Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor
Abstract
1. Introduction
2. Motor Magnetic Field Analysis and Analytical Solution
2.1. Assumptions
2.2. Governing Equations
3. Air Gap Magnetic Field Analysis and Simulation Verification
3.1. Boundary Conditions
3.2. Analytic Solution of Laplace’s Equation in Region II
3.3. Comparison with Axisymmetric FEA
4. Back EMF and Thrust Force Calculations
5. FEA, Analytical, and Experimental Verification
5.1. Air Gap Magnetic Field Distribution Validation
5.2. Back EMF and Thrust Force Verification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zong, R.W.; Lin, G.B. Application of Linear Motor in the Urban Rail Transit System (URTS). In Proceedings of the 2015 COTA International Conference of Transportation Professionals (CICTP), Beijing, China, 24–27 July 2015; pp. 1664–1673. [Google Scholar]
- Huang, L.; Yu, H.T.; Hu, M.Q.; Liu, C.Y.; Yuan, B. Research on a Tubular Primary Permanent-Magnet Linear Generator for Wave Energy Conversions. IEEE Trans. Magn. 2013, 49, 1917–1920. [Google Scholar] [CrossRef]
- Souissi, A.; Abdennadher, I.; Masmoudi, A. Analytical Prediction of the No-Load Operation Features of Tubular-Linear Permanent Magnet Synchronous Machines. IEEE Trans. Magn. 2016, 52, 9500507. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.A.; Shi, Z.P.; Zhao, X.L.; Dong, H. Suppression of Thrust Fluctuation of a New Ironless Tubular Permanent Magnet Synchronous Linear Motor Based on the Halbach Array. Shock Vib. 2021, 2021, 3196773. [Google Scholar] [CrossRef]
- Guo, R.; Yu, H.T.; Xia, T.; Shi, Z.C.; Zhong, W.B.; Liu, X.M. A Simplified Subdomain Analytical Model for the Design and Analysis of a Tubular Linear Permanent Magnet Oscillation Generator. IEEE Access 2018, 6, 42355–42367. [Google Scholar] [CrossRef]
- Chen, F.Y.; Zhang, C.; Chen, J.H.; Yang, G.L. Accurate Subdomain Model for Computing Magnetic Field of Short Moving-Magnet Linear Motor With Halbach Array. IEEE Trans. Magn. 2020, 56, 8200509. [Google Scholar] [CrossRef]
- Yang, Z.H.; Liu, R.; Xia, B. Comparative study of thrust of U-shaped ironless permanent magnet synchronous linear motor based on analytical method and finite element analysis. Int. J. Appl. Electromagn. Mach. 2020, 64, 1091–1101. [Google Scholar] [CrossRef]
- Wu, Q.L.; Wang, L.Q.; Tang, E.L. Structural design and performance prediction of novel modular tubular permanent magnet linear synchronous motor. J. Magn. Magn. Mater. 2022, 564, 170158. [Google Scholar] [CrossRef]
- Ishiyama, N. Linear Motor Equipped with a Stator which is Easily Assembled. U.S. Patent 6,040,642, 21 March 2000. [Google Scholar]
- Zamanian, A.H.; Richer, E. Identification and Compensation of Cogging and Friction Forces in Tubular Permanent Magnet Linear Motors. In Proceedings of the ASME 2017 Dynamic Systems and Control Conference (DSCC), Tysons, VA, USA, 11–13 October 2017. [Google Scholar]
- Nippon Pulse Ltd. Available online: https://www.pulsemotor.com/global/products/LSM.html (accessed on 12 June 2025).
- Wu, S.; Shi, T.; Guo, L.; Wang, H.; Xia, C. Accurate Analytical Method for Magnetic Field Calculation of Interior PM Motors. IEEE Trans. Energy Convers. 2021, 36, 325–337. [Google Scholar] [CrossRef]
- Song, J.-Y.; Lee, J.-H.; Kim, D.-W.; Kim, Y.-J.; Jung, S.-Y. Analysis and Modeling of Concentrated Winding Variable Flux Memory Motor Using Magnetic Equivalent Circuit Method. IEEE Trans. Magn. 2017, 53, 8208905. [Google Scholar] [CrossRef]
- Park, J.K.; Wellawatta, T.R.; Ullah, Z.; Hur, J. New Equivalent Circuit of the IPM-Type BLDC Motor for Calculation of Shaft Voltage by Considering Electric and Magnetic Fields. IEEE Trans. Ind. Appl. 2016, 52, 3763–3771. [Google Scholar] [CrossRef]
- Srikhumphun, P.; Seangwong, P.; Fernando, N.; Siritaratiwat, A.; Khunkitti, P. Design optimization of a novel dual-skewed Halbach-array double-sided axial flux permanent magnet motor for electric vehicles. Sci. Rep. 2025, 15, 25905. [Google Scholar] [CrossRef]
