 12)(5, 14, 12)
1314.4227−5.8176−9.4864(5, 15, 10)(6, 10, 11)(6, 13, 10)
14−10.375713.9968−1.2142(6, 14, 11)(7, 8, 15)(7, 9, 14)
1517.30951.9872−1.2142(7, 10, 9)(7, 12, 8)(7, 15, 14)
(8, 9, 13)(8, 11, 9)(8, 15, 13)
(9, 14, 13)(10, 12, 11)
Vertex Permutation Groups
(1, 3, 7) (2, 6, 4) (5, 12, 10) (8, 13, 9) (11, 15, 14)
Table A7. R7.1 with D3 symmetry.
Table A7. R7.1 with D3 symmetry.
VertexXYZVertexXYZTriangles
115.4001−7.06292.825237−21.9344−25.3906−1.2867(1, 2, 4)(1, 3, 2)(1, 4, 7)(1, 5, 3)
2−2.146213.32470.19473815.1257−15.5554−9.5477(1, 7, 12)(1, 8, 5)(1, 12, 8)(2, 3, 6)
312.61274.8037−0.194739−11.272114.57633.7805(2, 6, 11)(2, 10, 4)(2, 11, 18)(2, 18, 10)
49.3387−11.66144.798440−11.0218−31.69101.2867(3, 5, 9)(3, 9, 16)(3, 13, 6)(3, 16, 13)
59.3217−18.216016.227141−20.43641.035116.2271(4, 10, 17)(4, 15, 7)(4, 17, 26)(4, 26, 15)
6−13.81679.8054−2.8252429.321718.2160−16.2271(5, 8, 14)(5, 14, 24)(5, 19, 9)(5, 24, 19)
722.6320−3.3891−9.952543−22.692215.0609−17.0380(6, 13, 20)(6, 20, 34)(6, 22, 11)(6, 34, 22)
8−1.3639−24.813920.703844−21.03435.32169.5477(7, 15, 25)(7, 23, 12)(7, 25, 38)(7, 38, 23)
918.25952.47383.78054514.495211.1575−14.2691(8, 12, 21)(8, 21, 35)(8, 27, 14)(8, 35, 27)
105.429713.91824.798446−13.8167−9.80542.8252(9, 19, 28)(9, 28, 47)(9, 31, 16)(9, 47, 31)
11−20.4364−1.0351−16.22714732.9561−6.3004−1.2867(10, 18, 29)(10, 29, 48)(10, 32, 17)(10, 48, 32)
125.9085−20.87709.547748−1.583416.86832.8252(11, 22, 36)(11, 33, 18)(11, 36, 53)(11, 53, 33)
13−14.76842.2569−4.798449−10.46658.5210−0.1947(12, 23, 37)(12, 37, 40)(12, 40, 21)(13, 16, 30)
14−20.807513.588120.70385015.40017.0629−2.8252(13, 30, 49)(13, 39, 20)(13, 49, 39)(14, 27, 41)
1518.2595−2.4738−3.780551−11.2721−14.5763−3.7805(14, 41, 46)(14, 44, 24)(14, 46, 44)(15, 26, 42)
169.338711.6614−4.798452−16.91036.9745−14.2691(15, 42, 43)(15, 43, 45)(15, 45, 25)(16, 31, 50)
17−14.7684−2.25694.79845314.8987−21.1965−20.4158(16, 50, 56)(16, 56, 30)(17, 32, 51)(17, 46, 26)
18−6.987417.0500−3.780554−16.9103−6.974514.2691(17, 51, 61)(17, 61, 46)(18, 33, 52)(18, 52, 55)
19−22.6922−15.060917.038055−21.934425.39061.2867(18, 55, 29)(19, 24, 43)(19, 43, 59)(19, 54, 28)
20−14.251017.90549.952556−2.1462−13.3247−0.1947(19, 59, 54)(20, 39, 57)(20, 44, 61)(20, 57, 44)
2110.9074−23.500920.415857−11.021831.6910−1.2867(20, 61, 34)(21, 33, 62)(21, 40, 58)(21, 58, 33)
22−20.8075−13.5881−20.7038582.4151−18.1320−14.2691(21, 62, 35)(22, 34, 59)(22, 42, 63)(22, 59, 42)
23−8.3810−21.29449.952559−25.8061−2.3044−20.4158(22, 63, 36)(23, 30, 64)(23, 38, 60)(23, 60, 30)
24−25.80612.304420.415860−1.5834−16.8683−2.8252(23, 64, 37)(24, 44, 55)(24, 52, 43)(24, 55, 52)
2532.95616.30041.286761−14.2510−17.9054−9.9525(25, 45, 65)(25, 47, 38)(25, 65, 68)(25, 68, 47)
2612.6127−4.80370.19476224.3892−12.121617.0380(26, 46, 56)(26, 50, 42)(26, 56, 50)(27, 35, 48)
2722.171411.225720.703863−1.363924.8139−20.7038(27, 48, 68)(27, 65, 41)(27, 68, 65)(28, 53, 47)
2814.4952−11.157514.269164−6.9874−17.05003.7805(28, 54, 66)(28, 62, 53)(28, 66, 62)(29, 31, 68)
29−8.381021.2944−9.95256514.898721.196520.4158(29, 55, 67)(29, 67, 31)(29, 68, 48)(30, 56, 64)
305.4297−13.9182−4.7984662.415118.132014.2691(30, 60, 49)(31, 47, 68)(31, 67, 50)(32, 48, 49)
3122.63203.38919.9525675.908520.8770−9.5477(32, 49, 60)(32, 60, 69)(32, 69, 51)(33, 53, 62)
32−10.4665−8.52100.19476815.125715.55549.5477(33, 58, 52)(34, 37, 59)(34, 40, 37)(34, 61, 40)
33−1.6970−27.1825−17.03806911.1146−17.1808−16.2271(35, 39, 49)(35, 49, 48)(35, 62, 39)(36, 38, 53)
34−21.0343−5.3216−9.547770−1.697027.182517.0380(36, 60, 38)(36, 63, 69)(36, 69, 60)(37, 54, 59)
3511.114617.180816.22717124.389212.1216−17.0380(37, 64, 54)(38, 47, 53)(39, 62, 66)(39, 66, 57)
3622.1714−11.2257−20.70387210.907423.5009−20.4158(40, 51, 58)(40, 61, 51)(41, 56, 46)(41, 64, 56)
(41, 65, 70)(41, 70, 64)(42, 50, 63)(42, 59, 43)
(43, 52, 45)(44, 46, 61)(44, 57, 55)(45, 52, 58)
(45, 58, 71)(45, 71, 65)(50, 67, 63)(51, 69, 71)
(51, 71, 58)(54, 64, 70)(54, 70, 66)(55, 57, 67)
(57, 66, 72)(57, 72, 67)(63, 67, 72)(63, 72, 69)
(65, 71, 70)(66, 70, 72)(69, 72, 71)(70, 71, 72)
Vertex Permutation Groups
(1, 50) (2, 56) (3, 26) (4, 16) (5, 42) (6, 46) (7, 31) (8, 63) (9, 15) (10, 30)
(11, 41) (12, 67) (13, 17) (14, 22) (18, 64) (19, 43) (20, 61) (21, 72) (23, 29) (24, 59)
(25, 47) (27, 36) (28, 45) (32, 49) (33, 70) (34, 44) (35, 69) (37, 55) (38, 68) (39, 51)
(40, 57) (48, 60) (52, 54) (53, 65) (58, 66) (62, 71)
 
(1, 48, 46) (2, 32, 26) (3, 49, 56) (4, 10, 17) (5, 35, 41) (6, 60, 50) (7, 29, 61) (8, 27, 14)
(9, 39, 64) (11, 69, 42) (12, 68, 44) (13, 30, 16) (15, 18, 51) (19, 62, 70) (20, 23, 31) (21, 65, 24)
(22, 36, 63) (25, 55, 40) (28, 66, 54) (33, 71, 43) (34, 38, 67) (37, 47, 57) (45, 52, 58) (53, 72, 59)
Table A8. R7.1′ with D3 symmetry.
Table A8. R7.1′ with D3 symmetry.
VertexXYZVertexXYZPolygons
1−11.9611−62.3857−34.62298517.6246−48.59094.9002(1, 2, 4, 6, 7, 5, 3)
2−8.388714.8861−12.604186−73.0143−61.774139.1582(1, 2, 9, 11, 12, 10, 8)
3−9.8501−59.6271−33.5116870043.8585(1, 3, 13, 15, 16, 14, 8)
4−15.129019.7786−12.352088−75.5917−37.993233.2130(2, 4, 17, 19, 20, 18, 9)
54.7685−72.1192−34.5800894.649323.108039.8894(3, 5, 21, 23, 24, 22, 13)
6−16.463118.2321−12.999790−9.564222.991412.3520(4, 6, 29, 31, 32, 30, 17)
7−14.7678−79.9962−39.967791−23.376716.3077−2.9193(5, 7, 33, 35, 36, 34, 21)
8−48.0470−41.551534.622992−19.745213.0607−12.2542(6, 7, 33, 49, 51, 50, 29)
9−9.478319.7410−8.975293−7.557923.373512.9997(8, 10, 25, 28, 27, 26, 14)
10−46.7136−38.344033.511694−21.224016.958834.8700(9, 11, 42, 43, 44, 41, 18)
11−25.7369−17.19595.363995−38.436960.8557−0.4706(10, 12, 45, 47, 48, 46, 25)
12−45.2292−22.948436.578596−50.89329.03214.9002(11, 12, 45, 72, 73, 71, 42)
132.7407−50.6439−36.57859770.2066−1.93080.1000(13, 15, 37, 40, 39, 38, 22)
1417.08610.178212.60409833.268639.55884.9002(14, 16, 52, 54, 55, 53, 26)
15−2.0237−30.8867−5.36399970.20661.9308−0.1000(15, 16, 52, 64, 66, 65, 37)
1621.83541.66218.975210071.92112.8595−0.4706(17, 19, 61, 62, 63, 60, 30)
17−2.434528.39872.9193101−9.850159.627133.5116(18, 20, 67, 69, 70, 68, 41)
1800−20.6846102−48.047041.5515−34.6229(19, 20, 67, 102, 103, 101, 61)
19−2.023730.88675.3639103−11.961162.385734.6229(21, 23, 56, 59, 58, 57, 34)
2021.8354−1.6621−8.975210460.072940.1893−34.5800(22, 24, 74, 76, 77, 75, 38)
214.6493−23.1080−39.889410570.699046.4678−33.2130(23, 24, 74, 94, 96, 95, 56)
222.0218−23.8887−39.368310676.662727.2089−39.9677(25, 28, 86, 88, 89, 87, 46)
23−75.591737.9932−33.213010790.005132.3452−39.1582(26, 27, 78, 81, 80, 79, 53)
24−83.37970.0158−27.790710833.2686−39.5588−4.9002(27, 28, 86, 127, 126, 128, 78)
25−64.8414−31.930034.580010925.2987−9.9011−34.8700(29, 31, 93, 90, 91, 92, 50)
2624.6933−3.212812.352011000−41.8504(30, 32, 97, 99, 100, 98, 60)
2724.0210−5.141412.999711124.9674−19.0042−25.3000(31, 32, 97, 138, 132, 133, 93)
28−61.8949−52.787439.9677112−18.3286−13.807310.5249(33, 35, 84, 83, 82, 85, 49)
29−18.328613.8073−10.5249113−2.7932−22.7767−10.5249(34, 36, 104, 106, 107, 105, 57)
30−1.438323.630212.2542114−7.5579−23.3735−12.9997(35, 36, 104, 131, 129, 130, 84)
31−2.793222.776710.5249115−17.3288−13.100612.5954(37, 40, 118, 113, 112, 119, 65)
32−2.681121.557512.5954116−8.697414.707912.6040(38, 39, 108, 109, 111, 110, 75)
33−16.9908−94.1193−39.1582117−25.736917.1959−5.3639(39, 40, 118, 99, 97, 138, 108)
3400−43.8585118−2.6811−21.5575−12.5954(41, 44, 120, 121, 123, 122, 68)
354.8926−84.4610−33.2130119−16.4631−18.232112.9997(42, 43, 114, 113, 112, 115, 71)
3617.687415.5803−39.889412060.008220.8342−34.6229(43, 44, 120, 131, 104, 106, 114)
37−2.4345−28.3987−2.919312160.0081−20.834234.6229(45, 47, 125, 83, 82, 124, 72)
38−0.3134−18.1377−22.828612242.4885−27.695536.5785(46, 48, 132, 133, 134, 135, 87)
39−1.2826−28.3823−11.978912356.5636−21.283133.5116(47, 48, 132, 138, 108, 109, 125)
40−1.4383−23.6302−12.25421243.9744−31.124525.3000(49, 51, 126, 128, 142, 141, 85)
41−12.3571−18.0790−8.975212526.4513−38.4429−11.7314(50, 51, 126, 127, 136, 137, 92)
42−23.3767−16.30772.9193126−36.7754−59.83530.1000(52, 54, 116, 90, 91, 117, 64)
43−9.5642−22.9914−12.3520127−38.4369−60.85570.4706(53, 55, 129, 130, 140, 139, 79)
44−8.6974−14.7079−12.604012820.0099−8.456912.5954(54, 55, 129, 131, 120, 121, 116)
45−21.6991−10.193439.368312942.488527.6955−36.5785(56, 59, 150, 81, 80, 151, 95)
46−22.3368−7.527639.889413019.677313.6952−39.3683(57, 58, 143, 144, 145, 146, 105)
4741.7035−72.201027.790713156.563621.2831−33.5116(58, 59, 150, 69, 67, 102, 143)
4870.6990−46.467733.213013290.0051−32.345239.1582(60, 63, 149, 152, 153, 154, 98)
49−33.4841−63.7152−0.470613376.6627−27.208939.9677(61, 62, 147, 88, 89, 148, 101)
50−17.328813.1006−12.595413460.0729−40.189234.5800(62, 63, 149, 94, 74, 76, 147)
51−33.4312−61.7661−0.100013517.6874−15.580339.8894(64, 66, 103, 102, 143, 144, 117)
520020.6846136−50.8932−9.0320−4.9002(65, 66, 103, 101, 148, 155, 119)
5325.811312.0910−2.9193137−23.938515.3019−11.9789(68, 70, 142, 141, 156, 157, 122)
54−12.357118.07898.975213871.9211−2.85950.4706(69, 70, 142, 128, 78, 81, 150)
5527.760513.6908−5.363913925.221113.0804−11.9789(71, 73, 96, 95, 151, 160, 115)
56−73.014361.7741−39.158214015.86448.7975−22.8286(72, 73, 96, 94, 149, 152, 124)
57−22.33687.5276−39.889414125.2211−13.080411.9789(75, 77, 136, 137, 158, 159, 110)
58−64.841431.9300−34.580014221.1835−10.569512.2542(76, 77, 136, 127, 86, 88, 147)
59−61.894952.7874−39.9677143−46.713638.3440−33.5116(79, 80, 151, 160, 162, 161, 139)
60−1.282628.382311.9789144−45.229222.9484−36.5785(82, 85, 141, 156, 153, 152, 124)
612.740750.643936.5785145−21.699110.1934−39.3683(83, 84, 130, 140, 111, 109, 125)
622.021823.888739.368314641.703572.2010−27.7907(87, 89, 148, 155, 163, 164, 135)
63−0.313418.137722.8286147−83.3797−0.015827.7907(90, 93, 133, 134, 123, 121, 116)
64−9.4783−19.74108.97521484.768572.119234.5800(91, 92, 137, 158, 145, 144, 117)
65−15.1290−19.778612.3520149−28.941812.120325.3000(98, 100, 107, 105, 146, 165, 154)
66−8.3887−14.886112.604115024.02105.1414−12.9997(99, 100, 107, 106, 114, 113, 118)
6717.0861−0.1782−12.6040151−36.775459.8353−0.1000(110, 111, 140, 139, 161, 166, 159)
6827.7605−13.69085.36391520041.8504(112, 115, 160, 162, 163, 155, 119)
6924.69333.2128−12.352015324.967419.004225.3000(122, 123, 134, 135, 164, 167, 157)
7025.8113−12.09102.919315425.29879.901134.8700(145, 146, 165, 168, 166, 159, 158)
71−19.7452−13.060712.2542155−14.767879.996239.9677(153, 154, 165, 168, 167, 157, 156)
72−15.5510−9.340222.828615615.8644−8.797522.8286(161, 162, 163, 164, 167, 168, 166)
73−23.9385−15.301911.978815719.6773−13.695239.3683
74−46.51813.686011.7314158−15.55109.3402−22.8286
75−28.9418−12.1203−25.30001593.974431.1245−25.3000
76−46.5181−3.6860−11.7314160−33.431261.76610.1000
77−21.2240−16.9588−34.870016117.624648.5909−4.9002
7821.1218−8.969410.5249162−33.484163.71520.4706
7921.183510.5695−12.2542163−16.990894.119339.1582
8020.00998.4569−12.59541644.892684.461033.2130
8121.12188.9694−10.524916526.451338.442911.7314
82−4.0748−26.859934.8701166−4.074826.8599−34.8701
8320.0669−42.128911.731416741.676272.216827.7908
8441.6762−72.2168−27.790816820.066942.1289−11.7314
Face Permutation Groups
(1, 50) (2, 56) (3, 26) (4, 16) (5, 42) (6, 46) (7, 31) (8, 63) (9, 15) (10, 30)
(11, 41) (12, 67) (13, 17) (14, 22) (18, 64) (19, 43) (20, 61) (21, 72) (23, 29) (24, 59)
(25, 47) (27, 36) (28, 45) (32, 49) (33, 70) (34, 44) (35, 69) (37, 55) (38, 68) (39, 51)
(40, 57) (48, 60) (52, 54) (53, 65) (58, 66) (62, 71)
 
(1, 48, 46) (2, 32, 26) (3, 49, 56) (4, 10, 17) (5, 35, 41) (6, 60, 50) (7, 29, 61) (8, 27, 14)
(9, 39, 64) (11, 69, 42) (12, 68, 44) (13, 30, 16) (15, 18, 51) (19, 62, 70) (20, 23, 31) (21, 65, 24)
(22, 36, 63) (25, 55, 40) (28, 66, 54) (33, 71, 43) (34, 38, 67) (37, 47, 57) (45, 52, 58) (53, 72, 59)
Table A9. R8.1 with D4 symmetry.
Table A9. R8.1 with D4 symmetry.
VertexXYZTriangles
11519−13(1, 2, 4)(1, 3, 2)(1, 4, 7)
2−151913(1, 5, 3)(1, 7, 12)(1, 8, 5)
3−1915−13(1, 12, 14)(1, 14, 8)(2, 3, 6)
4191513(2, 6, 11)(2, 10, 4)(2, 11, 19)
51214−7(2, 19, 20)(2, 20, 10)(3, 5, 9)
6−19−1513(3, 9, 17)(3, 13, 6)(3, 17, 21)
719−15−13(3, 21, 13)(4, 10, 18)(4, 16, 7)
85−41(4, 18, 25)(4, 25, 26)(4, 26, 16)
9680(5, 8, 15)(5, 15, 24)(5, 18, 9)
10−12147(5, 24, 27)(5, 27, 18)(6, 13, 16)
11−14−127(6, 15, 11)(6, 16, 30)(6, 30, 33)
1214−12−7(6, 33, 15)(7, 13, 32)(7, 16, 13)
13−15−19−13(7, 23, 12)(7, 31, 23)(7, 32, 31)
148−60(8, 11, 15)(8, 14, 22)(8, 22, 31)
154−5−1(8, 31, 34)(8, 34, 11)(9, 10, 37)
1615−1913(9, 18, 10)(9, 22, 17)(9, 37, 39)
17451(9, 39, 22)(10, 20, 23)(10, 23, 38)
18−680(10, 38, 37)(11, 28, 19)(11, 34, 38)
19−8−60(11, 38, 28)(12, 20, 40)(12, 23, 20)
20−5−4−1(12, 24, 29)(12, 29, 14)(12, 40, 24)
21−1412−7(13, 21, 28)(13, 28, 39)(13, 39, 32)
220027(14, 17, 22)(14, 26, 41)(14, 29, 26)
23−4−51(14, 41, 17)(15, 29, 24)(15, 33, 36)
241216−4(15, 36, 29)(16, 26, 29)(16, 29, 35)
25−45−1(16, 35, 30)(17, 30, 35)(17, 35, 21)
2614127(17, 41, 30)(18, 27, 35)(18, 35, 36)
27−1612−4(18, 36, 25)(19, 21, 42)(19, 25, 36)
28−860(19, 28, 21)(19, 36, 20)(19, 42, 25)
29860(20, 33, 40)(20, 36, 33)(21, 27, 42)
3012−147(21, 35, 27)(22, 23, 31)(22, 28, 23)
31−6−80(22, 39, 28)(23, 28, 38)(24, 37, 38)
32−12−14−7(24, 38, 27)(24, 40, 37)(25, 32, 39)
336−80(25, 39, 26)(25, 42, 32)(26, 37, 41)
34−16−124(26, 39, 37)(27, 34, 42)(27, 38, 34)
3554−1(29, 36, 35)(30, 31, 33)(30, 34, 31)
3600−27(30, 41, 34)(31, 32, 33)(32, 40, 33)
3716124(32, 42, 40)(34, 41, 42)(37, 40, 41)
38−12164(40, 42, 41)
39−541
4016−12−4
4112−164
42−12−16−4
Vertex Permutation Groups
(1, 16) (2, 13) (3, 6) (4, 7) (5, 30) (8, 35) (9, 33)
(10, 32) (11, 21) (12, 26) (14, 29) (15, 17) (18, 31) (19, 28)
(20, 39) (22, 36) (23, 25) (24, 41) (27, 34) (37, 40) (38, 42)
 
(1, 3, 13, 7) (2, 6, 16, 4) (5, 21, 32, 12) (8, 17, 39, 23) (9, 28, 31, 14)
(10, 11, 30, 26) (15, 35, 25, 20) (18, 19, 33, 29) (24, 27, 42, 40) (34, 41, 37, 38)
Table A10. R8.2 with D4 symmetry.
Table A10. R8.2 with D4 symmetry.
VertexXYZTriangles
10024(1, 2, 12)(1, 6, 2)(1, 8, 25)
2−41917(1, 12, 19)(1, 13, 6)(1, 17, 8)
3−6−12−11(1, 19, 17)(1, 25, 13)(2, 6, 18)
412611(2, 10, 14)(2, 14, 26)(2, 18, 20)
5−5−4−5(2, 20, 10)(2, 26, 12)(3, 4, 5)
66129(3, 5, 12)(3, 12, 34)(3, 18, 4)
7−126−11(3, 21, 29)(3, 29, 32)(3, 32, 18)
84−1917(3, 34, 21)(4, 13, 5)(4, 18, 36)
9−12−611(4, 22, 23)(4, 23, 35)(4, 35, 13)
10−61211(4, 36, 22)(5, 13, 33)(5, 24, 31)
11−18−4−12(5, 28, 24)(5, 31, 12)(5, 33, 28)
12−1269(6, 7, 30)(6, 11, 7)(6, 13, 27)
1319417(6, 27, 11)(6, 30, 18)(7, 9, 26)
14−418−12(7, 11, 9)(7, 21, 30)(7, 26, 28)
15−4−55(7, 28, 33)(7, 33, 21)(8, 15, 30)
16612−11(8, 17, 15)(8, 21, 34)(8, 22, 25)
17−6−129(8, 30, 21)(8, 34, 22)(9, 11, 19)
18455(9, 15, 38)(9, 16, 15)(9, 19, 37)
19−19−417(9, 37, 16)(9, 38, 26)(10, 16, 14)
204−5−5(10, 20, 23)(10, 23, 31)(10, 24, 27)
216−1211(10, 27, 16)(10, 31, 24)(11, 24, 32)
2218−412(11, 27, 24)(11, 29, 19)(11, 32, 29)
2312−6−11(12, 26, 34)(12, 31, 19)(13, 25, 33)
24−12−6−9(13, 35, 27)(14, 16, 25)(14, 22, 36)
2512−69(14, 25, 22)(14, 28, 26)(14, 36, 28)
26−18412(15, 16, 39)(15, 17, 20)(15, 20, 38)
2741812(15, 39, 30)(16, 27, 39)(16, 37, 25)
28−194−17(17, 19, 29)(17, 23, 20)(17, 29, 35)
29−4−1812(17, 35, 23)(18, 30, 36)(18, 32, 20)
30−45−5(19, 31, 37)(20, 32, 38)(21, 33, 41)
31−545(21, 41, 29)(22, 34, 42)(22, 42, 23)
32−4−19−17(23, 42, 31)(24, 28, 40)(24, 40, 32)
335−45(25, 37, 33)(26, 38, 34)(27, 35, 39)
344−18−12(28, 36, 40)(29, 41, 35)(30, 39, 36)
35184−12(31, 42, 37)(32, 40, 38)(33, 37, 41)
36−612−9(34, 38, 42)(35, 41, 39)(36, 39, 40)
3754−5(37, 42, 41)(38, 40, 42)(39, 41, 40)
386−12−9(40, 41, 42)
39419−17
4000−24
41126−9
4219−4−17
Vertex Permutation Groups
(1, 40) (2, 32) (3, 10) (4, 23) (5, 31) (6, 38) (7, 9)
(8, 39) (11, 26) (12, 24) (13, 42) (14, 29) (15, 30) (16, 21)
(17, 36) (18, 20) (19, 28) (22, 35) (25, 41) (27, 34) (33, 37)
 
(2, 19, 8, 13) (3, 23, 16, 7) (4, 10, 9, 21) (5, 20, 37, 30) (6, 12, 17, 25)
(11, 34, 35, 14) (15, 33, 18, 31) (22, 27, 26, 29) (24, 38, 41, 36) (28, 32, 42, 39)
Table A11. R10.1 with S4 symmetry.
Table A11. R10.1 with S4 symmetry.
VertexXYZTriangles
118−26−16(1, 2, 3)(1, 3, 5)(1, 4, 2)
241−45−11(1, 5, 8)(1, 7, 4)(1, 8, 14)
3−40−18(1, 12, 7)(1, 14, 20)(1, 20, 12)
4261816(2, 4, 10)(2, 6, 3)(2, 10, 22)
5−3419−57(2, 11, 6)(2, 19, 11)(2, 22, 29)
640−18(2, 29, 19)(3, 6, 13)(3, 9, 5)
7374940(3, 13, 23)(3, 17, 9)(3, 23, 28)
849−37−40(3, 28, 17)(4, 7, 16)(4, 16, 21)
9−1−1−2(4, 18, 10)(4, 21, 34)(4, 24, 18)
10141911(4, 34, 24)(5, 9, 21)(5, 15, 8)
1149−40−37(5, 18, 15)(5, 21, 26)(5, 26, 33)
1219−14−11(5, 33, 18)(6, 11, 26)(6, 15, 24)
13−4145−11(6, 16, 36)(6, 24, 13)(6, 26, 16)
14−26−1816(6, 36, 15)(7, 12, 27)(7, 13, 33)
1534−19−57(7, 17, 16)(7, 27, 13)(7, 30, 17)
16−19−3457(7, 33, 30)(8, 11, 25)(8, 15, 22)
17193457(8, 22, 30)(8, 25, 14)(8, 30, 34)
18−4937−40(8, 34, 11)(9, 10, 36)(9, 17, 30)
19−40−4937(9, 19, 21)(9, 25, 19)(9, 30, 10)
20−45−4111(9, 36, 25)(10, 18, 23)(10, 23, 27)
210−418(10, 27, 36)(10, 30, 22)(11, 12, 26)
2211−40(11, 19, 25)(11, 27, 12)(11, 34, 27)
23−4940−37(12, 20, 32)(12, 22, 28)(12, 28, 26)
24−1826−16(12, 32, 22)(13, 14, 25)(13, 24, 14)
25−14−1911(13, 25, 33)(13, 27, 23)(14, 17, 31)
261−12(14, 24, 29)(14, 29, 17)(14, 31, 20)
27404937(15, 18, 24)(15, 28, 22)(15, 31, 28)
28−112(15, 36, 31)(16, 17, 29)(16, 26, 21)
29−37−4940(16, 29, 32)(16, 32, 36)(17, 28, 31)
304110(18, 20, 23)(18, 32, 20)(18, 33, 32)
310418(19, 20, 21)(19, 23, 20)(19, 29, 35)
32−4−110(19, 35, 23)(20, 31, 21)(21, 31, 34)
33−1140(22, 32, 29)(23, 35, 28)(24, 34, 35)
34454111(24, 35, 29)(25, 32, 33)(25, 36, 32)
35−1914−11(26, 28, 35)(26, 35, 33)(27, 31, 36)
3611−2(27, 34, 31)(30, 33, 35)(30, 35, 34)
Vertex Permutation Groups
(1, 4, 24, 14) (2, 34, 13, 20) (3, 21, 6, 31) (5, 16, 15, 17) (7, 18, 29, 8)
(9, 26, 36, 28) (10, 35, 25, 12) (11, 27, 23, 19) (22, 30, 33, 32)
Table A12. R10.2 with C2 symmetry.
Table A12. R10.2 with C2 symmetry.
VertexXYZTriangles
1−29−83−105(1, 2, 3)(1, 3, 5)(1, 4, 2)
2−2−20−42(1, 5, 8)(1, 7, 4)(1, 8, 11)
3763418(1, 10, 7)(1, 11, 14)(1, 13, 10)
4−41−197(1, 14, 17)(1, 16, 13)(1, 17, 16)
56−26−9(2, 4, 9)(2, 6, 3)(2, 8, 6)
62983−105(2, 9, 10)(2, 10, 15)(2, 12, 8)
7331−30(2, 14, 12)(2, 15, 16)(2, 16, 18)
815−70(2, 18, 14)(3, 6, 7)(3, 7, 12)
9−26−37−1(3, 9, 5)(3, 11, 9)(3, 12, 13)
10−626−9(3, 13, 18)(3, 15, 11)(3, 17, 15)
1141197(3, 18, 17)(4, 5, 9)(4, 6, 13)
122637−1(4, 7, 6)(4, 11, 15)(4, 12, 17)
13−1570(4, 13, 12)(4, 15, 5)(4, 17, 18)
14−3−31−30(4, 18, 11)(5, 6, 8)(5, 10, 18)
15−7−72(5, 12, 14)(5, 14, 6)(5, 15, 10)
16220−42(5, 16, 12)(5, 18, 16)(6, 10, 13)
17−76−3418(6, 11, 16)(6, 14, 11)(6, 16, 17)
18772(6, 17, 10)(7, 8, 12)(7, 9, 16)
(7, 10, 9)(7, 14, 18)(7, 15, 14)
(7, 16, 15)(7, 18, 8)(8, 9, 11)
(8, 13, 15)(8, 15, 17)(8, 17, 9)
(8, 18, 13)(9, 13, 16)(9, 14, 13)
(9, 17, 14)(10, 11, 18)(10, 12, 11)
(10, 17, 12)(11, 12, 16)(13, 14, 15)
Vertex Permutation Groups
(1, 6) (2, 16) (3, 17) (4, 11) (5, 10) (7, 14) (8, 13) (9, 12) (15, 18)
Table A13. R13.1 with C3 symmetry.
Table A13. R13.1 with C3 symmetry.
VertexXYZTriangles
1−29.0169−20.72304.7465(1, 2, 3)(1, 2, 4)(1, 3, 5)(1, 4, 7)
26.5404−0.52814.7568(1, 5, 8)(1, 7, 12)(1, 8, 14)(1, 12, 20)
30.0176−8.95914.7215(1, 14, 24)(1, 20, 24)(2, 3, 6)(2, 4, 10)
421.2008−19.864723.1409(2, 6, 11)(2, 10, 22)(2, 11, 19)(2, 19, 30)
50.5111−1.5323−0.0497(2, 22, 32)(2, 30, 32)(3, 5, 9)(3, 6, 13)
62.28055.20484.4482(3, 9, 17)(3, 13, 23)(3, 17, 28)(3, 23, 33)
7−26.13687.4514−11.5974(3, 28, 33)(4, 7, 16)(4, 10, 18)(4, 16, 31)
8−3.7276−5.40014.7568(4, 18, 29)(4, 28, 33)(4, 29, 33)(4, 31, 28)
96.0704−5.0680−6.1698(5, 8, 15)(5, 9, 21)(5, 15, 27)(5, 21, 29)
100.5135−0.9560−1.1483(5, 27, 32)(5, 29, 30)(5, 32, 30)(6, 11, 26)
11−2.64210.41731.8520(6, 13, 25)(6, 20, 24)(6, 20, 27)(6, 24, 31)
121.35387.7911−6.1698(6, 25, 31)(6, 26, 27)(7, 12, 15)(7, 15, 35)
137.75004.49484.7215(7, 16, 21)(7, 19, 30)(7, 21, 23)(7, 30, 23)
14−1.08470.0333−1.1483(7, 35, 19)(8, 14, 16)(8, 15, 18)(8, 16, 34)
151.5328−0.4023−0.8222(8, 18, 19)(8, 19, 33)(8, 33, 23)(8, 34, 23)
16−27.8037−8.428123.1409(9, 12, 20)(9, 12, 34)(9, 17, 25)(9, 20, 22)
17−1.1148−1.1263−0.8222(9, 21, 26)(9, 22, 26)(9, 34, 25)(10, 14, 24)
180.9596−2.49681.8520(10, 14, 35)(10, 17, 25)(10, 18, 25)(10, 22, 26)
191.68252.07951.8520(10, 24, 17)(10, 35, 26)(11, 14, 16)(11, 14, 28)
20−7.4242−2.7231−6.1698(11, 17, 36)(11, 19, 18)(11, 26, 16)(11, 28, 17)
21−5.6477−0.62744.4482(11, 36, 18)(12, 13, 32)(12, 15, 13)(12, 29, 33)
2232.4551−14.76784.7465(12, 32, 33)(12, 34, 29)(13, 21, 36)(13, 23, 21)
23−7.76764.46434.7215(13, 25, 15)(13, 32, 22)(13, 36, 22)(14, 28, 30)
24−0.63251.0201−0.2677(14, 30, 29)(14, 35, 29)(15, 18, 25)(15, 27, 26)
2519.521518.9094−11.5974(15, 35, 26)(16, 21, 26)(16, 31, 25)(16, 34, 25)
26−0.5672−1.0579−0.2677(17, 24, 32)(17, 32, 27)(17, 36, 27)(18, 29, 21)
27−1.58260.3235−0.0497(18, 36, 21)(19, 24, 31)(19, 33, 24)(19, 35, 31)
286.6153−26.3608−11.5974(20, 22, 28)(20, 23, 30)(20, 27, 23)(20, 28, 30)
291.19970.0377−0.2677(22, 28, 31)(22, 36, 31)(23, 34, 27)(24, 32, 33)
30−0.41801.5286−0.8222(27, 36, 34)(29, 34, 35)(31, 35, 36)(34, 36, 35)
316.602928.292823.1409
321.07151.2088−0.0497
333.3672−4.57744.4482
34−3.438235.49094.7465
350.57120.9228−1.1483
36−2.81285.92824.7568
Vertex Permutation Groups
(1, 22, 34) (2, 36, 8) (3, 13, 23) (4, 31, 16) (5, 32, 27) (6, 21, 33)
(7, 28, 25) (9, 12, 20) (10, 35, 14) (11, 18, 19) (15, 30, 17) (24, 26, 29)
Table A14. R14.1 with T symmetry.
Table A14. R14.1 with T symmetry.
VertexXYZVertexXYZTriangles
133−19−779−4−2733(1, 2, 3)(1, 3, 5)(1, 4, 2)(1, 5, 8)
232−29−108013−4(1, 7, 4)(1, 8, 12)(1, 12, 7)(2, 4, 10)
37−33−1981−1032−29(2, 6, 3)(2, 10, 18)(2, 11, 6)(2, 18, 11)
435−143082−16−23−31(3, 6, 13)(3, 9, 5)(3, 13, 16)(3, 16, 9)
519−7−3383−716−8(4, 7, 15)(4, 15, 26)(4, 17, 10)(4, 26, 17)
619−32−1841326−1(5, 9, 19)(5, 14, 8)(5, 19, 24)(5, 24, 14)
731−16238523−3116(6, 11, 22)(6, 20, 13)(6, 22, 34)(6, 34, 20)
829−10−32863241−12(7, 12, 23)(7, 23, 38)(7, 25, 15)(7, 38, 25)
910−32−2987−3−25−21(8, 14, 27)(8, 21, 12)(8, 27, 35)(8, 35, 21)
1041−123288−91829(9, 16, 31)(9, 28, 19)(9, 31, 47)(9, 47, 28)
11716889−29918(10, 17, 32)(10, 29, 18)(10, 32, 48)(10, 48, 29)
1232−1−19903−2521(11, 18, 33)(11, 33, 53)(11, 36, 22)(11, 53, 36)
13−23−31−1691213−25(12, 21, 40)(12, 37, 23)(12, 40, 37)(13, 20, 39)
141430−3592−1932−1(13, 30, 16)(13, 39, 49)(13, 49, 30)(14, 24, 44)
159−1829933−41(14, 41, 27)(14, 44, 64)(14, 64, 41)(15, 25, 45)
16−30−35−1494−351430(15, 42, 26)(15, 45, 65)(15, 65, 42)(16, 30, 55)
1721−325952−10−14(16, 50, 31)(16, 55, 50)(17, 26, 46)(17, 46, 69)
1827−33−49626−113(17, 51, 32)(17, 69, 51)(18, 29, 54)(18, 52, 33)
191−19−3297−25213(18, 54, 52)(19, 28, 51)(19, 43, 24)(19, 51, 66)
20−18−29−998−32521(19, 66, 43)(20, 34, 60)(20, 45, 39)(20, 60, 82)
21−168−79919733(20, 82, 45)(21, 35, 61)(21, 56, 40)(21, 61, 83)
22101421003514−30(21, 83, 56)(22, 36, 41)(22, 41, 84)(22, 57, 34)
2329−918101−16−87(22, 84, 57)(23, 37, 62)(23, 58, 38)(23, 62, 85)
241623−31102−10−3229(23, 85, 58)(24, 43, 71)(24, 67, 44)(24, 71, 67)
251−34103−31−16−23(25, 38, 63)(25, 39, 45)(25, 63, 89)(25, 89, 39)
26−11326104−41−12−32(26, 42, 70)(26, 68, 46)(26, 70, 68)(27, 36, 86)
271232−41105−29−1032(27, 41, 36)(27, 59, 35)(27, 86, 59)(28, 32, 51)
28−8−716106−26−1−13(28, 47, 78)(28, 78, 101)(28, 101, 32)(29, 48, 79)
2932−4112107−10−142(29, 62, 54)(29, 79, 102)(29, 102, 62)(30, 49, 80)
30−29−9−18108−119−32(30, 72, 55)(30, 80, 103)(30, 103, 72)(31, 50, 56)
31−32−41−121092521−3(31, 56, 104)(31, 73, 47)(31, 104, 73)(32, 74, 48)
323342711014−3035(32, 101, 74)(33, 52, 72)(33, 72, 105)(33, 75, 53)
331687111−18299(33, 105, 75)(34, 57, 90)(34, 87, 60)(34, 90, 87)
3413−261112−197−33(35, 59, 91)(35, 70, 61)(35, 91, 70)(36, 53, 81)
3533−4−2711342733(36, 81, 86)(37, 40, 77)(37, 54, 62)(37, 77, 109)
36−427−33114−7−3319(37, 109, 54)(38, 58, 67)(38, 67, 88)(38, 88, 63)
37261−13115−321−19(39, 76, 49)(39, 89, 76)(40, 50, 106)(40, 56, 50)
38−134116113−26(40, 106, 77)(41, 64, 98)(41, 98, 84)(42, 61, 70)
39−413117−162331(42, 65, 99)(42, 99, 122)(42, 122, 61)(43, 66, 100)
40−142−10118−32−2910(43, 80, 71)(43, 100, 123)(43, 123, 80)(44, 58, 124)
41325−2111919321(44, 67, 58)(44, 92, 64)(44, 124, 92)(45, 82, 93)
421193212041−3(45, 93, 65)(46, 68, 75)(46, 75, 125)(46, 94, 69)
43918−2912127334(46, 125, 94)(47, 73, 87)(47, 87, 107)(47, 107, 78)
441829−9122103229(48, 74, 110)(48, 90, 79)(48, 110, 90)(49, 71, 80)
45−3−4−11233116−23(49, 76, 111)(49, 111, 71)(50, 55, 97)(50, 97, 106)
46−213251242331−16(51, 69, 95)(51, 95, 66)(52, 54, 96)(52, 55, 72)
474−27−33125−411232(52, 96, 126)(52, 126, 55)(53, 68, 108)(53, 75, 68)
4812−3241126−14−210(53, 108, 81)(54, 109, 96)(55, 126, 97)(56, 83, 118)
49−4−1−3127−1014−2(56, 118, 104)(57, 79, 90)(57, 84, 119)(57, 119, 141)
50−25−21−3128−1−1932(57, 141, 79)(58, 85, 120)(58, 120, 124)(59, 86, 121)
51−2−101412918−299(59, 100, 91)(59, 121, 142)(59, 142, 100)(60, 73, 143)
5214210130−21−3−25(60, 87, 73)(60, 112, 82)(60, 143, 112)(61, 113, 83)
538716131−2733−4(61, 122, 113)(62, 102, 114)(62, 114, 85)(63, 88, 94)
5425−2131328−7−16(63, 94, 144)(63, 115, 89)(63, 144, 115)(64, 92, 107)
55−26113133−1−3−4(64, 107, 127)(64, 127, 98)(65, 93, 129)(65, 110, 99)
56−27−334134−33−197(65, 129, 110)(66, 91, 100)(66, 95, 130)(66, 130, 91)
5710−14−21353035−14(67, 71, 117)(67, 117, 88)(68, 70, 116)(68, 116, 108)
584−13136−13−26−1(69, 88, 128)(69, 94, 88)(69, 128, 95)(70, 91, 116)
594112−32137−334−27(71, 111, 117)(72, 103, 134)(72, 134, 105)(73, 104, 137)
60−14−30−3513832119(73, 137, 143)(74, 99, 110)(74, 101, 138)(74, 138, 149)
61−87−16139−123241(74, 149, 99)(75, 105, 139)(75, 139, 125)(76, 89, 140)
6230−3514140−303514(76, 119, 111)(76, 140, 148)(76, 148, 119)(77, 106, 115)
63−3116231417−16−8(77, 115, 152)(77, 121, 109)(77, 152, 121)(78, 92, 151)
64−13261142322910(78, 107, 92)(78, 131, 101)(78, 151, 131)(79, 132, 102)
6516−2331143−2910−32(79, 141, 132)(80, 123, 133)(80, 133, 103)(81, 108, 112)
66−1−13−26144−3319−7(81, 112, 150)(81, 135, 86)(81, 150, 135)(82, 108, 145)
6734−1145−9−18−29(82, 112, 108)(82, 145, 93)(83, 113, 127)(83, 127, 146)
6821014146−19−321(83, 146, 118)(84, 98, 147)(84, 111, 119)(84, 147, 111)
691−1326147−143035(85, 114, 146)(85, 129, 120)(85, 146, 129)(86, 109, 121)
70−210−1414873319(86, 135, 109)(87, 90, 136)(87, 136, 107)(88, 117, 128)
71−34114933197(89, 106, 140)(89, 115, 106)(90, 110, 136)(91, 130, 116)
72−32−119150−733−19(92, 124, 150)(92, 150, 151)(93, 120, 129)(93, 133, 120)
73−12−32−41151−3229−10(93, 145, 133)(94, 125, 151)(94, 151, 144)(95, 128, 132)
7429103215216−8−7(95, 132, 137)(95, 137, 130)(96, 109, 135)(96, 135, 155)
75−33−427153−19−733(96, 138, 126)(96, 155, 138)(97, 126, 131)(97, 131, 156)
76−233116154−35−14−30(97, 140, 106)(97, 156, 140)(98, 113, 139)(98, 127, 113)
7714−2−10155299−18(98, 139, 147)(99, 148, 122)(99, 149, 148)(100, 142, 149)
78−7−168156−324112(100, 149, 123)(101, 126, 138)(101, 131, 126)(102, 128, 153)
(102, 132, 128)(102, 153, 114)(103, 133, 145)(103, 145, 154)
(103, 154, 134)(104, 118, 154)(104, 130, 137)(104, 154, 130)
(105, 134, 153)(105, 147, 139)(105, 153, 147)(107, 136, 127)
(108, 116, 145)(110, 129, 136)(111, 147, 117)(112, 143, 144)
(112, 144, 150)(113, 122, 156)(113, 156, 139)(114, 118, 146)
(114, 134, 118)(114, 153, 134)(115, 143, 152)(115, 144, 143)
(116, 130, 154)(116, 154, 145)(117, 147, 153)(117, 153, 128)
(118, 134, 154)(119, 142, 141)(119, 148, 142)(120, 133, 155)
(120, 155, 124)(121, 141, 142)(121, 152, 141)(122, 140, 156)
(122, 148, 140)(123, 138, 155)(123, 149, 138)(123, 155, 133)
(124, 135, 150)(124, 155, 135)(125, 131, 151)(125, 139, 156)
(125, 156, 131)(127, 136, 146)(129, 146, 136)(132, 141, 152)
(132, 152, 137)(137, 152, 143)(142, 148, 149)(144, 151, 150)
Vertex Permutation Groups
(1, 144) (2, 151) (3, 150) (4, 94) (5, 112) (6, 92) (7, 63) (8, 143) (9, 81) (10, 125)
(11, 78) (12, 115) (13, 124) (14, 60) (15, 88) (16, 135) (17, 46) (18, 131) (19, 108) (20, 44)
(21, 152) (22, 107) (23, 89) (24, 82) (25, 38) (26, 69) (27, 73) (28, 53) (29, 156) (30, 155)
(31, 86) (32, 75) (33, 101) (34, 64) (35, 137) (36, 47) (37, 106) (39, 58) (40, 77) (41, 87)
(42, 128) (43, 145) (45, 67) (48, 139) (49, 120) (50, 109) (51, 68) (52, 126) (54, 97) (55, 96)
(56, 121) (57, 127) (59, 104) (61, 132) (62, 140) (65, 117) (66, 116) (70, 95) (71, 93) (72, 138)
(74, 105) (76, 85) (79, 113) (80, 133) (83, 141) (84, 136) (90, 98) (91, 130) (99, 153) (100, 154)
(102, 122) (103, 123) (110, 147) (111, 129) (114, 148) (118, 142) (119, 146) (134, 149)
 