- Li, C.B.; Wang, X.H.; Liu, F.; Ren, J.; Xing, Z.Z.; Gu, X.W. Analysis of Permanent Magnet-assisted Synchronous Reluctance Motor Based on Equivalent Reluctance Network Model. CES Trans. Electr. Mach. Syst. 2022, 6, 135–144. [Google Scholar] [CrossRef]
- Shin, K.-H.; Jung, K.-H.; Cho, H.-W.; Choi, J.-Y. Analytical Modeling and Experimental Verification for Electromagnetic Analysis of Tubular Linear Synchronous Machines with Axially Magnetized Permanent Magnets and Flux-Passing Iron Poles. IEEE Trans. Magn. 2018, 54, 8204006. [Google Scholar] [CrossRef]
- Huang, X.Z.; Li, J.; Tan, Q.; Qian, Z.Y.; Zhang, C.; Li, L. Sectional Combinations of the Modular Tubular Permanent Magnet Linear Motor and the Optimization Design. IEEE Trans. Ind. Electron. 2018, 65, 9658–9667. [Google Scholar] [CrossRef]
- Demirkol, Z.; Hasirci, U.; Demirci, R. Design, Implementation and Test of a Novel Cylindrical Permanent Magnet DC Linear Motor. Energies 2023, 16, 3491. [Google Scholar] [CrossRef]
- Raihan, M.A.H.; Baker, N.J.; Smith, K.J.; Almoraya, A.A. Development and Testing of a Novel Cylindrical Permanent Magnet Linear Generator. IEEE Trans. Ind. Appl. 2020, 56, 3668–3678. [Google Scholar] [CrossRef]
- Li, Z.K.; Wu, L.Z.; Li, Y.X.; Lu, Q.F.; Huang, X.Y.; Peretti, L. Hybrid Analytical Model of Permanent Magnet Linear Motor Considering Iron Saturation and End Effect. IEEE Trans. Energy Convers. 2024, 39, 2008–2017. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Luo, M.Z.; Kou, B.Q.; Luo, C.Q. Design and Analysis of a Trilateral Permanent Magnet Linear Synchronous Motor with Slotless Ring Windings for Transport Systems. In Proceedings of the 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, 17–20 October 2016; pp. 1–6. [Google Scholar]
- Zhang, F.G.; Yin, H.B.; Li, Y.F. Accurate Analytical Models of Armature Reaction Field for Multi-Segment Primaries Ironless PMLSM Based on Subdomain Method. Symmetry 2022, 14, 2091. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.A.; Zhao, X.L.; Liu, B.; Dong, H. Research on Air Gap Magnetic Field Characteristics of Trapezoidal Halbach Permanent Magnet Linear Synchronous Motor Based on Improved Equivalent Surface Current Method. Energies 2023, 16, 793. [Google Scholar] [CrossRef]
- Lu, Q.F.; Wu, B.C.; Yao, Y.H.; Shen, Y.M.; Jiang, Q. Analytical Model of Permanent Magnet Linear Synchronous Machines Considering End Effect and Slotting Effect. IEEE Trans. Energy Convers. 2020, 35, 139–148. [Google Scholar] [CrossRef]
- Yu, J.Q.; Liu, W.R.; Zhang, Z.; Gao, X.J.; Bao, R.X. Thrust Ripple Suppression Strategy for Precision Machining Platform by Using Predicted Current Sliding Control. Int. J. Precis. Eng. Manuf. 2024, 25, 1987–2001. [Google Scholar] [CrossRef]
- Shin, K.-H.; Cho, H.-W.; Lee, S.-H.; Choi, J.-Y. Armature Reaction Field and Inductance Calculations for a Permanent Magnet Linear Synchronous Machine Based on Subdomain Model. IEEE Trans. Magn. 2017, 53, 8105804. [Google Scholar] [CrossRef]
- Amara, Y.; Barakat, G. Analytical Modeling of Magnetic Field in Surface Mounted Permanent-Magnet Tubular Linear Machines. IEEE Trans. Magn. 2010, 46, 3870–3884. [Google Scholar] [CrossRef]
- Wang, F.R.; Liao, Y.Y.; Chen, J.H.; Zhang, C.; Luo, J.; Ai, Z.Q. Analytical calculation of air gap magnetic field in permanent magnet linear motors. In Proceedings of the 2017 IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 1706–1711. [Google Scholar]
- Rasmussen, K.F.; Davies, J.H.; Miller, T.J.E.; McGelp, M.I.; Olaru, M. Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets. IEEE Trans. Ind. Appl. 2000, 36, 1547–1554. [Google Scholar] [CrossRef]
- Zarko, D.; Ban, D.; Lipo, T.A. Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans. Magn. 2006, 42, 1828–1837. [Google Scholar] [CrossRef]
- Wu, Z.; Zuo, S.; Hu, S.; Hu, X. Analytical modelling of air-gap magnetic field of interior permanent magnet synchronous motors. IET Electr. Power Appl. 2020, 14, 2101–2110. [Google Scholar] [CrossRef]
- Li, Z.K.; Huang, X.Y.; Wu, L.J.; Zhang, H.; Shi, T.N.; Yan, Y.; Shi, B. An Improved Hybrid Field Model for Calculating On-Load Performance of Interior Permanent-Magnet Motors. IEEE Trans. Ind. Electron. 2021, 68, 9207–9217. [