(1, 153, 150) (2, 105, 81) (3, 134, 112) (4, 147, 135) (5, 114, 144) (6, 72, 108) (7, 117, 124) (8, 102, 151)
(9, 118, 143) (10, 139, 86) (11, 33, 53) (12, 128, 92) (13, 103, 82) (14, 62, 94) (15, 111, 155) (16, 154, 60)
(17, 98, 109) (18, 75, 36) (19, 146, 115) (20, 30, 145) (21, 132, 78) (22, 52, 68) (23, 88, 44) (24, 85, 63)
(25, 71, 120) (26, 84, 96) (27, 29, 125) (28, 83, 152) (31, 104, 73) (32, 113, 121) (34, 55, 116) (35, 79, 131)
(37, 69, 64) (38, 67, 58) (39, 80, 93) (40, 95, 107) (41, 54, 46) (42, 119, 138) (43, 129, 89) (45, 49, 133)
(47, 56, 137) (48, 156, 59) (50, 130, 87) (51, 127, 77) (57, 126, 70) (61, 141, 101) (65, 76, 123) (66, 136, 106)
(74, 122, 142) (90, 97, 91) (99, 148, 149) (100, 110, 140)
Table A15. R14.1′ with T symmetry.
Table A15. R14.1′ with T symmetry.
VertexXYZVertexXYZPolygons
1−14.346527.067357.544518332.2324−8.789615.0480(1, 2, 9, 11, 12, 10, 8)
2−8.893525.830155.5410184−86.5014−42.0503−40.8553(1, 3, 5, 7, 6, 4, 2)
3−47.411247.411247.4112185−31.67785.808917.9725(1, 8, 14, 16, 15, 13, 3)
419.83275.350269.212218631.6778−5.808917.9725(2, 4, 17, 19, 20, 18, 9)
5−27.067357.544514.34651874.515716.8894−30.4400(3, 13, 22, 24, 23, 21, 5)
620.796710.931558.7948188−53.8950−48.8649−64.9078(4, 6, 29, 31, 32, 30, 17)
79.477713.857062.3333189−35.1737−53.4792−46.8969(5, 21, 34, 36, 35, 33, 7)
8−62.3333−9.477713.857019049.70444.2693−5.1748(6, 7, 33, 49, 51, 50, 29)
9−15.682422.432951.6523191−32.23248.789615.0480(8, 10, 25, 28, 27, 26, 14)
10−53.4791−46.8969−35.173719234.4237−6.0325−16.2422(9, 18, 41, 44, 43, 42, 11)
112.2898−6.708912.6467193−2.2898−6.7089−12.6467(10, 12, 45, 47, 48, 46, 25)
12−34.4237−6.032516.242219415.764721.5260−1.7738(11, 42, 71, 73, 72, 45, 12)
13−57.544514.346527.067319516.889430.4400−4.5157(13, 15, 37, 40, 39, 38, 22)
14−58.7948−20.796710.9315196−40.855386.501442.0503(14, 26, 53, 55, 54, 52, 16)
15−55.54108.893525.8301197−48.864964.907853.8950(15, 16, 52, 64, 66, 65, 37)
16−69.2122−19.83275.3502198107.3927−15.283013.2827(17, 30, 60, 63, 62, 61, 19)
1728.0894−11.591772.2588199107.392715.2830−13.2827(18, 20, 67, 69, 70, 68, 41)
18−16.813520.682550.90992006.81893.1294−12.5608(19, 61, 101, 103, 102, 67, 20)
1925.2379−24.308769.7239201−16.8135−20.6825−50.9099(21, 23, 56, 59, 58, 57, 34)
2023.8441−24.047669.0021202−15.6824−22.4329−51.6523(22, 38, 75, 77, 76, 74, 24)
21−25.830155.54108.89352032.28986.7089−12.6467(23, 24, 74, 94, 96, 95, 56)
22−13.857062.3333−9.477720420.6825−50.909916.8135(25, 46, 87, 88, 89, 86, 28)
23−5.350269.2122−19.832720522.4328−51.652315.6824(26, 27, 78, 81, 80, 79, 53)
24−10.931558.7948−20.79672065.3502−69.2122−19.8327(27, 28, 86, 130, 132, 131, 78)
25−48.8649−64.9078−53.895020725.8301−55.54108.8935(29, 50, 90, 93, 92, 91, 31)
26−54.1753−42.5331−24.8003208−16.7825−38.44524.4587(30, 32, 97, 100, 99, 98, 60)
27−42.1011−77.4780−17.9177209−16.2422−34.42376.0325(31, 91, 142, 144, 143, 97, 32)
28−40.8553−86.5014−42.050321069.2122−19.8327−5.3502(33, 35, 82, 85, 84, 83, 49)
2942.5331−24.800354.175321155.54108.8935−25.8301(34, 57, 105, 106, 107, 104, 36)
3016.9192−15.5143106.3922212−28.089411.591772.2588(35, 36, 104, 133, 135, 134, 82)
3115.7089−16.6121111.0495213−42.533124.800354.1753(37, 65, 121, 122, 123, 120, 40)
3215.2830−13.2827107.3926214−19.8327−5.350269.2122(38, 39, 110, 111, 109, 108, 75)
3346.8969−35.173753.4791215−20.7967−10.931558.7948(39, 40, 120, 170, 172, 171, 110)
34−22.432951.652315.682421640.855386.5014−42.0503(41, 68, 108, 109, 125, 124, 44)
356.032516.242234.4237217−15.048032.23248.7896(42, 43, 112, 115, 114, 113, 71)
366.708912.6467−2.2898218−17.972531.67785.8089(43, 44, 124, 173, 175, 174, 112)
37−51.652315.682422.432921915.5143−106.392216.9192(45, 72, 126, 128, 129, 127, 47)
3835.173753.4792−46.8969220−5.3502−69.212219.8327(46, 48, 136, 137, 106, 105, 87)
39−16.242234.4237−6.032522111.5917−72.258828.0894(47, 127, 187, 188, 189, 136, 48)
40−12.6467−2.2898−6.708922223.844124.0476−69.0021(49, 83, 147, 148, 149, 138, 51)
411.7062−12.60457.81022234.26935.1748−49.7044(50, 51, 138, 141, 140, 139, 90)
426.8189−3.129412.5608224−8.7896−15.0480−32.2324(52, 54, 116, 119, 118, 117, 64)
437.7558−7.75587.7558225−13.2827107.392615.2830(53, 79, 98, 99, 146, 145, 55)
443.1294−12.56086.8189226−16.6121111.049515.7089(54, 55, 145, 178, 177, 176, 116)
45−38.4452−4.458716.78252275.808917.9725−31.6778(56, 95, 160, 161, 163, 162, 59)
4616.8894−30.44004.5157228−42.0503−40.8553−86.5014(57, 58, 150, 151, 88, 87, 105)
47−79.5698−79.5698−79.5698229−25.237924.308769.7239(58, 59, 162, 216, 218, 217, 150)
4816.7825−38.4452−4.4587230−17.917742.101177.4780(60, 98, 79, 80, 165, 164, 63)
4964.9078−53.895048.8649231−42.050340.855386.5014(61, 62, 154, 155, 153, 152, 101)
5077.4780−17.917742.10112328.789615.0480−32.2324(62, 63, 164, 219, 221, 220, 154)
5186.5014−42.050340.8553233−15.5143106.392216.9192(64, 117, 184, 185, 191, 179, 66)
52−72.2588−28.0894−11.5917234−20.796710.9315−58.7948(65, 66, 179, 180, 148, 147, 121)
53−111.0495−15.7089−16.6121235−9.477713.8570−62.3333(67, 102, 166, 168, 169, 167, 69)
54−106.3922−16.9192−15.5143236−3.1294−12.5608−6.8189(68, 70, 182, 181, 77, 75, 108)
55−107.3927−15.2830−13.2827237−6.7089−12.6467−2.2898(69, 167, 229, 230, 231, 182, 70)
5611.591772.2588−28.0894238−25.8301−55.5410−8.8935(71, 113, 139, 140, 190, 183, 73)
57−20.682550.909916.8135239−27.0673−57.5445−14.3465(72, 73, 183, 186, 185, 184, 126)
5824.047669.0021−23.844124046.896935.1737−53.4791(74, 76, 156, 159, 158, 157, 94)
5924.308769.7239−25.23792419.4777−13.8570−62.3333(76, 77, 181, 224, 223, 222, 156)
6017.1932−19.9554101.1987242−6.708912.64672.2898(78, 131, 204, 205, 207, 206, 81)
6117.9177−42.101177.4780243−3.129412.56086.8189(80, 81, 206, 265, 266, 264, 165)
6224.8003−54.175342.5331244−72.258828.089411.5917(82, 134, 152, 153, 209, 208, 85)
6316.6121−111.049515.7089245−54.175342.533124.8003(83, 84, 192, 193, 122, 121, 147)
64−69.7239−25.2379−24.3087246−58.794820.7967−10.9315(84, 85, 208, 267, 269, 268, 192)
65−50.909916.813520.6825247−69.212219.8327−5.3502(86, 89, 196, 197, 195, 194, 130)
66−69.0021−23.8441−24.0476248−86.501442.050340.8553(88, 151, 270, 272, 271, 196, 89)
674.2693−5.174849.7044249−21.5260−1.7738−15.7647(90, 139, 113, 114, 211, 210, 93)
68−1.7738−15.7647−21.5261250−64.907853.895048.8649(91, 92, 198, 199, 161, 160, 142)
69−4.26935.174849.7044251−30.4400−4.5157−16.8894(92, 93, 210, 273, 275, 274, 198)
708.7896−15.048032.232425248.864964.9078−53.8950(94, 157, 176, 177, 233, 225, 96)
717.8102−1.706212.604525353.479146.8969−35.1737(95, 96, 225, 226, 144, 142, 160)
72−30.44004.515716.889425438.44524.458716.7825(97, 143, 212, 214, 215, 213, 100)
73−21.52601.773815.764725534.42376.032516.2422(99, 100, 213, 281, 282, 244, 146)
7424.800354.1753−42.533125616.242234.42376.0325(101, 152, 134, 135, 232, 227, 103)
7553.895048.8649−64.907825716.782538.44524.4587(102, 103, 227, 228, 188, 187, 166)
7617.917742.1011−77.4780258−15.2830−13.2827−107.3926(104, 107, 200, 203, 202, 201, 133)
7742.050340.8553−86.501425915.283013.2827−107.3926(106, 137, 260, 277, 276, 200, 107)
78−24.3087−69.7239−25.237926051.6523−15.682422.4329(109, 111, 254, 310, 311, 240, 125)
79−19.9554−101.1987−17.193226113.8570−62.3333−9.4777(110, 171, 252, 253, 255, 254, 111)
80−15.5143−106.3922−16.919226257.5445−14.346527.0673(112, 174, 194, 195, 257, 256, 115)
81−11.5917−72.2588−28.089426355.5410−8.893525.8301(114, 115, 256, 313, 314, 312, 211)
824.458716.782538.4452264−16.6121−111.0495−15.7089(116, 176, 157, 158, 259, 258, 119)
8330.44004.5157−16.889426510.9315−58.7948−20.7967(117, 118, 234, 235, 128, 126, 184)
8438.4452−4.4587−16.7825266−24.8003−54.1753−42.5331(118, 119, 258, 315, 317, 316, 234)
8579.5698−79.569879.5698267−16.8894−30.4400−4.5157(120, 123, 236, 237, 205, 204, 170)
8617.9725−31.67785.808926853.4791−46.896935.1737(122, 193, 318, 320, 319, 236, 123)
8715.7647−21.52601.773826948.8649−64.907853.8950(124, 125, 240, 241, 239, 238, 173)
8815.048032.2324−8.7896270−24.047669.002123.8441(127, 129, 242, 243, 168, 166, 187)
8917.972531.6778−5.8089271−42.101177.478017.9177(128, 235, 321, 323, 322, 242, 129)
9069.7239−25.237924.3087272−24.308769.723925.2379(130, 194, 174, 175, 283, 278, 132)
91101.1987−17.193219.955427358.7948−20.7967−10.9315(131, 132, 278, 279, 172, 170, 204)
92106.3922−16.919215.5143274111.0495−15.708916.6121(133, 201, 222, 223, 284, 232, 135)
9372.2588−28.089411.591727554.1753−42.533124.8003(136, 189, 261, 262, 263, 260, 137)
9416.6121111.0495−15.70892767.81021.7062−12.6045(138, 149, 248, 250, 251, 249, 141)
9515.5143106.3922−16.919227750.9099−16.813520.6825(140, 141, 249, 276, 277, 295, 190)
9613.2827107.3926−15.28302785.1748−49.70444.2693(143, 144, 226, 280, 230, 229, 212)
97−15.283013.2827107.3926279−15.0480−32.2324−8.7896(145, 146, 244, 247, 246, 245, 178)
98−32.4484−32.448432.4484280−24.800354.175342.5331(148, 180, 299, 282, 281, 248, 149)
99−101.198717.193219.9554281−77.478017.917742.1011(150, 217, 303, 304, 305, 270, 151)
100−15.708916.6121111.0495282−69.723925.237924.3087(153, 155, 306, 348, 349, 330, 209)
10142.0503−40.855386.501428324.0475−69.002123.8441(154, 220, 238, 239, 307, 306, 155)
102−8.789615.048032.2324284−4.2693−5.1748−49.7044(156, 222, 201, 202, 309, 308, 159)
103−5.808917.972531.677828558.794820.796710.9315(158, 159, 308, 351, 352, 350, 259)
1043.129412.5608−6.818928662.33339.477713.8570(161, 199, 344, 354, 353, 285, 163)
10512.60457.8102−1.706228719.9554−101.198717.1932(162, 163, 285, 286, 253, 252, 216)
10612.56086.8189−3.129428832.4484−32.4484−32.4484(164, 165, 264, 289, 288, 287, 219)
1077.75587.7558−7.7558289−17.1932−19.9554−101.1987(167, 169, 290, 291, 214, 212, 229)
108−4.5157−16.8894−30.440029015.6824−22.432951.6523(168, 243, 357, 356, 355, 290, 169)
1094.4587−16.7825−38.44522918.8935−25.830155.5410(171, 172, 279, 324, 218, 216, 252)
110−16.782538.4452−4.4587292−53.895048.864964.9078(173, 238, 220, 221, 326, 283, 175)
11179.569879.5698−79.56982931.7738−15.764721.5261(177, 178, 245, 271, 272, 327, 233)
11212.5608−6.81893.12942944.5157−16.889430.4400(179, 191, 300, 301, 302, 299, 180)
11350.909916.8135−20.682529569.002123.8441−24.0476(181, 182, 231, 292, 294, 293, 224)
11451.652315.6824−22.432929686.501442.0503−40.8553(183, 190, 295, 297, 298, 296, 186)
11512.6467−2.28986.708929769.723925.2379−24.3087(185, 186, 296, 311, 310, 300, 191)
116−101.1987−17.1932−19.955429877.478017.9177−42.1011(188, 228, 325, 266, 265, 261, 189)
117−77.4780−17.9177−42.1011299−69.002123.844124.0476(192, 268, 333, 332, 341, 318, 193)
118−42.5331−24.8003−54.175330021.5260−1.773815.7647(195, 197, 342, 346, 347, 361, 257)
119−15.7089−16.6121−111.0495301−7.81021.706212.6045(196, 271, 245, 246, 343, 342, 197)
120−12.5608−6.8189−3.1294302−50.9099−16.8135−20.6825(198, 274, 287, 288, 345, 344, 199)
121−7.8102−1.7062−12.6045303−15.7647−21.5260−1.7738(200, 276, 249, 251, 347, 346, 203)
122−6.8189−3.1294−12.5608304−12.60457.81021.7062(202, 203, 346, 342, 343, 363, 309)
123−7.7558−7.7558−7.755830520.682550.9099−16.8135(205, 237, 362, 336, 335, 328, 207)
1246.7089−12.64672.2898306−57.5445−14.3465−27.0673(206, 207, 328, 329, 262, 261, 265)
1256.0325−16.2422−34.4237307−47.4112−47.4112−47.4112(208, 209, 330, 331, 304, 303, 267)
126−64.9078−53.8950−48.864930819.8327−5.3502−69.2122(210, 211, 312, 334, 332, 333, 273)
127−4.458716.7825−38.4452309−8.8935−25.8301−55.5410(213, 215, 335, 336, 250, 248, 281)
128−46.8969−35.1737−53.479131030.4400−4.515716.8894(214, 291, 364, 329, 328, 335, 215)
129−6.032516.2422−34.423731164.907853.8950−48.8649(217, 218, 324, 358, 269, 267, 303)
13015.0480−32.23248.789631257.544514.3465−27.0673(219, 287, 274, 275, 359, 326, 221)
131−24.0476−69.0021−23.8441313−35.173753.479246.8969(223, 224, 293, 319, 320, 337, 284)
132−5.1748−49.7044−4.269331413.857062.33339.4777(225, 233, 327, 340, 339, 280, 226)
1331.706212.6045−7.8102315−16.9192−15.5143−106.3922(227, 232, 284, 337, 338, 325, 228)
134−4.515716.889430.4400316−19.83275.3502−69.2122(230, 280, 339, 314, 313, 292, 231)
135−1.773815.764721.5260317−28.0894−11.5917−72.2588(234, 316, 341, 332, 334, 321, 235)
13616.2422−34.4237−6.032531815.682422.4329−51.6523(236, 319, 293, 294, 360, 362, 237)
13712.64672.2898−6.7089319−1.7062−12.6045−7.8102(239, 241, 351, 308, 309, 363, 307)
13831.67785.8089−17.972532016.813520.6825−50.9099(240, 311, 296, 298, 352, 351, 241)
13969.0021−23.844124.047632127.067357.5445−14.3465(242, 322, 305, 304, 331, 357, 243)
14049.7044−4.26935.174832222.432951.6523−15.6824(244, 282, 299, 302, 349, 348, 247)
14132.23248.7896−15.048032325.830155.5410−8.8935(246, 247, 348, 306, 307, 363, 343)
14232.448432.448432.4484324−17.9725−31.6778−5.8089(250, 336, 362, 360, 361, 347, 251)
143−16.919215.5143106.3922325−17.9177−42.1011−77.4780(253, 286, 364, 291, 290, 355, 255)
144−17.193219.9554101.198732624.3087−69.723925.2379(254, 255, 355, 356, 301, 300, 310)
145−107.392715.283013.2827327−11.591772.258828.0894(256, 257, 361, 360, 294, 292, 313)
146−106.392216.919215.514332827.0673−57.544514.3465(258, 259, 350, 345, 288, 289, 315)
14721.52601.7738−15.764732947.4112−47.411247.4112(260, 263, 353, 354, 297, 295, 277)
148−32.2324−8.7896−15.0480330−12.64672.28986.7089(262, 329, 364, 286, 285, 353, 263)
149−31.6778−5.8089−17.9725331−12.56086.81893.1294(264, 266, 325, 338, 317, 315, 289)
1505.174849.7044−4.269333214.346527.0673−57.5445(268, 269, 358, 359, 275, 273, 333)
151−5.174849.70444.269333362.3333−9.4777−13.8570(270, 305, 322, 323, 340, 327, 272)
15253.8950−48.864964.907833447.411247.4112−47.4112(278, 283, 326, 359, 358, 324, 279)
15335.1737−53.479246.8969335−9.4777−13.857062.3333(297, 354, 344, 345, 350, 352, 298)
154−10.9315−58.794820.7967336−46.896935.173753.4791(301, 356, 357, 331, 330, 349, 302)
155−13.8570−62.33339.4777337−23.8441−24.0476−69.0021(312, 314, 339, 340, 323, 321, 334)
15625.237924.3087−69.7239338−25.2379−24.3087−69.7239(316, 317, 338, 337, 320, 318, 341)
15717.193219.9554−101.198733910.931558.794820.7967
15816.919215.5143−106.39223405.350269.212219.8327
15928.089411.5917−72.25883418.893525.8301−55.5410
16019.9554101.1987−17.1932342−53.479146.896935.1737
161111.049515.7089−16.6121343−62.33339.4777−13.8570
16242.101177.4780−17.9177344106.392216.9192−15.5143
16354.175342.5331−24.8003345101.198717.1932−19.9554
16413.2827−107.392615.2830346−34.42376.0325−16.2422
165−13.2827−107.3926−15.2830347−38.44524.4587−16.7825
1661.773815.7647−21.5261348−55.5410−8.8935−25.8301
167−23.844124.047669.0021349−51.6523−15.6824−22.4329
168−1.706212.60457.810235015.708916.6121−111.0495
16916.8135−20.682550.909935120.7967−10.9315−58.7948
170−12.6045−7.8102−1.706235242.533124.8003−54.1753
171−16.889430.44004.515735369.212219.83275.3502
172−15.764721.52601.773835472.258828.0894−11.5917
173−22.4328−51.6523−15.6824355−2.28986.708912.6467
17412.6045−7.81021.7062356−6.81893.129412.5608
175−20.6825−50.9099−16.8135357−7.75587.75587.7558
176−32.448432.4484−32.448435840.8553−86.501442.0503
177−19.9554101.198717.193235942.1011−77.478017.9177
178−111.049515.708916.6121360−4.4587−16.782538.4452
179−49.7044−4.2693−5.1748361−79.569879.569879.5698
180−49.70444.26935.1748362−6.0325−16.242234.4237
181−5.8089−17.9725−31.6778363−14.3465−27.0673−57.5445
1825.8089−17.972531.677836414.3465−27.067357.5445
Face Permutation Groups
(1, 144) (2, 151) (3, 150) (4, 94) (5, 112) (6, 92) (7, 63) (8, 143) (9, 81) (10, 125)
(11, 78) (12, 115) (13, 124) (14, 60) (15, 88) (16, 135) (17, 46) (18, 131) (19, 108) (20, 44)
(21, 152) (22, 107) (23, 89) (24, 82) (25, 38) (26, 69) (27, 73) (28, 53) (29, 156) (30, 155)
(31, 86) (32, 75) (33, 101) (34, 64) (35, 137) (36, 47) (37, 106) (39, 58) (40, 77) (41, 87)
(42, 128) (43, 145) (45, 67) (48, 139) (49, 120) (50, 109) (51, 68) (52, 126) (54, 97) (55, 96)
(56, 121) (57, 127) (59, 104) (61, 132) (62, 140) (65, 117) (66, 116) (70, 95) (71, 93) (72, 138)
(74, 105) (76, 85) (79, 113) (80, 133) (83, 141) (84, 136) (90, 98) (91, 130) (99, 153) (100, 154)
(102, 122) (103, 123) (110, 147) (111, 129) (114, 148) (118, 142) (119, 146) (134, 149)
 
(1, 153, 150) (2, 105, 81) (3, 134, 112) (4, 147, 135) (5, 114, 144) (6, 72, 108) (7, 117, 124) (8, 102, 151)
(9, 118, 143) (10, 139, 86) (11, 33, 53) (12, 128, 92) (13, 103, 82) (14, 62, 94) (15, 111, 155) (16, 154, 60)
(17, 98, 109) (18, 75, 36) (19, 146, 115) (20, 30, 145) (21, 132, 78) (22, 52, 68) (23, 88, 44) (24, 85, 63)
(25, 71, 120) (26, 84, 96) (27, 29, 125) (28, 83, 152) (31, 104, 73) (32, 113, 121) (34, 55, 116) (35, 79, 131)
(37, 69, 64) (38, 67, 58) (39, 80, 93) (40, 95, 107) (41, 54, 46) (42, 119, 138) (43, 129, 89) (45, 49, 133)
(47, 56, 137) (48, 156, 59) (50, 130, 87) (51, 127, 77) (57, 126, 70) (61, 141, 101) (65, 76, 123) (66, 136, 106)
(74, 122, 142) (90, 97, 91) (99, 148, 149) (100, 110, 140)
Table A16. R14.2 with T symmetry.
Table A16. R14.2 with T symmetry.
VertexXYZVertexXYZTriangles
1−6−40−1679−16−6−40(1, 2, 3)(1, 3, 5)(1, 4, 2)(1, 5, 13)
2−13−628012−5214(1, 8, 10)(1, 10, 4)(1, 13, 8)(2, 4, 14)
3−141−4816213(2, 6, 11)(2, 9, 3)(2, 11, 9)(2, 14, 6)
4−8−10−182−27−20−16(3, 7, 15)(3, 9, 18)(3, 15, 5)(3, 18, 7)
5−11−32−19832016−27(4, 10, 21)(4, 12, 30)(4, 21, 12)(4, 30, 14)
6−2−136841414(5, 15, 31)(5, 16, 36)(5, 31, 16)(5, 36, 13)
7−185−585−12−175(6, 14, 43)(6, 28, 49)(6, 32, 28)(6, 43, 32)
827−201686−113219(6, 49, 11)(7, 18, 55)(7, 19, 29)(7, 29, 60)
9−10−1−8874154(7, 55, 19)(7, 60, 15)(8, 13, 42)(8, 20, 38)
10−8−52−15884141(8, 38, 48)(8, 42, 20)(8, 48, 10)(9, 11, 33)
11−6−213892136(9, 17, 39)(9, 33, 17)(9, 39, 18)(10, 22, 40)
122−13−690−544−1(10, 40, 21)(10, 48, 22)(11, 23, 41)(11, 41, 33)
1332−191191−512−17(11, 49, 23)(12, 21, 79)(12, 26, 68)(12, 27, 26)
148−10192−272016(12, 68, 30)(12, 79, 27)(13, 24, 42)(13, 36, 51)
15−207393−136−2(13, 51, 24)(14, 25, 43)(14, 30, 52)(14, 52, 25)
16166−4094−4−154(15, 34, 53)(15, 53, 31)(15, 60, 34)(16, 26, 37)
17−62−139551217(16, 31, 78)(16, 37, 88)(16, 78, 26)(16, 88, 36)
18−52−15−896−191132(17, 27, 69)(17, 33, 93)(17, 37, 27)(17, 69, 39)
19−52−14−1297−5−1217(17, 93, 37)(18, 35, 55)(18, 39, 63)(18, 63, 35)
207−32098−20−16−27(19, 22, 50)(19, 50, 29)(19, 55, 77)(19, 66, 22)
21−4−14199−41−54(19, 77, 66)(20, 23, 62)(20, 42, 92)(20, 62, 38)
221−54−4100640−16(20, 67, 23)(20, 92, 67)(21, 40, 64)(21, 45, 79)
23141410152−1412(21, 64, 45)(22, 48, 101)(22, 66, 40)(22, 101, 50)
24−1−414102−15852(23, 49, 102)(23, 67, 41)(23, 102, 62)(24, 28, 54)
258−52151034016−6(24, 51, 81)(24, 54, 107)(24, 81, 28)(24, 107, 42)
2618−101045−5−18(25, 29, 50)(25, 50, 108)(25, 52, 82)(25, 82, 29)
27−1−8−10105−55−18(25, 108, 43)(26, 27, 37)(26, 59, 68)(26, 78, 59)
281−8101061627−20(27, 56, 69)(27, 79, 56)(28, 32, 54)(28, 81, 89)
29−38−18−16107−5−518(28, 89, 49)(29, 70, 60)(29, 82, 70)(30, 46, 84)
3013−6−21085−18−5(30, 68, 46)(30, 84, 52)(31, 44, 78)(31, 53, 85)
31−16−27−201091362(31, 85, 44)(32, 34, 54)(32, 43, 76)(32, 76, 86)
3216−640110−7−3−20(32, 86, 34)(33, 41, 65)(33, 57, 93)(33, 65, 57)
33−101811152−158(34, 60, 115)(34, 86, 53)(34, 115, 54)(35, 38, 62)
34−16272011211−3219(35, 62, 118)(35, 63, 95)(35, 95, 38)(35, 118, 55)
35−181638113−18−55(36, 58, 83)(36, 83, 51)(36, 88, 58)(37, 61, 88)
361911−321143219−11(37, 93, 61)(38, 71, 48)(38, 95, 71)(39, 47, 96)
37−213−6115−163818(39, 69, 47)(39, 96, 63)(40, 44, 97)(40, 66, 44)
3817512116852−15(40, 97, 64)(41, 45, 98)(41, 67, 45)(41, 98, 65)
39−40−16−6117−8101(42, 72, 92)(42, 107, 72)(43, 73, 76)(43, 108, 73)
40−5−185118−141252(44, 66, 123)(44, 85, 97)(44, 123, 78)(45, 64, 98)
41−401661191638−18(45, 67, 124)(45, 124, 79)(46, 51, 111)(46, 68, 127)
42−7320120320−7(46, 81, 51)(46, 111, 84)(46, 127, 81)(47, 52, 112)
434−14−112120−1627(47, 69, 128)(47, 82, 52)(47, 112, 96)(47, 128, 82)
44−16−38−18122−18−16−38(48, 71, 74)(48, 74, 101)(49, 75, 102)(49, 89, 75)
45−19−11−321234−1−54(50, 80, 108)(50, 101, 80)(51, 83, 111)(52, 84, 112)
4610−181241132−19(53, 57, 113)(53, 86, 57)(53, 113, 85)(54, 87, 107)
47−32−19−1112514−1252(54, 115, 87)(55, 90, 77)(55, 118, 90)(56, 79, 106)
4838−181612616−3818(56, 99, 104)(56, 104, 69)(56, 106, 119)(56, 119, 99)
49−1810127101−8(57, 65, 113)(57, 86, 132)(57, 132, 93)(58, 63, 120)
50−1−54412873−20(58, 88, 134)(58, 95, 63)(58, 120, 83)(58, 134, 95)
5140−1661291816−38(59, 78, 105)(59, 103, 68)(59, 105, 110)(59, 110, 114)
526−4016130207−3(59, 114, 103)(60, 70, 91)(60, 91, 115)(61, 93, 117)
53−20−7−3131−381816(61, 100, 116)(61, 109, 100)(61, 116, 88)(61, 117, 109)
5415−852132−64016(62, 94, 118)(62, 102, 94)(63, 96, 120)(64, 73, 98)
55−54−41133−125214(64, 97, 121)(64, 121, 73)(65, 90, 113)(65, 98, 122)
56−15−8−521345185(65, 122, 90)(66, 77, 99)(66, 99, 123)(67, 92, 100)
57−14−14135−414−1(67, 100, 124)(68, 103, 127)(69, 104, 128)(70, 82, 110)
58−320713618−1638(70, 105, 129)(70, 110, 105)(70, 129, 91)(71, 95, 119)
59−14−141375−12−17(71, 106, 130)(71, 119, 106)(71, 130, 74)(72, 85, 131)
60−1217−513814−1−4(72, 97, 85)(72, 107, 136)(72, 131, 92)(72, 136, 97)
61810−113954−4−1(73, 108, 137)(73, 121, 76)(73, 137, 98)(74, 84, 111)
62551814016−2720(74, 111, 139)(74, 130, 84)(74, 139, 101)(75, 89, 135)
63−201627141−521412(75, 96, 112)(75, 112, 140)(75, 135, 96)(75, 140, 102)
643−2071422720−16(76, 103, 114)(76, 114, 86)(76, 121, 103)(77, 90, 122)
65−521581431252−14(77, 104, 99)(77, 122, 104)(78, 123, 105)(79, 124, 106)
66−12−52−14144−518−5(80, 87, 94)(80, 94, 126)(80, 101, 125)(80, 125, 87)
67−3219111455215−8(80, 126, 108)(81, 109, 89)(81, 127, 109)(82, 128, 110)
686−2−1314617−5−12(83, 91, 129)(83, 120, 91)(83, 129, 111)(84, 130, 112)
691−4−141471412−52(85, 113, 131)(86, 114, 132)(87, 115, 133)(87, 125, 107)
70−175−1214820−73(87, 133, 94)(88, 116, 134)(89, 109, 117)(89, 117, 135)
7112175149−154−4(90, 118, 141)(90, 141, 113)(91, 120, 144)(91, 144, 115)
72−17−512150−85215(92, 116, 100)(92, 131, 116)(93, 132, 117)(94, 102, 126)
73−3−20−71515441(94, 133, 118)(95, 134, 119)(96, 135, 120)(97, 136, 121)
74185515212−17−5(98, 137, 122)(99, 119, 143)(99, 143, 123)(100, 109, 138)
75−166401531544(100, 138, 124)(101, 139, 125)(102, 140, 126)(103, 121, 145)
7619−11321543818−16(103, 145, 127)(104, 122, 146)(104, 146, 128)(105, 123, 147)
77−14−12−521555214−12(105, 147, 129)(106, 124, 148)(106, 148, 130)(107, 125, 136)
78158−5215618−5−5(108, 126, 137)(109, 127, 138)(110, 128, 142)(110, 142, 114)
(111, 129, 139)(112, 130, 140)(113, 141, 131)(114, 142, 132)
(115, 144, 133)(116, 131, 149)(116, 149, 134)(117, 132, 150)
(117, 150, 135)(118, 133, 141)(119, 134, 143)(120, 135, 144)
(121, 136, 145)(122, 137, 146)(123, 143, 147)(124, 138, 148)
(125, 139, 151)(125, 151, 136)(126, 140, 152)(126, 152, 137)
(127, 145, 138)(128, 146, 142)(129, 147, 139)(130, 148, 140)
(131, 141, 149)(132, 142, 150)(133, 144, 153)(133, 153, 141)
(134, 149, 143)(135, 150, 144)(136, 151, 145)(137, 152, 146)
(138, 145, 156)(138, 156, 148)(139, 147, 151)(140, 148, 152)
(141, 153, 149)(142, 146, 154)(142, 154, 150)(143, 149, 155)
(143, 155, 147)(144, 150, 153)(145, 151, 156)(146, 152, 154)
(147, 155, 151)(148, 156, 152)(149, 153, 155)(150, 154, 153)
(151, 155, 156)(152, 156, 154)(153, 154, 155)(154, 156, 155)
Vertex Permutation Groups
(1, 100) (2, 109) (3, 138) (4, 61) (5, 124) (6, 89) (7, 156) (8, 92) (9, 127) (10, 116)
(11, 81) (12, 37) (13, 67) (14, 117) (15, 148) (16, 79) (17, 68) (18, 145) (19, 155) (20, 42)
(21, 88) (22, 149) (23, 24) (25, 150) (26, 27) (28, 49) (29, 154) (30, 93) (31, 106) (32, 75)
(33, 46) (34, 140) (35, 136) (36, 45) (38, 72) (39, 103) (40, 134) (41, 51) (43, 135) (44, 119)
(47, 114) (48, 131) (50, 153) (52, 132) (53, 130) (54, 102) (55, 151) (56, 78) (57, 84) (58, 64)
(59, 69) (60, 152) (62, 107) (63, 121) (65, 111) (66, 143) (70, 146) (71, 85) (73, 120) (74, 113)
(76, 96) (77, 147) (80, 133) (82, 142) (83, 98) (86, 112) (87, 94) (90, 139) (91, 137) (95, 97)
(99, 123) (101, 141) (104, 105) (108, 144) (110, 128) (115, 126) (118, 125) (122, 129)
 
(1, 39, 79) (2, 17, 12) (3, 69, 21) (4, 9, 27) (5, 47, 45) (6, 93, 68) (7, 104, 40) (8, 63, 106)
(10, 18, 56) (11, 37, 30) (13, 96, 124) (14, 33, 26) (15, 128, 64) (16, 52, 41) (19, 77, 66) (20, 58, 130)
(22, 55, 99) (23, 88, 84) (24, 135, 138) (25, 65, 78) (28, 117, 127) (29, 122, 44) (31, 82, 98) (32, 132, 103)
(34, 142, 121) (35, 119, 48) (36, 112, 67) (38, 95, 71) (42, 120, 148) (43, 57, 59) (46, 49, 61) (50, 90, 123)
(51, 75, 100) (53, 110, 73) (54, 150, 145) (60, 146, 97) (62, 134, 74) (70, 137, 85) (72, 91, 152) (76, 86, 114)
(80, 141, 147) (81, 89, 109) (83, 140, 92) (87, 153, 151) (94, 149, 139) (101, 118, 143) (102, 116, 111) (105, 108, 113)
(107, 144, 156) (115, 154, 136) (125, 133, 155) (126, 131, 129)
Table A17. R14.2′ with T symmetry.
Table A17. R14.2′ with T symmetry.
VertexXYZVertexXYZPolygons
1−67.1696−37.73830.3197183−63.612714.806517.5008(1, 2, 9, 11, 10, 12, 8)
2−39.5239−66.1383−17.18561842.82845.252330.6122(1, 3, 5, 7, 6, 4, 2)
3−65.8707−36.55180.2076185−6.909912.299121.3400(1, 8, 16, 15, 14, 13, 3)
4−27.9408−66.6446−21.3097186−22.7092−3.4293−7.0559(2, 4, 17, 18, 19, 20, 9)
525.4592−21.8571−27.0448187−22.70923.42937.0559(3, 13, 22, 23, 24, 21, 5)
613.8676−28.7893−25.0138188−10.885312.7182−25.9158(4, 6, 35, 46, 45, 44, 17)
718.9022−31.5091−27.5108189−25.013813.8676−28.7893(5, 21, 57, 56, 55, 36, 7)
8−68.6514−37.1265−2.4494190−2.82845.2523−30.6122(6, 7, 36, 38, 37, 39, 35)
9−37.1772−63.72640.96601916.909912.2991−21.3400(8, 12, 40, 41, 42, 43, 16)
10−45.5162−45.516245.51621924.753216.1405−18.3687(9, 20, 60, 59, 58, 26, 11)
11−23.9336−67.800831.3889193−25.915810.8853−12.7182(10, 11, 26, 29, 27, 28, 25)
12−67.8008−31.388923.9336194−65.870736.5518−0.2076(10, 25, 48, 47, 49, 40, 12)
13−65.7888−20.0361−24.0362195−67.169637.7383−0.3197(13, 14, 30, 63, 62, 61, 22)
14−60.9117−24.7830−10.892719610.365561.3791−4.7627(14, 15, 31, 33, 32, 34, 30)
15−25.9158−10.885312.7182197−2.558657.811828.0172(15, 16, 43, 76, 75, 74, 31)
16−66.1050−17.2187−28.58811982.558657.8118−28.0172(17, 44, 87, 88, 89, 50, 18)
17−28.5881−66.1050−17.218719910.892760.9117−24.7830(18, 50, 53, 51, 52, 54, 19)
18−2.4493−68.6514−37.126520017.500863.6127−14.8065(19, 54, 116, 117, 118, 60, 20)
1923.9336−67.8008−31.388920137.7383−0.3197−67.1696(21, 24, 67, 139, 138, 137, 57)
2037.1772−63.7264−0.966020210.8853−12.7182−25.9158(22, 61, 121, 120, 119, 66, 23)
2123.9206−23.9206−23.920620336.5518−0.2076−65.8707(23, 66, 65, 64, 68, 67, 24)
22−58.2855−33.7344−4.399520424.783010.8927−60.9117(25, 28, 112, 175, 176, 94, 48)
2327.5108−18.9022−31.509120520.036124.0362−65.7888(26, 58, 103, 156, 155, 124, 29)
2427.0448−25.4592−21.8571206−29.206429.2064−29.2064(27, 29, 124, 125, 123, 122, 111)
25−31.3889−23.933667.8008207−36.424441.5047−3.0957(27, 111, 96, 97, 113, 112, 28)
262.4494−68.651437.126520828.588166.1050−17.2187(30, 34, 114, 206, 207, 131, 63)
2717.1856−39.523966.1383209−37.177263.7264−0.9660(31, 74, 134, 187, 186, 80, 33)
28−0.9660−37.177263.726421039.523966.1383−17.1856(32, 33, 80, 81, 78, 77, 79)
29−0.3197−67.169637.738321127.940866.6446−21.3097(32, 79, 101, 102, 115, 114, 34)
30−63.6127−14.8065−17.500821237.177263.72640.9660(35, 39, 142, 173, 174, 91, 46)
31−30.6122−2.82845.2523213−2.8284−5.252330.6122(36, 55, 98, 154, 153, 85, 38)
32−29.4733−8.29088.5824214−3.9711−4.675231.8784(37, 38, 85, 86, 83, 82, 84)
33−31.8784−3.97114.6752215−4.399558.285533.7344(37, 84, 132, 133, 143, 142, 39)
34−49.67738.7774−15.9166216−2.5586−57.8118−28.0172(40, 49, 126, 127, 128, 71, 41)
3516.1405−18.36874.75322172.5586−57.811828.0172(41, 71, 72, 69, 70, 73, 42)
3633.7344−4.399558.2855218−10.3655−61.3791−4.7627(42, 73, 144, 145, 146, 76, 43)
37−4.762710.365561.3791219−30.61222.8284−5.2523(44, 45, 90, 147, 148, 149, 87)
3828.0172−2.558657.8118220−21.3400−6.9099−12.2991(45, 46, 91, 92, 77, 78, 90)
3929.2379−6.146549.4394221−18.3687−4.7532−16.1405(47, 48, 94, 95, 82, 83, 93)
40−63.7264−0.966037.1773222−4.21400.2406−29.0699(47, 93, 150, 151, 152, 126, 49)
41−63.72640.9660−37.1773223−3.4293−7.0559−22.7092(50, 89, 162, 260, 189, 110, 53)
42−66.1383−17.1856−39.5239224−18.902231.5091−27.5108(51, 53, 110, 109, 70, 69, 106)
43−66.6446−21.3097−27.9408225−25.459221.8571−27.0448(51, 106, 64, 65, 108, 107, 52)
4412.7182−25.9158−10.885322666.138317.1856−39.5239(52, 107, 201, 226, 165, 116, 54)
455.2523−30.6122−2.8284227−24.7830−10.8927−60.9117(55, 56, 99, 97, 96, 100, 98)
4612.2991−21.34006.90992284.762710.3655−61.3791(56, 57, 137, 179, 164, 163, 99)
47−37.7383−0.319767.1696229−3.095736.4244−41.5047(58, 59, 105, 102, 101, 104, 103)
48−37.12652.449468.651423014.806517.5008−63.6127(59, 60, 118, 180, 169, 168, 105)
49−66.138317.185639.5239231−8.777415.9166−49.6773(61, 62, 129, 181, 182, 183, 121)
500.3197−67.1696−37.738323263.6127−14.806517.5008(62, 63, 131, 130, 122, 123, 129)
510.9660−37.1772−63.726423336.424441.50473.0957(64, 106, 69, 72, 141, 140, 68)
5231.3889−23.9336−67.800823449.439429.2379−6.1465(65, 66, 119, 158, 259, 202, 108)
53−17.1856−39.5239−66.138323561.3791−4.762710.3655(67, 68, 140, 208, 278, 199, 139)
5445.5162−45.5162−45.5162236−29.2064−29.206429.2064(70, 109, 188, 227, 170, 144, 73)
5520.0361−24.036265.7888237−41.5047−3.095736.4244(71, 128, 195, 287, 209, 141, 72)
5636.55180.207665.8707238−29.23796.146549.4394(74, 75, 136, 133, 132, 135, 134)
5721.8571−27.0448−25.4592239−3.0957−36.424441.5047(75, 76, 146, 215, 197, 196, 136)
5828.5881−66.105017.2187240−8.7774−15.916649.6773(77, 92, 177, 178, 104, 101, 79)
5927.9408−66.644621.30972414.3995−58.285533.7344(78, 81, 222, 223, 157, 147, 90)
6039.5239−66.138317.185624210.3655−61.37914.7627(80, 186, 256, 258, 257, 222, 81)
61−57.8118−28.0172−2.558624317.5008−63.612714.8065(82, 95, 213, 214, 135, 132, 84)
62−57.811828.01722.558624425.9158−10.8853−12.7182(83, 86, 224, 225, 161, 150, 93)
63−61.3791−4.7627−10.365524560.9117−24.783010.8927(85, 153, 238, 286, 285, 224, 86)
6417.185639.5239−66.138324631.8784−3.9711−4.6752(87, 149, 218, 217, 216, 160, 88)
6521.309727.9408−66.644624730.6122−2.8284−5.2523(88, 160, 151, 150, 161, 162, 89)
6625.0138−13.8676−28.78932480.319767.169637.7383(91, 174, 246, 298, 264, 177, 92)
67−0.207665.8707−36.5518249−27.0448−25.459221.8571(94, 176, 251, 299, 288, 213, 95)
68−0.319767.1696−37.73832500.207665.870736.5518(96, 111, 122, 130, 185, 184, 100)
69−31.388923.9336−67.8008251−25.0138−13.867628.7893(97, 99, 163, 166, 267, 266, 113)
70−37.1265−2.4494−68.6514252−27.5108−18.902231.5091(98, 100, 184, 276, 308, 240, 154)
71−67.800831.3889−23.933625323.920623.920623.9206(102, 105, 168, 171, 268, 228, 115)
72−45.516245.5162−45.516225421.857127.044825.4592(103, 104, 178, 265, 309, 243, 156)
73−37.73830.3197−67.169625531.509127.510818.9022(107, 108, 202, 204, 205, 203, 201)
74−21.34006.909912.2991256−28.20531.7439−4.1118(109, 110, 189, 192, 191, 190, 188)
75−18.36874.753216.1405257−3.97114.6752−31.8784(112, 113, 266, 279, 280, 248, 175)
76−28.7893−25.013813.8676258−8.29088.5824−29.4733(114, 115, 228, 230, 231, 229, 206)
77−7.0559−22.7092−3.42932592.8284−5.2523−30.6122(116, 165, 166, 163, 164, 167, 117)
780.2406−29.0699−4.2140260−27.510818.9022−31.5091(117, 167, 244, 245, 272, 180, 118)
79−4.1118−28.20531.74392613.4293−7.055922.7092(119, 120, 159, 148, 147, 157, 158)
80−29.0699−4.21400.24062624.21400.240629.0699(120, 121, 183, 273, 237, 236, 159)
81−12.6261−12.6261−12.6260263−1.7439−4.111828.2053(123, 125, 253, 274, 194, 181, 129)
82−24.783010.892760.911726412.6260−12.626112.6261(124, 155, 241, 255, 254, 253, 125)
83−20.036124.036265.7888265−8.5824−29.47338.2908(126, 152, 221, 220, 219, 193, 127)
84−14.806517.500863.612726645.516245.516245.5162(127, 193, 182, 181, 194, 195, 128)
85−28.01722.558657.811826767.800831.388923.9336(130, 131, 207, 283, 317, 277, 185)
86−33.73444.399558.2855268−28.0172−2.5586−57.8118(133, 136, 196, 200, 290, 233, 143)
87−10.8927−60.9117−24.7830269−10.365561.37914.7627(134, 135, 214, 289, 322, 282, 187)
88−24.0362−65.7888−20.03612706.146549.4394−29.2379(137, 138, 198, 269, 270, 271, 179)
890.2076−65.8707−36.551827118.36874.7532−16.1405(138, 139, 199, 200, 196, 197, 198)
904.6752−31.8783−3.971127265.7888−20.036124.0362(140, 141, 209, 212, 210, 211, 208)
914.1118−28.2053−1.7439273−49.6772−8.777415.9166(142, 143, 233, 234, 235, 232, 173)
927.0559−22.70923.429327425.459221.857127.0448(144, 170, 171, 168, 169, 172, 145)
93−36.5518−0.207665.8707275−3.42937.055922.7092(145, 172, 249, 250, 291, 215, 146)
94−17.218728.588166.10502763.97114.675231.8784(148, 159, 236, 239, 292, 218, 149)
95−10.8853−12.718225.91582771.74394.111828.2053(151, 160, 216, 242, 293, 221, 152)
9617.2187−28.588166.1050278−12.718225.9158−10.8853(153, 154, 240, 239, 236, 237, 238)
9737.1265−2.449468.651427923.933667.800831.3889(155, 156, 243, 242, 216, 217, 241)
9824.7830−10.892760.9117280−2.449468.651437.1265(157, 223, 295, 327, 304, 259, 158)
9937.73830.319767.1696281−31.87843.9711−4.6752(161, 225, 297, 328, 306, 260, 162)
10010.885312.718225.9158282−29.06994.2140−0.2406(164, 179, 271, 313, 247, 244, 167)
101−12.2991−21.3400−6.9099283−15.916649.6772−8.7774(165, 226, 301, 333, 310, 267, 166)
102−16.1405−18.3687−4.7532284−17.500863.612714.8065(169, 180, 272, 314, 252, 249, 172)
103−12.7182−25.915810.8853285−13.867628.7893−25.0138(170, 227, 303, 334, 312, 268, 171)
104−5.2523−30.61222.8284286−16.140518.36874.7532(173, 232, 245, 244, 247, 246, 174)
105−13.8676−28.789325.0138287−39.523966.138317.1856(175, 248, 250, 249, 252, 251, 176)
106−0.966037.1772−63.72642886.9099−12.299121.3400(177, 264, 262, 261, 263, 265, 178)
10737.12652.4493−68.6514289−4.2140−0.240629.0699(182, 193, 219, 281, 315, 273, 183)
10817.218728.5881−66.105029015.916649.67728.7774(184, 185, 277, 275, 261, 262, 276)
109−17.2187−28.5881−66.1050291−24.036265.788820.0361(186, 187, 282, 281, 219, 220, 256)
110−21.3097−27.9408−66.64462926.1465−49.439429.2379(188, 190, 257, 258, 302, 303, 227)
11121.3097−27.940866.6446293−6.1465−49.4394−29.2379(189, 260, 306, 307, 235, 234, 192)
1120.966037.177263.7264294−1.74394.1118−28.2053(190, 191, 294, 295, 223, 222, 257)
11331.388923.933667.80082953.42937.0559−22.7092(191, 192, 234, 233, 290, 323, 294)
114−41.50473.0957−36.424429667.169637.73830.3197(194, 274, 316, 338, 320, 287, 195)
115−29.2379−6.1465−49.439429765.870736.55180.2076(197, 215, 291, 324, 284, 269, 198)
11667.8008−31.3889−23.933629829.0699−4.2140−0.2406(199, 278, 319, 341, 323, 290, 200)
11768.6514−37.12652.44942994.7532−16.140518.3687(201, 203, 254, 255, 300, 301, 226)
11867.1696−37.7383−0.319730028.789325.013813.8676(202, 259, 304, 305, 231, 230, 204)
119−4.7532−16.1405−18.368730166.644621.3097−27.9408(203, 205, 311, 316, 274, 253, 254)
120−49.4394−29.2379−6.14653028.7774−15.9166−49.6773(204, 230, 228, 268, 312, 311, 205)
121−61.37914.762710.3655303−14.8065−17.5008−63.6127(206, 229, 270, 269, 284, 283, 207)
12225.013813.867628.78933043.9711−4.6752−31.8784(208, 211, 285, 286, 318, 319, 278)
12327.510818.902231.50913058.2908−8.5824−29.4733(209, 287, 320, 321, 280, 279, 212)
124−0.2076−65.870736.551830658.285533.7344−4.3995(210, 212, 279, 266, 267, 310, 296)
12527.044825.459221.857130757.811828.0172−2.5586(210, 296, 297, 225, 224, 285, 211)
126−66.644621.309727.94083088.29088.582429.4733(213, 288, 263, 261, 275, 289, 214)
127−66.105017.218728.588030915.9166−49.6772−8.7774(217, 218, 292, 325, 300, 255, 241)
128−68.651437.12652.449431068.651437.1265−2.4494(220, 221, 293, 326, 302, 258, 256)
129−58.285533.73444.399531133.73444.3995−58.2855(229, 231, 305, 335, 313, 271, 270)
130−4.753216.140518.368731228.01722.5586−57.8118(232, 235, 307, 336, 314, 272, 245)
131−49.439429.23796.146531321.34006.9099−12.2991(237, 273, 315, 337, 318, 286, 238)
1328.777415.916649.677231458.2855−33.73444.3995(239, 240, 308, 329, 343, 325, 292)
1333.095736.424441.5047315−29.47338.2908−8.5824(242, 243, 309, 331, 344, 326, 293)
134−28.2053−1.74394.111831618.902231.509127.5108(246, 247, 313, 335, 347, 330, 298)
135−8.2908−8.582429.47333178.582429.47338.2908(248, 280, 321, 342, 324, 291, 250)
136−6.146549.439429.2379318−12.299121.34006.9099(251, 252, 314, 336, 348, 332, 299)
13731.5091−27.5108−18.9022319−5.252330.6122−2.8284(262, 264, 298, 330, 329, 308, 276)
1384.399558.2855−33.7344320−27.940866.644621.3097(263, 288, 299, 332, 331, 309, 265)
13924.036265.7888−20.0361321−28.588166.105017.2187(275, 277, 317, 340, 339, 322, 289)
1402.449468.6514−37.1265322−12.626112.626012.6261(281, 282, 322, 339, 349, 337, 315)
141−23.933667.8008−31.3889323−8.582429.4733−8.2908(283, 284, 324, 342, 354, 340, 317)
14241.50473.095736.4244324−10.892760.911724.7830(294, 323, 341, 353, 352, 327, 295)
14329.206429.206429.206432518.3687−4.753216.1405(296, 310, 333, 345, 346, 328, 297)
144−36.55180.2076−65.87073263.0957−36.4244−41.5047(300, 325, 343, 355, 345, 333, 301)
145−21.8571−27.044825.45923274.2140−0.2406−29.0699(302, 326, 344, 356, 350, 334, 303)
146−31.5091−27.510818.902232865.788820.0361−24.0362(304, 327, 352, 357, 347, 335, 305)
1478.5824−29.4733−8.290832928.20531.74394.1118(306, 328, 346, 358, 348, 336, 307)
148−15.9166−49.67728.777433022.7092−3.42937.0559(311, 312, 334, 350, 351, 338, 316)
149−17.5008−63.6127−14.806533136.4244−41.5047−3.0957(318, 337, 349, 359, 353, 341, 319)
150−21.857127.0448−25.459233249.4394−29.23796.1465(320, 338, 351, 360, 354, 342, 321)
151−31.509127.5108−18.902233366.105017.2187−28.5880(329, 330, 347, 357, 361, 355, 343)
152−28.789325.0138−13.8676334−4.7627−10.3655−61.3791(331, 332, 348, 358, 362, 356, 344)
1534.7627−10.365561.379133528.2053−1.7439−4.1118(339, 340, 354, 360, 363, 359, 349)
15414.8065−17.500863.612733657.8118−28.01722.5586(345, 355, 361, 364, 362, 358, 346)
15524.0362−65.788820.0361337−4.111828.2053−1.7439(350, 356, 362, 364, 363, 360, 351)
15610.8927−60.911724.783033813.867628.789325.0138(352, 353, 359, 363, 364, 361, 357)
1571.7439−4.1118−28.20533390.240629.06994.2140
158−6.9099−12.2991−21.34003404.675231.87843.9711
159−36.4244−41.50473.0957341−4.675231.8783−3.9711
160−4.3995−58.2855−33.734434212.718225.915810.8853
161−23.920623.9206−23.920634321.3400−6.909912.2991
162−27.044825.4592−21.857134429.2064−29.2064−29.2064
16366.1383−17.185639.523934525.915810.885312.7182
16466.6446−21.309727.940834660.911724.7830−10.8927
16563.7264−0.9660−37.177334722.70923.4293−7.0559
16663.72640.966037.177334861.37914.7627−10.3655
16766.1050−17.218728.5880349−7.055922.70923.4293
168−18.9022−31.509127.510835029.23796.1465−49.4394
169−25.4592−21.857127.044835116.140518.3687−4.7532
170−20.0361−24.0362−65.788835212.626012.6261−12.6261
171−33.7344−4.3995−58.2855353−0.240629.0699−4.2140
172−23.9206−23.920623.92063545.252330.61222.8284
17349.67728.777415.916635530.61222.82845.2523
17429.4733−8.2908−8.582435641.5047−3.0957−36.4244
175−17.185639.523966.138335729.06994.21400.2406
176−21.309727.940866.644635863.612714.8065−17.5008
177−0.2406−29.06994.21403597.055922.7092−3.4293
178−4.6752−31.87833.971136012.299121.3400−6.9099
17928.7893−25.0138−13.867636131.87843.97114.6752
18065.8707−36.5518−0.207636249.6772−8.7774−15.9166
181−65.788820.036124.03623634.111828.20531.7439
182−60.911724.783010.892736429.47338.29088.5824
Face Permutation Groups
(1, 100) (2, 109) (3, 138) (4, 61) (5, 124) (6, 89) (7, 156) (8, 92) (9, 127) (10, 116)
(11, 81) (12, 37) (13, 67) (14, 117) (15, 148) (16, 79) (17, 68) (18, 145) (19, 155) (20, 42)
(21, 88) (22, 149) (23, 24) (25, 150) (26, 27) (28, 49) (29, 154) (30, 93) (31, 106) (32, 75)
(33, 46) (34, 140) (35, 136) (36, 45) (38, 72) (39, 103) (40, 134) (41, 51) (43, 135) (44, 119)
(47, 114) (48, 131) (50, 153) (52, 132) (53, 130) (54, 102) (55, 151) (56, 78) (57, 84) (58, 64)
(59, 69) (60, 152) (62, 107) (63, 121) (65, 111) (66, 143) (70, 146) (71, 85) (73, 120) (74, 113)
(76, 96) (77, 147) (80, 133) (82, 142) (83, 98) (86, 112) (87, 94) (90, 139) (91, 137) (95, 97)
(99, 123) (101, 141) (104, 105) (108, 144) (110, 128) (115, 126) (118, 125) (122, 129)
 
(1, 39, 79) (2, 17, 12) (3, 69, 21) (4, 9, 27) (5, 47, 45) (6, 93, 68) (7, 104, 40) (8, 63, 106)
(10, 18, 56) (11, 37, 30) (13, 96, 124) (14, 33, 26) (15, 128, 64) (16, 52, 41) (19, 77, 66) (20, 58, 130)
(22, 55, 99) (23, 88, 84) (24, 135, 138) (25, 65, 78) (28, 117, 127) (29, 122, 44) (31, 82, 98) (32, 132, 103)
(34, 142, 121) (35, 119, 48) (36, 112, 67) (38, 95, 71) (42, 120, 148) (43, 57, 59) (46, 49, 61) (50, 90, 123)
(51, 75, 100) (53, 110, 73) (54, 150, 145) (60, 146, 97) (62, 134, 74) (70, 137, 85) (72, 91, 152) (76, 86, 114)
(80, 141, 147) (81, 89, 109) (83, 140, 92) (87, 153, 151) (94, 149, 139) (101, 118, 143) (102, 116, 111) (105, 108, 113)
(107, 144, 156) (115, 154, 136) (125, 133, 155) (126, 131, 129)
Table A18. R14.3 with T symmetry.
Table A18. R14.3 with T symmetry.
VertexXYZVertexXYZTriangles
17−1427916−6−45(1, 2, 3)(1, 3, 20)(1, 13, 51)(1, 20, 43)
22−13228012−3−28(1, 21, 2)(1, 43, 13)(1, 51, 21)(2, 6, 34)
310−314811322−2(2, 21, 42)(2, 30, 3)(2, 34, 30)(2, 42, 6)
4−3−4−4182−166−45(3, 12, 33)(3, 30, 60)(3, 33, 20)(3, 60, 12)
5−2812−38342−71(4, 10, 14)(4, 12, 50)(4, 14, 12)(4, 17, 19)
6−37−35−2784−2−2−16(4, 19, 10)(4, 50, 66)(4, 66, 17)(5, 6, 31)
7−35−27−37850−127(5, 7, 6)(5, 15, 7)(5, 18, 29)(5, 29, 15)
835−2737861410−3(5, 31, 67)(5, 67, 18)(6, 7, 45)(6, 42, 31)
927−373587−123−28(6, 45, 34)(7, 15, 22)(7, 17, 80)(7, 22, 17)
10−70−1288−12−70(7, 80, 45)(8, 9, 16)(8, 11, 9)(8, 13, 11)
11−12−3288924123(8, 16, 18)(8, 18, 81)(8, 61, 13)(8, 81, 61)
1270−129026−106(9, 11, 25)(9, 23, 38)(9, 25, 35)(9, 35, 23)
1313−12509132812(9, 38, 16)(10, 19, 36)(10, 24, 14)(10, 26, 39)
1434−41920127(10, 36, 26)(10, 39, 24)(11, 13, 32)(11, 27, 25)
15−1322293106−26(11, 32, 87)(11, 87, 27)(12, 14, 44)(12, 44, 33)
1637−3527941312−50(12, 60, 50)(13, 43, 32)(13, 61, 51)(14, 24, 27)
17−13−12−5095−1270(14, 27, 94)(14, 94, 44)(15, 28, 57)(15, 29, 54)
182812396−62610(15, 54, 28)(15, 57, 22)(16, 38, 40)(16, 40, 100)
19−7−1−4297−7142(16, 48, 18)(16, 100, 48)(17, 22, 47)(17, 47, 19)
20701298−4413(17, 66, 80)(18, 48, 29)(18, 67, 81)(19, 40, 36)
216−261099−4123−2(19, 47, 109)(19, 109, 40)(20, 33, 75)(20, 41, 72)
22−4516−61006−45−16(20, 72, 43)(20, 75, 41)(21, 51, 74)(21, 52, 90)
2312−501310122−213(21, 74, 52)(21, 90, 42)(22, 53, 99)(22, 57, 53)
24−1054102410−5(22, 99, 47)(23, 35, 76)(23, 70, 38)(23, 76, 113)
25−22213103−41−232(23, 112, 70)(23, 113, 112)(24, 39, 58)(24, 58, 114)
26−10314104−10−5−4(24, 63, 27)(24, 114, 63)(25, 27, 63)(25, 53, 35)
27−1622105213−22(25, 63, 119)(25, 119, 53)(26, 36, 77)(26, 71, 39)
28−1427106−12−50−13(26, 77, 97)(26, 97, 120)(26, 120, 71)(27, 87, 94)
29−2162107162−2(28, 54, 92)(28, 89, 57)(28, 92, 98)(28, 98, 111)
302−216108142−7(28, 111, 89)(29, 48, 110)(29, 58, 54)(29, 110, 58)
31−50−13−12109−6−26−10(30, 34, 91)(30, 59, 73)(30, 73, 60)(30, 91, 59)
32−16−2−211041−34(31, 42, 103)(31, 56, 67)(31, 68, 56)(31, 103, 68)
33103−14111−125013(32, 43, 104)(32, 49, 87)(32, 69, 49)(32, 104, 69)
34−3−28121124−413(33, 44, 105)(33, 70, 75)(33, 105, 70)(34, 45, 106)
35−16−6451131−427(34, 71, 91)(34, 106, 71)(35, 53, 96)(35, 96, 121)
36−10−3−141141270(35, 121, 76)(36, 40, 84)(36, 84, 122)(36, 122, 77)
3714−1031152737−35(37, 50, 88)(37, 66, 50)(37, 69, 128)(37, 83, 101)
383−28−121164−105(37, 88, 69)(37, 101, 66)(37, 128, 83)(38, 70, 129)
39−541011741232(38, 84, 40)(38, 129, 84)(39, 71, 130)(39, 85, 58)
40−2−13−2211845−16−6(39, 130, 85)(40, 109, 100)(41, 75, 102)(41, 86, 107)
41105−4119−4271(41, 95, 86)(41, 102, 95)(41, 107, 72)(42, 76, 103)
42−6−4516120−21322(42, 90, 76)(43, 72, 77)(43, 77, 104)(44, 62, 78)
433−441121−23−241(44, 78, 105)(44, 94, 62)(45, 55, 79)(45, 79, 106)
4471−42122−5−4−10(45, 80, 55)(46, 61, 81)(46, 64, 123)(46, 78, 93)
45−27−37−35123−645−16(46, 81, 108)(46, 93, 61)(46, 108, 64)(46, 123, 78)
462610−61242−41−23(47, 64, 82)(47, 82, 109)(47, 99, 64)(48, 65, 83)
47−232−4112512328(48, 83, 110)(48, 100, 65)(49, 68, 127)(49, 69, 68)
4850−1312126314−10(49, 82, 115)(49, 115, 87)(49, 127, 82)(50, 60, 116)
49−22−2−13127−10−6−26(50, 116, 88)(51, 61, 117)(51, 89, 74)(51, 117, 89)
5010−5412812−70(52, 65, 118)(52, 74, 101)(52, 83, 65)(52, 101, 83)
5123241129−328−12(52, 118, 90)(53, 57, 96)(53, 119, 99)(54, 58, 85)
5210−626130−4−41−3(54, 85, 131)(54, 131, 92)(55, 80, 107)(55, 86, 132)
53−106261313−1410(55, 93, 79)(55, 107, 86)(55, 132, 93)(56, 68, 88)
54−31410132427−1(56, 88, 134)(56, 95, 102)(56, 102, 67)(56, 134, 95)
55222−131333527−37(57, 89, 135)(57, 135, 96)(58, 110, 114)(59, 64, 108)
56−41−3−4134−4134(59, 82, 64)(59, 91, 115)(59, 108, 73)(59, 115, 82)
57−2610613564516(60, 73, 92)(60, 92, 116)(61, 93, 117)(62, 65, 124)
58−4105136−131250(62, 79, 78)(62, 94, 118)(62, 118, 65)(62, 124, 79)
591250−13137012−7(63, 86, 95)(63, 95, 119)(63, 114, 86)(64, 99, 123)
605−410138−26−10−6(65, 100, 124)(66, 101, 125)(66, 125, 80)(67, 102, 126)
6145166139−273735(67, 126, 81)(68, 69, 88)(68, 103, 127)(69, 104, 128)
6223−2−411400−12−7(70, 105, 129)(70, 112, 75)(71, 106, 130)(71, 120, 91)
63−1410314113−222(72, 97, 77)(72, 107, 136)(72, 136, 97)(73, 98, 92)
64−241−23142413−4(73, 108, 137)(73, 137, 98)(74, 89, 111)(74, 111, 139)
6541−23−2143−501312(74, 139, 101)(75, 112, 140)(75, 140, 102)(76, 90, 113)
6616−221443735−27(76, 121, 103)(77, 122, 104)(78, 79, 93)(78, 123, 105)
67216−2145−45−166(79, 124, 106)(80, 125, 107)(81, 126, 108)(82, 127, 109)
68−42−7−1146−4−10−5(83, 128, 110)(84, 98, 122)(84, 111, 98)(84, 129, 111)
69−14−10−3147−373527(85, 112, 113)(85, 113, 131)(85, 130, 112)(86, 114, 132)
7022−16148−1−42−7(87, 115, 133)(87, 133, 94)(88, 116, 134)(89, 117, 135)
71−22161492−162(90, 118, 141)(90, 141, 113)(91, 120, 144)(91, 144, 115)
72−34411505013−12(92, 131, 116)(93, 132, 117)(94, 133, 118)(95, 134, 119)
73441−3151−352737(96, 97, 121)(96, 120, 97)(96, 135, 120)(97, 136, 121)
7416645152−3−14−10(98, 137, 122)(99, 119, 143)(99, 143, 123)(100, 109, 138)
7554−1015328−12−3(100, 138, 124)(101, 139, 125)(102, 140, 126)(103, 121, 145)
76−2−4123154−2−16−2(103, 145, 127)(104, 122, 146)(104, 146, 128)(105, 123, 147)
77−7012155−28−123(105, 147, 129)(106, 124, 148)(106, 148, 130)(107, 125, 136)
78626−10156−13−22−2(108, 126, 137)(109, 127, 138)(110, 128, 142)(110, 142, 114)
(111, 129, 139)(112, 130, 140)(113, 141, 131)(114, 142, 132)
(115, 144, 133)(116, 131, 149)(116, 149, 134)(117, 132, 150)
(117, 150, 135)(118, 133, 141)(119, 134, 143)(120, 135, 144)
(121, 136, 145)(122, 137, 146)(123, 143, 147)(124, 138, 148)
(125, 139, 151)(125, 151, 136)(126, 140, 152)(126, 152, 137)
(127, 145, 138)(128, 146, 142)(129, 147, 139)(130, 148, 140)
(131, 141, 149)(132, 142, 150)(133, 144, 153)(133, 153, 141)
(134, 149, 143)(135, 150, 144)(136, 151, 145)(137, 152, 146)
(138, 145, 156)(138, 156, 148)(139, 147, 151)(140, 148, 152)
(141, 153, 149)(142, 146, 154)(142, 154, 150)(143, 149, 155)
(143, 155, 147)(144, 150, 153)(145, 151, 156)(146, 152, 154)
(147, 155, 151)(148, 156, 152)(149, 153, 155)(150, 154, 153)
(151, 155, 156)(152, 156, 154)(153, 154, 155)(154, 156, 155)
Vertex Permutation Groups
(1, 97) (2, 120) (3, 26) (4, 14) (5, 153) (6, 144) (7, 133) (8, 151) (9, 139) (10, 12)
(11, 125) (13, 136) (15, 141) (16, 147) (17, 94) (18, 155) (19, 44) (20, 77) (21, 96) (22, 118)
(23, 111) (24, 50) (25, 101) (27, 66) (28, 113) (29, 149) (30, 71) (31, 150) (32, 107) (33, 36)
(34, 91) (35, 74) (37, 63) (38, 129) (39, 60) (40, 105) (41, 104) (42, 135) (43, 72) (45, 115)
(46, 138) (47, 62) (48, 143) (49, 55) (51, 121) (52, 53) (54, 131) (56, 142) (57, 90) (58, 116)
(59, 106) (61, 145) (64, 124) (65, 99) (67, 154) (68, 132) (69, 86) (70, 84) (73, 130) (75, 122)
(76, 89) (78, 109) (79, 82) (80, 87) (81, 156) (83, 119) (85, 92) (88, 114) (93, 127) (95, 128)
(98, 112) (100, 123) (102, 146) (103, 117) (108, 148) (110, 134) (126, 152) (137, 140)
 
(1, 28, 132) (2, 15, 55) (3, 54, 86) (4, 130, 56) (5, 80, 34) (6, 7, 45) (8, 139, 144) (9, 147, 133)
(10, 140, 88) (11, 129, 153) (12, 85, 95) (13, 111, 150) (14, 112, 134) (16, 151, 115) (17, 106, 31) (18, 125, 91)
(19, 148, 68) (20, 92, 114) (21, 57, 93) (22, 79, 42) (23, 143, 94) (24, 75, 116) (25, 105, 141) (26, 126, 37)
(27, 70, 149) (29, 107, 30) (32, 84, 154) (33, 131, 63) (35, 123, 118) (36, 152, 69) (38, 155, 87) (39, 102, 50)
(40, 156, 49) (41, 60, 58) (43, 98, 142) (44, 113, 119) (46, 52, 96) (47, 124, 103) (48, 136, 59) (51, 89, 117)
(53, 78, 90) (61, 74, 135) (62, 76, 99) (64, 65, 121) (66, 71, 67) (72, 73, 110) (77, 137, 128) (81, 101, 120)
(82, 100, 145) (83, 97, 108) (104, 122, 146) (109, 138, 127)
Table A19. R14.3′ with T symmetry.
Table A19. R14.3′ with T symmetry.
VertexXYZVertexXYZPolygons
121.4177−3.659831.8517183−17.9964−19.304261.1346(1, 2, 7, 5, 4, 6, 3)
216.6072−4.089833.1114184−40.800551.747820.3949(1, 3, 15, 13, 14, 16, 8)
323.9611−13.7842−62.0303185−19.233459.5177−31.9562(1, 8, 12, 9, 10, 11, 2)
4−52.2105−20.8178−44.1150186−44.115052.210520.8178(2, 11, 87, 90, 89, 88, 7)
5−51.7478−20.3949−40.8005187−31.8517−21.4177−3.6598(3, 6, 86, 84, 85, 83, 15)
6−4.0698−18.8954−78.1554188−33.1114−16.6072−4.0898(4, 5, 63, 41, 40, 55, 62)
720.6979−13.9415−59.9652189−48.8637−18.630253.5041(4, 62, 129, 167, 166, 86, 6)
87.7959−28.293828.7781190−31.1563−9.2795−18.4051(5, 7, 88, 195, 196, 194, 63)
916.192156.987450.5519191−50.5519−16.192156.9874(8, 16, 124, 122, 123, 121, 12)
1018.630253.504148.863819221.9910−21.991021.9910(9, 12, 121, 137, 138, 136, 33)
119.2795−18.405131.156319335.0540−12.157824.0295(9, 33, 31, 24, 25, 32, 10)
12−0.9243−33.983229.6692194−63.962526.9536−19.7522(10, 32, 125, 165, 164, 87, 11)
1326.28168.869956.901019526.9536−19.7522−63.9625(13, 15, 83, 134, 135, 133, 60)
1411.1685−20.851438.1558196−52.3780−52.3780−52.3780(13, 60, 59, 19, 20, 61, 14)
1526.2816−8.8699−56.9010197−59.9652−20.697913.9415(14, 61, 192, 226, 225, 124, 16)
164.1872−32.636841.9679198−61.1346−17.996419.3041(17, 18, 21, 22, 23, 20, 19)
17−0.2999−24.670581.194219931.1563−9.279518.4051(17, 19, 59, 66, 65, 64, 50)
184.0698−18.895478.155420033.1114−16.60724.0898(17, 50, 52, 54, 53, 51, 18)
190.299924.670581.194220122.7654−15.28388.5687(18, 51, 80, 81, 82, 75, 21)
2051.82997.075344.6237202−13.570813.570813.5708(20, 23, 145, 146, 193, 192, 61)
2152.2105−20.817844.115020359.965220.697913.9415(21, 75, 76, 35, 36, 77, 22)
2257.23954.886340.7816204−20.851438.155811.1685(22, 77, 238, 239, 147, 145, 23)
2354.72308.339942.58982058.869956.901026.2816(24, 26, 27, 28, 29, 30, 25)
2450.826356.779212.1979206−8.8699−56.901026.2816(24, 31, 37, 36, 35, 34, 26)
2551.026760.273110.956520731.15639.2795−18.4051(25, 30, 126, 127, 128, 125, 32)
2656.987450.551916.192120829.6692−0.9243−33.9832(26, 34, 67, 69, 68, 70, 27)
27−33.983229.6692−0.924320928.77817.7959−28.2938(27, 70, 119, 120, 118, 78, 28)
28−44.662352.2139−12.206921031.851721.4177−3.6598(28, 78, 71, 42, 43, 79, 29)
2944.662352.213912.206921133.111416.6072−4.0898(29, 79, 240, 241, 212, 126, 30)
3044.015758.80219.586021242.589854.72308.3399(31, 33, 136, 173, 171, 172, 37)
3135.460135.460135.460121378.15554.0698−18.8954(34, 35, 76, 91, 93, 92, 67)
3219.734062.443445.031921481.1942−0.2999−24.6705(36, 37, 172, 208, 266, 238, 77)
3312.198050.826356.779221544.623651.82997.0753(38, 39, 46, 48, 47, 49, 45)
3453.504148.863818.630221681.19420.299924.6705(38, 40, 41, 44, 43, 42, 39)
3562.443445.032019.7340217−19.3041−61.134617.9964(38, 45, 56, 57, 58, 55, 40)
3660.273110.956551.0267218−8.568722.765415.2838(39, 42, 71, 74, 73, 72, 46)
3756.779212.198050.8263219−44.623751.8299−7.0753(41, 63, 194, 227, 175, 174, 44)
38−56.779212.1980−50.8263220−31.9562−19.233459.5177(43, 44, 174, 180, 267, 240, 79)
39−35.460135.4601−35.460122120.3949−40.800551.7478(45, 49, 104, 105, 106, 103, 56)
40−60.273110.9565−51.026722220.8178−44.115052.2105(46, 72, 152, 154, 153, 95, 48)
41−62.443445.0320−19.7340223−45.0319−19.734062.4434(47, 48, 95, 96, 98, 97, 94)
42−50.826356.7792−12.1979224−10.9565−51.026760.2731(47, 94, 140, 141, 139, 104, 49)
43−56.987450.5519−16.1921225−7.0753−44.623751.8299(50, 64, 99, 102, 101, 100, 52)
44−53.504148.8638−18.630222624.0295−35.054012.1578(51, 53, 107, 143, 144, 142, 80)
45−50.551916.1921−56.9874227−61.134617.9964−19.3041(52, 100, 155, 157, 156, 108, 54)
46−12.198050.8263−56.7792228−63.9625−26.953619.7522(53, 54, 108, 109, 111, 110, 107)
47−45.031919.7340−62.4434229−52.378052.378052.3780(55, 58, 131, 130, 132, 129, 62)
48−10.956551.0267−60.273123017.996419.304261.1346(56, 103, 99, 64, 65, 112, 57)
49−48.863718.6302−53.504123126.953619.752263.9625(57, 112, 277, 278, 191, 131, 58)
50−51.8299−7.075344.6237232−59.5177−31.956219.2334(59, 60, 133, 170, 168, 169, 66)
51−23.9611−13.784262.030323356.901026.28168.8699(65, 66, 169, 232, 287, 277, 112)
52−12.157824.029535.0540234−56.901026.2816−8.8699(67, 92, 202, 218, 217, 114, 69)
53−26.2816−8.869956.901023562.030323.961113.7842(68, 69, 114, 115, 117, 116, 113)
54−11.168520.851438.155823619.7522−63.9625−26.9536(68, 113, 206, 205, 204, 119, 70)
55−58.80219.5860−44.0157237−19.752263.9625−26.9536(71, 78, 118, 186, 184, 185, 74)
56−29.6692−0.924333.983223852.213912.206944.6623(72, 73, 158, 81, 80, 142, 152)
57−52.2139−12.206944.662323929.66920.924333.9832(73, 74, 185, 237, 297, 296, 158)
58−52.213912.2069−44.662324028.293828.7781−7.7959(75, 82, 183, 181, 182, 91, 76)
59−4.069818.895478.155524132.636841.9679−4.1872(81, 158, 296, 310, 268, 183, 82)
6023.961113.784262.030324262.0303−23.9611−13.7842(83, 85, 160, 258, 259, 245, 134)
6112.1578−24.029535.054024359.9652−20.6979−13.9415(84, 86, 166, 249, 250, 251, 159)
62−57.23954.8863−40.7816244−38.1558−11.1685−20.8514(84, 159, 162, 161, 163, 160, 85)
63−59.517731.9562−19.2334245−8.339942.5898−54.7230(87, 164, 260, 281, 282, 201, 90)
64−54.7230−8.339942.5898246−0.924333.9832−29.6692(88, 89, 199, 256, 257, 255, 195)
65−57.2395−4.886340.78162470.924333.983229.6692(89, 90, 201, 198, 197, 200, 199)
66−52.210520.817844.11502484.886340.781557.2395(91, 182, 236, 295, 294, 203, 93)
67−18.405131.15639.27952494.069818.8954−78.1554(92, 93, 203, 105, 104, 139, 202)
68−3.659831.851721.417725052.210520.8178−44.1150(94, 97, 260, 164, 165, 261, 140)
69−4.089833.111416.607225157.2395−4.8863−40.7816(95, 153, 246, 135, 134, 245, 96)
70−28.293828.77817.7959252−24.6705−81.19420.2999(96, 245, 259, 314, 274, 273, 98)
71−51.026760.2731−10.956525324.6705−81.1942−0.2999(97, 98, 273, 275, 315, 281, 260)
72−16.192156.9874−50.551925418.8954−78.15554.0698(99, 103, 106, 235, 233, 234, 102)
73−18.630253.5041−48.863825531.9562−19.2334−59.5177(100, 101, 219, 120, 119, 204, 155)
74−19.734062.4434−45.031925648.8638−18.6302−53.5041(101, 102, 234, 276, 316, 311, 219)
7551.7478−20.394940.800525745.0319−19.7340−62.4434(105, 203, 294, 323, 288, 235, 106)
7659.517731.956219.233425824.029535.0540−12.1578(107, 110, 249, 166, 167, 262, 143)
7758.80219.586044.0157259−7.075344.6237−51.8299(108, 156, 248, 138, 137, 247, 109)
78−44.015758.8021−9.586026013.941559.965220.6979(109, 247, 284, 324, 291, 289, 111)
7933.983229.66920.924326152.378052.3780−52.3780(110, 111, 289, 290, 292, 250, 249)
80−21.4177−3.6598−31.8517262−12.1578−24.0295−35.0540(113, 116, 252, 225, 226, 285, 206)
81−16.6072−4.0898−33.111426315.28388.5687−22.7654(114, 217, 280, 196, 195, 255, 115)
82−20.6979−13.941559.96522649.279518.4051−31.1563(115, 255, 257, 313, 272, 270, 117)
8311.168520.8514−38.155826531.956219.233459.5177(116, 117, 270, 271, 293, 253, 252)
8451.8299−7.0753−44.623726652.2139−12.2069−44.6623(118, 120, 219, 311, 312, 269, 186)
8512.157824.0295−35.05402673.659831.8517−21.4177(121, 123, 224, 283, 284, 247, 137)
860.2999−24.6705−81.1941268−15.2838−8.5687−22.7654(122, 124, 225, 252, 253, 254, 222)
878.5687−22.765415.2838269−78.15554.069818.8954(122, 222, 221, 220, 223, 224, 123)
8817.9964−19.3042−61.13462704.8863−40.7815−57.2395(125, 128, 243, 301, 300, 261, 165)
8915.2838−8.568722.76542718.3399−42.5898−54.7230(126, 212, 215, 216, 214, 213, 127)
9013.5708−13.570813.57082729.5860−44.0157−58.8021(127, 213, 242, 187, 188, 243, 128)
9163.962526.953619.752227318.895478.1555−4.0698(129, 132, 244, 303, 302, 262, 167)
92−22.765415.28388.568727424.670581.19410.2999(130, 131, 191, 189, 190, 188, 187)
9361.134617.996419.304127513.784262.030323.9611(130, 187, 242, 148, 149, 244, 132)
94−31.956219.2334−59.5177276−62.030323.9611−13.7842(133, 135, 246, 305, 304, 264, 170)
95−9.586044.0157−58.8021277−60.2731−10.956551.0267(136, 138, 248, 307, 306, 265, 173)
96−4.886340.7815−57.2395278−56.7792−12.198050.8263(139, 141, 290, 289, 291, 218, 202)
9720.394940.8005−51.747827944.6236−51.8299−7.0753(140, 261, 300, 325, 292, 290, 141)
9820.817844.1150−52.2105280−19.7522−63.962526.9536(142, 144, 271, 270, 272, 154, 152)
99−41.96794.187232.63682814.0898−33.111416.6072(143, 262, 302, 326, 293, 271, 144)
100−21.991021.991021.991028218.4051−31.15639.2795(145, 147, 150, 151, 149, 148, 146)
101−35.054012.157824.0295283−12.1980−50.826356.7792(146, 148, 242, 213, 214, 279, 193)
102−38.155811.168520.8514284−16.1921−56.987450.5519(147, 239, 298, 256, 199, 200, 150)
103−28.77817.795928.293828520.8514−38.155811.1685(149, 151, 269, 312, 334, 303, 244)
104−31.15639.279518.4051286−59.965220.6979−13.9415(150, 200, 197, 184, 186, 269, 151)
105−33.111416.60724.0898287−62.4434−45.032019.7340(153, 154, 272, 313, 335, 305, 246)
106−31.851721.41773.659828878.1555−4.069818.8954(155, 204, 205, 275, 273, 274, 157)
107−26.28168.8699−56.9010289−16.60724.089833.1114(156, 157, 274, 314, 336, 307, 248)
108−4.187232.636841.9679290−20.697913.9415−59.9652(159, 251, 308, 266, 208, 209, 162)
109−7.795928.293828.7781291−9.279518.405131.1563(160, 163, 215, 212, 241, 299, 258)
110−23.961113.7842−62.030329251.747820.3949−40.8005(161, 162, 209, 210, 276, 234, 233)
111−21.41773.659831.85172937.0753−44.6237−51.8299(161, 233, 235, 288, 216, 215, 163)
112−58.8021−9.586044.015729440.8005−51.747820.3949(168, 170, 264, 179, 178, 263, 230)
113−13.7842−62.030323.961129519.2334−59.5177−31.9562(168, 230, 231, 229, 228, 232, 169)
114−13.9415−59.965220.6979296−8.5687−22.7654−15.2838(171, 173, 265, 231, 230, 263, 207)
115−20.3949−40.8005−51.7478297−19.304161.1346−17.9964(171, 207, 211, 210, 209, 208, 172)
116−18.8954−78.1555−4.069829850.5519−16.1921−56.9874(174, 175, 178, 179, 177, 176, 180)
117−20.8178−44.1150−52.210529920.851438.1558−11.1685(175, 227, 286, 211, 207, 263, 178)
118−40.781657.2395−4.886330063.9625−26.9536−19.7522(176, 177, 236, 182, 181, 220, 221)
119−32.636841.96794.187230161.1346−17.9964−19.3042(176, 221, 222, 254, 309, 267, 180)
120−42.589854.7230−8.3399302−21.9910−21.9910−21.9910(177, 179, 264, 304, 327, 295, 236)
121−12.2069−44.662352.2139303−35.0540−12.1578−24.0295(181, 183, 268, 190, 189, 223, 220)
122−4.8863−40.781557.239530418.6302−53.5041−48.8638(184, 197, 198, 228, 229, 237, 185)
123−9.5860−44.015758.802130516.1921−56.9874−50.5519(188, 190, 268, 310, 333, 301, 243)
124−8.3399−42.589854.7230306−20.394940.800551.7478(189, 191, 278, 317, 283, 224, 223)
12519.233459.517731.9562307−20.817844.115052.2105(192, 193, 279, 319, 318, 285, 226)
12640.781557.23954.886330858.8021−9.5860−44.0157(194, 196, 280, 321, 320, 286, 227)
12744.115052.2105−20.817830913.7842−62.0303−23.9611(198, 201, 282, 322, 287, 232, 228)
12840.800551.7478−20.3949310−13.5708−13.5708−13.5708(205, 206, 285, 318, 337, 315, 275)
129−54.72308.3399−42.5898311−81.19420.2999−24.6705(210, 211, 286, 320, 338, 316, 276)
130−28.7781−7.7959−28.2938312−81.1942−0.299924.6705(214, 216, 288, 323, 341, 319, 279)
131−29.66920.9243−33.983231310.9565−51.0267−60.2731(217, 218, 291, 324, 342, 321, 280)
132−41.9679−4.1872−32.6368314−24.670581.1942−0.2999(229, 231, 265, 306, 328, 297, 237)
13321.41773.6598−31.85173153.6598−31.851721.4177(238, 266, 308, 329, 330, 298, 239)
1344.187232.6368−41.9679316−78.1555−4.0698−18.8954(240, 267, 309, 331, 332, 299, 241)
1357.795928.2938−28.7781317−35.4601−35.460135.4601(250, 292, 325, 343, 329, 308, 251)
13610.956551.026760.273131832.6368−41.96794.1872(253, 293, 326, 344, 331, 309, 254)
13712.206944.662352.213931942.5898−54.7230−8.3399(256, 298, 330, 347, 335, 313, 257)
1389.586044.015758.8021320−40.8005−51.7478−20.3949(258, 299, 332, 348, 336, 314, 259)
139−15.28388.568722.7654321−19.2334−59.517731.9562(277, 287, 322, 339, 340, 317, 278)
140−26.953619.7522−63.9625322−53.5041−48.863818.6302(281, 315, 337, 349, 339, 322, 282)
141−17.996419.3041−61.134632344.1150−52.210520.8178(283, 317, 340, 354, 342, 324, 284)
142−7.7959−28.2938−28.7781324−18.6302−53.504148.8638(294, 295, 327, 352, 353, 341, 323)
143−11.1685−20.8514−38.155832559.5177−31.9562−19.2334(296, 297, 328, 346, 345, 333, 310)
144−4.1872−32.6368−41.9679326−24.0295−35.0540−12.1578(300, 301, 333, 345, 355, 343, 325)
14541.9679−4.187232.636832719.7340−62.4434−45.0319(302, 303, 334, 350, 356, 344, 326)
14638.1558−11.168520.8514328−13.941559.9652−20.6979(304, 305, 335, 347, 357, 352, 327)
14728.7781−7.795928.293832960.2731−10.9565−51.0267(306, 307, 336, 348, 358, 346, 328)
14856.9010−26.2816−8.869933056.7792−12.1980−50.8263(311, 316, 338, 351, 350, 334, 312)
149−56.9010−26.28168.86993318.8699−56.9010−26.2816(318, 319, 341, 353, 359, 349, 337)
15031.8517−21.41773.6598332−8.869956.9010−26.2816(320, 321, 342, 354, 360, 351, 338)
151−62.0303−23.961113.7842333−22.7654−15.2838−8.5687(329, 343, 355, 361, 357, 347, 330)
1520.9243−33.9832−29.6692334−44.6236−51.82997.0753(331, 344, 356, 362, 358, 348, 332)
153−12.206944.6623−52.213933512.1980−50.8263−56.7792(339, 349, 359, 363, 360, 354, 340)
15412.2069−44.6623−52.2139336−18.895478.15554.0698(345, 346, 358, 362, 364, 361, 355)
155−24.029535.054012.157833728.2938−28.77817.7959(350, 351, 360, 363, 364, 362, 356)
1568.339942.589854.7230338−44.1150−52.2105−20.8178(352, 357, 361, 364, 363, 359, 353)
1577.075344.623751.8299339−56.9874−50.551916.1921
158−9.2795−18.4051−31.1563340−50.8263−56.779212.1979
15954.7230−8.3399−42.589834140.7815−57.2395−4.8863
16021.991021.9910−21.9910342−19.7340−62.443445.0319
16138.155811.1685−20.851434362.4434−45.0320−19.7340
16241.96794.1872−32.6368344−20.8514−38.1558−11.1685
16335.054012.1578−24.0295345−18.4051−31.1563−9.2795
16419.304161.134617.9964346−4.0898−33.1114−16.6072
16519.752263.962526.953634735.4601−35.4601−35.4601
166−0.299924.6705−81.1942348−13.784262.0303−23.9611
167−51.82997.0753−44.623734933.9832−29.6692−0.9243
16820.697913.941559.9652350−42.5898−54.72308.3399
169−51.747820.394940.8005351−40.7815−57.23954.8863
17016.60724.0898−33.111435251.0267−60.2731−10.9565
17148.863718.630253.504135344.0157−58.8021−9.5860
17250.551916.192156.9874354−51.0267−60.273110.9565
17345.031919.734062.443435553.5041−48.8638−18.6302
17418.405131.1563−9.2795356−32.6368−41.9679−4.1872
17522.765415.2838−8.568735750.8263−56.7792−12.1979
17613.9415−59.9652−20.6979358−3.6598−31.8517−21.4177
17719.3041−61.1346−17.996435944.6623−52.2139−12.2069
17813.570813.5708−13.5708360−44.0157−58.80219.5860
1798.568722.7654−15.283836156.9874−50.5519−16.1921
1804.089833.1114−16.6072362−28.2938−28.7781−7.7959
181−26.9536−19.752263.9625363−44.6623−52.213912.2069
18252.3780−52.378052.3780364−33.9832−29.66920.9243
Face Permutation Groups
(1, 97) (2, 120) (3, 26) (4, 14) (5, 153) (6, 144) (7, 133) (8, 151) (9, 139) (10, 12)
(11, 125) (13, 136) (15, 141) (16, 147) (17, 94) (18, 155) (19, 44) (20, 77) (21, 96) (22, 118)
(23, 111) (24, 50) (25, 101) (27, 66) (28, 113) (29, 149) (30, 71) (31, 150) (32, 107) (33, 36)
(34, 91) (35, 74) (37, 63) (38, 129) (39, 60) (40, 105) (41, 104) (42, 135) (43, 72) (45, 115)
(46, 138) (47, 62) (48, 143) (49, 55) (51, 121) (52, 53) (54, 131) (56, 142) (57, 90) (58, 116)
(59, 106) (61, 145) (64, 124) (65, 99) (67, 154) (68, 132) (69, 86) (70, 84) (73, 130) (75, 122)
(76, 89) (78, 109) (79, 82) (80, 87) (81, 156) (83, 119) (85, 92) (88, 114) (93, 127) (95, 128)
(98, 112) (100, 123) (102, 146) (103, 117) (108, 148) (110, 134) (126, 152) (137, 140)
 
(1, 28, 132) (2, 15, 55) (3, 54, 86) (4, 130, 56) (5, 80, 34) (6, 7, 45) (8, 139, 144) (9, 147, 133)
(10, 140, 88) (11, 129, 153) (12, 85, 95) (13, 111, 150) (14, 112, 134) (16, 151, 115) (17, 106, 31) (18, 125, 91)
(19, 148, 68) (20, 92, 114) (21, 57, 93) (22, 79, 42) (23, 143, 94) (24, 75, 116) (25, 105, 141) (26, 126, 37)
(27, 70, 149) (29, 107, 30) (32, 84, 154) (33, 131, 63) (35, 123, 118) (36, 152, 69) (38, 155, 87) (39, 102, 50)
(40, 156, 49) (41, 60, 58) (43, 98, 142) (44, 113, 119) (46, 52, 96) (47, 124, 103) (48, 136, 59) (51, 89, 117)
(53, 78, 90) (61, 74, 135) (62, 76, 99) (64, 65, 121) (66, 71, 67) (72, 73, 110) (77, 137, 128) (81, 101, 120)
(82, 100, 145) (83, 97, 108) (104, 122, 146) (109, 138, 127)

References

  1. Bokowski, J.; Sturmfels, B. Computational Synthetic Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 1355. [Google Scholar]
  2. Grünbaum, B. Convex Polytopes, Pure and Applied Mathematics; Interscience-Wiley: New York, NY, USA, 1967; Volume 16. [Google Scholar]
  3. Bokowski, J.; Guedes de Oliveira, A. On the generation of oriented matroids. Discrete Comput. Geom. 2000, 24, 197. [Google Scholar] [CrossRef]
  4. Schewe, L. Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers. Discrete Comput. Geom. 2010, 43, 289–302. [Google Scholar] [CrossRef]
  5. Conder, M.D.E. Regular maps and hypermaps of Euler characteristic −1 to −200. J. Comb. Theory Ser. B 2009, 99, 455–459. [Google Scholar] [CrossRef]
  6. Bokowski, J.; Gévay, G. On Polyhedral Realizations of Hurwitz’s Regular Map {3,7}18 of Genus 7 with Geometric Symmetries. Art Discrete Appl. Math. 2021, 4, P3.09. [Google Scholar] [CrossRef]
  7. Bokowski, J.; Wills, J.M. Regular Leonardo Polyhedra. Art Discrete Appl. Math. 2022, 5, P3.13. [Google Scholar] [CrossRef]
  8. Bokowski, J.; Wills, J.M. An E3 embedding of Coxeter’s regular map {8, 4|3} results in a regular Leonardo polyhedron. Art Discrete Appl. Math. 2024, 7, P2.02. [Google Scholar] [CrossRef]
  9. Möbius, A.F. Gesammelte Werke II. Hrsg. Felix Klein; Reprinted 1967; S.Hirzel Verlag: Leipzig, Germany, 1886; p. 552 ff. [Google Scholar]
  10. Császár, A. A polyhedron without diagonals. Acta Sci. Math. Szeged 1949, 13, 140–142. [Google Scholar]
  11. Bokowski, J.; Eggert, A. All Realizations of Möbius’ Torus with 7 Vertices. Struct. Topol. 1991, 17, 59–76. [Google Scholar]
  12. Szilassi, L. Regular toroids. Struct. Topol. 1986, 13, 69–80. [Google Scholar]
  13. Bokowski, J.; Schewe, L. On Szilassi’s Torus. Symmetry Cult. Sci. 2002, 13, 211–240. [Google Scholar]
  14. Altshuler, A.; Bokowski, J.; Schuchert, P. Spatial polyhedra without diagonals. Israel J. Math. 1994, 86, 373–396. [Google Scholar] [CrossRef]
  15. Altshuler, A.; Bokowski, J.; Schuchert, P. Sphere systems and neighborly spatial polyhedra with 10 vertices. Suppl. Rend. Circ. Mat. Palermo 1994, 2, 35. [Google Scholar]
  16. Altshuler, A.; Bokowski, J.; Schuchert, P. Neighborly 2-Manifolds with 12 Vertices. J. Comb. Theory, Ser. A 1996, 75, 148–162. [Google Scholar] [CrossRef]
  17. Ringel, G. Map Color Theorem; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
  18. Hurwitz, A. Über algebraische Gebilde mit Eindeutigen Transformationen in sich. Math. Ann. 1893, 41, 403–442. [Google Scholar] [CrossRef]
  19. Klein, F. Über die Transformationen siebenter Ordnung der elliptischen Functionen. Math. Ann. 1879, 14, 428–471. [Google Scholar] [CrossRef]
  20. Klein, F. Vorlesungen Über das Ikosaeder und die Auflösung der Gleichungen Fünften Grades; Teubner: Leipzig, Germany, 1884. [Google Scholar]
  21. Schulte, E.; Wills, J.M. A polyhedral realization of Felix Klein’s map {3,7}8 on a Riemann surface of genus 3. J. Lond. Math. Soc. 1985, 32, 539–547. [Google Scholar] [CrossRef]
  22. Schulte, E.; Wills, J.M. Convex-Faced Combinatorially Regular Polyhedra of Small Genus. Symmetry 2012, 4, 1–14. [Google Scholar] [CrossRef]
  23. Gévay, G.; Wills, J.M. On regular and equivelar Leonardo polyhedra. Ars Math. Contemp. 2013, 6, 1–11. [Google Scholar] [CrossRef]
  24. Gévay, G.; Schulte, E.; Wills, J.M. The regular Grünbaum polyhedron of genus 5. Adv. Geom. 2014, 14, 465–482. [Google Scholar] [CrossRef]
  25. Bokowski, J. On Symmetrical Equivelar Polyhedra of Type {3.7} and Embeddings of Regular Maps. Symmetry 2024, 16, 1273. [Google Scholar] [CrossRef]
  26. McCooey, D.I. A non-self-intersecting polyhedral realization of the all-heptagon Klein map. Symmetry Cult. Sci. 2009, 20, 247–268. [Google Scholar]
  27. Dyck, W. Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemann’scher Flächen. Math. Ann. 1880, 17, 473–508. [Google Scholar] [CrossRef]
  28. Dyck, W. Notiz über eine reguläre Riemann’sche Fläche vom Geschlecht drei und die zugehörige “Normalcurve” vierter Ordnung. Math. Ann. 1880, 17, 510–516. [Google Scholar] [CrossRef]
  29. Bokowski, J. A geometric realization without self-intersections does exist for Dyck’s regular map. Discrete Comput. Geom. 1989, 6, 583–589. [Google Scholar] [CrossRef]
  30. Brehm, U. Maximally symmetric polyhedral realizations of Dyck’s regular map. Mathematika 1987, 34, 229–236. [Google Scholar] [CrossRef]
  31. Van Wijk, J.J. Symmetric tiling of closed surfaces: Visualization of regular maps. Acm Trans. Graph. 2009, 28, 1–12. [Google Scholar] [CrossRef]
  32. Van Wijk, J.J. Visualization of Regular Maps: The Chase Continues. IEEE Trans. Vis. Comput. Graph. 2014, 20, 2614–2623. [Google Scholar] [CrossRef]
  33. Klein, F.; Fricke, R. Vorlesungen Über die Theorie der Elliptischen Modulfunktionen; Teubner: Leipzig, Germany, 1890. [Google Scholar]
  34. Grünbaum, B. Acoptic polyhedra. In Advances in Discrete and Computational Geometry; Chazelle, B., Goodman, J.E., Pollack, R., Eds.; Contemp. Math. 223; American Mathematical Society: Providence, RI, USA, 1999; pp. 163–199. [Google Scholar]
  35. Bokowski, J.; Cuntz, M. Hurwitz’s regular map (3, 7) of genus 7: A polyhedral realization. Art Discrete Appl. Math. 2018, 1, P1.02. [Google Scholar] [CrossRef]
  36. Bokowski, J.; Pisanski, T. Oriented matroids and complete-graph embeddings on surfaces. J. Comb. Theory Ser. A 2007, 114, 1–19. [Google Scholar] [CrossRef]
  37. Bokowski, J. Schöne Fragen aus der Geometrie. In Ein Interaktiver Überblick Über Gelöste und Noch Offene Probleme; Springer Spektrum: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
  38. Altshuler, A.; Brehm, U. Neighborly maps with few vertices. Discrete Comput. Geom. 1992, 8, 93–104. [Google Scholar] [CrossRef]
  39. Séquin, C.; Xiao, L. K12 and the Genus 6 Tiffany Lamp; EECS, CS Division, University of California: Berkeley, CA, USA, 2004. [Google Scholar]
Figure 1. (Left): An edge (dotted line) intersecting a polygon at a point. (Right): A polygon with a self-crossing.
Figure 1. (Left): An edge (dotted line) intersecting a polygon at a point. (Right): A polygon with a self-crossing.
Symmetry 17 00622 g001
Figure 2. R3.1 with T and D3 symmetry.
Figure 2. R3.1 with T and D3 symmetry.
Symmetry 17 00622 g002
Figure 3. The combinatorial input for a polyhedron of Felix Klein’s quartic of type { 3 , 7 } 8 . Here, we see an example of a Petrie polygon in red.
Figure 3. The combinatorial input for a polyhedron of Felix Klein’s quartic of type { 3 , 7 } 8 . Here, we see an example of a Petrie polygon in red.
Symmetry 17 00622 g003
Figure 4. R3.1′ with T and D3 symmetry.
Figure 4. R3.1′ with T and D3 symmetry.
Symmetry 17 00622 g004
Figure 5. R3.2 with D3 and S2 symmetry.
Figure 5. R3.2 with D3 and S2 symmetry.
Symmetry 17 00622 g005aSymmetry 17 00622 g005b
Figure 6. The triangles of Dyck’s regular map R3.2 of type { 3 , 8 } 6 shown with a cyclic symmetry of order 3. Matching colors on the boundary indicate where gluing should occur.
Figure 6. The triangles of Dyck’s regular map R3.2 of type { 3 , 8 } 6 shown with a cyclic symmetry of order 3. Matching colors on the boundary indicate where gluing should occur.
Symmetry 17 00622 g006
Figure 7. Two pictures of Jarke van Wijk’s video with topological embeddings of regular maps [31,32]. Here, we see Dyck’s regular map R3.2′ of type { 8 , 3 } 6 .
Figure 7. Two pictures of Jarke van Wijk’s video with topological embeddings of regular maps [31,32]. Here, we see Dyck’s regular map R3.2′ of type { 8 , 3 } 6 .
Symmetry 17 00622 g007
Figure 8. Here, we see Brehm’s polyhedral embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 . The polyhedron is complete when the red parts cannot be seen. In the front and back parts, eight blue triangles have to be reinserted. The red triangles are the inner sides of the polyhedron. The polyhedron has a geometrical dihedral symmetry D3 of order 6.
Figure 8. Here, we see Brehm’s polyhedral embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 . The polyhedron is complete when the red parts cannot be seen. In the front and back parts, eight blue triangles have to be reinserted. The red triangles are the inner sides of the polyhedron. The polyhedron has a geometrical dihedral symmetry D3 of order 6.
Symmetry 17 00622 g008
Figure 9. This embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 has geometrical dihedral symmetry D3 like Behm’s embedding. However, it is different. For a front triangle and for a triangle of the rear part, we see only their boundaries, so that we can imagine the shape of this polyhedron.
Figure 9. This embedding of Dyck’s regular map R3.2 of type { 3 , 8 } 6 has geometrical dihedral symmetry D3 like Behm’s embedding. However, it is different. For a front triangle and for a triangle of the rear part, we see only their boundaries, so that we can imagine the shape of this polyhedron.
Symmetry 17 00622 g009
Figure 10. R5.1 with chiral octahedral and S2 symmetry.
Figure 10. R5.1 with chiral octahedral and S2 symmetry.
Symmetry 17 00622 g010
Figure 11. R5.1′ with D2, S4, and C3 symmetry.
Figure 11. R5.1′ with D2, S4, and C3 symmetry.
Symmetry 17 00622 g011
Figure 12. R6.1 with C3 and C2 symmetry.
Figure 12. R6.1 with C3 and C2 symmetry.
Symmetry 17 00622 g012
Figure 13. R7.1 with D3, D2, and S2 symmetry.
Figure 13. R7.1 with D3, D2, and S2 symmetry.
Symmetry 17 00622 g013
Figure 14. A Poincaré disk model of regular map 7.1 with 72 vertices, 252 edges, and 168 triangles.
Figure 14. A Poincaré disk model of regular map 7.1 with 72 vertices, 252 edges, and 168 triangles.
Symmetry 17 00622 g014
Figure 15. We see two orthogonal projections of the order 2 symmetric polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 through the axis of symmetry. The 168 triangles are marked as their boundaries.
Figure 15. We see two orthogonal projections of the order 2 symmetric polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 through the axis of symmetry. The 168 triangles are marked as their boundaries.
Symmetry 17 00622 g015
Figure 16. An order 3 symmetrical polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 with triangles progressively removed to show internal structure.
Figure 16. An order 3 symmetrical polyhedral embedding of Hurwitz’s regular map { 3 , 7 } 18 of genus 7 with triangles progressively removed to show internal structure.
Symmetry 17 00622 g016
Figure 17. R7.1′ with D3 and D2 symmetry.
Figure 17. R7.1′ with D3 and D2 symmetry.
Symmetry 17 00622 g017
Figure 18. R7.1′ with C3 symmetry. Faces removed to show: central axis, knotted cycle, ring cycle.
Figure 18. R7.1′ with C3 symmetry. Faces removed to show: central axis, knotted cycle, ring cycle.
Symmetry 17 00622 g018
Figure 19. R8.1 with D4, D3, and S4 symmetry.
Figure 19. R8.1 with D4, D3, and S4 symmetry.
Symmetry 17 00622 g019
Figure 20. R8.2 with D4, D3, and S4 symmetry.
Figure 20. R8.2 with D4, D3, and S4 symmetry.
Symmetry 17 00622 g020aSymmetry 17 00622 g020b
Figure 21. R10.1 with D2 and S4 symmetry.
Figure 21. R10.1 with D2 and S4 symmetry.
Symmetry 17 00622 g021
Figure 22. R10.2 with C2 symmetry.
Figure 22. R10.2 with C2 symmetry.
Symmetry 17 00622 g022
Figure 23. The triangles in the outer circular sequence appear twice. The colored line segments indicate these pairs.
Figure 23. The triangles in the outer circular sequence appear twice. The colored line segments indicate these pairs.
Symmetry 17 00622 g023
Figure 24. R13.1 with C3 and C2 symmetry.
Figure 24. R13.1 with C3 and C2 symmetry.
Symmetry 17 00622 g024
Figure 25. R14.1 with T, D3, and S4 symmetry.
Figure 25. R14.1 with T, D3, and S4 symmetry.
Symmetry 17 00622 g025aSymmetry 17 00622 g025b
Figure 26. R14.1′ with T symmetry.
Figure 26. R14.1′ with T symmetry.
Symmetry 17 00622 g026
Figure 27. R14.2 with T symmetry.
Figure 27. R14.2 with T symmetry.
Symmetry 17 00622 g027
Figure 28. R14.2′ with T symmetry.
Figure 28. R14.2′ with T symmetry.
Symmetry 17 00622 g028
Figure 29. R14.3 with T, D3, and S4 symmetry.
Figure 29. R14.3 with T, D3, and S4 symmetry.
Symmetry 17 00622 g029
Figure 30. R14.3′ with T symmetry.
Figure 30. R14.3′ with T symmetry.
Symmetry 17 00622 g030
Figure 31. R3.1 with a combinatorial input and spatial description.
Figure 31. R3.1 with a combinatorial input and spatial description.
Symmetry 17 00622 g031
Figure 32. R5.1 with a more detailed spatial description. Colored to emphasize symmetry.
Figure 32. R5.1 with a more detailed spatial description. Colored to emphasize symmetry.
Symmetry 17 00622 g032
Figure 33. One example in more detail: The union of all seven parts is the Leonardo polyhedron based on R14.2.
Figure 33. One example in more detail: The union of all seven parts is the Leonardo polyhedron based on R14.2.
Symmetry 17 00622 g033
Figure 34. A symmetric Möbius torus embedding of Bokowski and Eggert [11] as a 3D print, https://youtu.be/6GhtRzemOwU (accessed on 20 March 2025).
Figure 34. A symmetric Möbius torus embedding of Bokowski and Eggert [11] as a 3D print, https://youtu.be/6GhtRzemOwU (accessed on 20 March 2025).
Symmetry 17 00622 g034
Figure 35. A genus 6 surface for all 59 topological embeddings of the complete graph with 12 vertices. Even finding just one such embedding is a challenge.
Figure 35. A genus 6 surface for all 59 topological embeddings of the complete graph with 12 vertices. Even finding just one such embedding is a challenge.
Symmetry 17 00622 g035
Figure 36. A neighborly pseudomanifold with 9 vertices. Computer graphics and model.
Figure 36. A neighborly pseudomanifold with 9 vertices. Computer graphics and model.
Symmetry 17 00622 g036
Figure 37. Szilassi’s polyhedron with seven hexagons and the face-sharing property.
Figure 37. Szilassi’s polyhedron with seven hexagons and the face-sharing property.
Symmetry 17 00622 g037
Figure 38. A Kepler–Poinsot model for one of the fifty-nine dual polyhedra with only two crossed polygons. Back, front, side, top, and faces to construct the polyhedron.
Figure 38. A Kepler–Poinsot model for one of the fifty-nine dual polyhedra with only two crossed polygons. Back, front, side, top, and faces to construct the polyhedron.
Symmetry 17 00622 g038
Figure 39. A topological embedding of the complete graph with 12 vertices on a surface of genus 6 with the highest symmetry by Carlo Séquin and Ling Xiao.
Figure 39. A topological embedding of the complete graph with 12 vertices on a surface of genus 6 with the highest symmetry by Carlo Séquin and Ling Xiao.
Symmetry 17 00622 g039
Table 1. Triangular regular maps of genus g, 2 g 14 , and their duals with polyhedral embeddings. Embeddings marked with a * were previously known; all others are new.
Table 1. Triangular regular maps of genus g, 2 g 14 , and their duals with polyhedral embeddings. Embeddings marked with a * were previously known; all others are new.
Conder NotationGenusSchläfli Type f 0 f 1 f 2 Map AuthorComb. Sym.Embedding SymmetriesDual EmbeddingFigure
R3.13 { 3 , 7 } 8 248456Klein336 PSL(2,7) × C 2 T *, D3T *, D3Section 5.1
R3.23 { 3 , 8 } 6 124832Dyck192D3 *, D2, S2 Section 5.3
R5.15 { 3 , 8 } 12 249664Fricke, Klein384O *, S2D2, C3Section 5.4
R6.16 { 3 , 10 } 6 157550Coxeter, Moser300C3, C2, C1 * Section 5.6
R7.17 { 3 , 7 } 18 72252168Hurwitz, Macbeath1008 PSL(2,8) × C 2 D3, D2, S2, C1 *D3, D2Section 5.7
R8.18 { 3 , 8 } 8 42168112 672 PSL(3,2) ⋊ C 2 D4, D3, S4, S2 Section 5.9
R8.28 { 3 , 8 } 14 42168112 672 PSL(3,2) ⋊ C 2 D4, D3, S4 Section 5.10
R10.110 { 3 , 9 } 12 36162108 648D2, S4 Section 5.11
R10.210 { 3 , 12 } 6 1810872 432C2 Section 5.12
R13.113 { 3 , 10 } 30 36180120 720 A 5 × S 3 C3, C2 Section 5.13
R13.213 { 3 , 12 } 12 2414496 576 Section 5.14
R14.114 { 3 , 7 } 12 156546364 2184 PSL(2,13)T, D3, S4TSection 5.15
R14.214 { 3 , 7 } 26 156546364 2184 PSL(2,13)TTSection 5.17
R14.314 { 3 , 7 } 14 156546364 2184 PSL(2,13)T, D3, S4TSection 5.19
Table 2. Neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds.
Table 2. Neighborly spatial polyhedra according to complete graph embeddings on 2-manifolds and pseudo-manifolds.
GraphGenus f 0 f 1 f 2 Number of EmbeddingsCombinatorial Polyhedra, ArticlesGeometrical Embeddings, Articles
K 4 04641
K 7 1721144[9][10,11]
K 7 dual1142171 [12,13]
K 9 9362416[14][14]
K 10 1045304[15][15]
K 12 6126644none[16][3,4]
K 15 111510570unknown[17]
Table 3. Geometric symmetries from permutation groups.
Table 3. Geometric symmetries from permutation groups.
Permutation GroupPossible Geometric Symmetries
(a, b) (c, d) (e, f)S2, C2, Cs
(a, b) (c, d) (e) (f)C2, Cs
(a, b, c) (d, e, f)C3
(a, b, c, d) (e, f, g, h)C4, S4
(a, b, c, d) (e, f)S4
(a, b, c, d) (e) (f)C4
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bokowski, J.; H., K. Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry 2025, 17, 622. https://doi.org/10.3390/sym17040622

AMA Style

Bokowski J, H. K. Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry. 2025; 17(4):622. https://doi.org/10.3390/sym17040622

Chicago/Turabian Style

Bokowski, Jürgen, and Kevin H. 2025. "Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra" Symmetry 17, no. 4: 622. https://doi.org/10.3390/sym17040622

APA Style

Bokowski, J., & H., K. (2025). Polyhedral Embeddings of Triangular Regular Maps of Genus g, 2 ⩽ g ⩽ 14, and Neighborly Spatial Polyhedra. Symmetry, 17(4), 622. https://doi.org/10.3390/sym17040622

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop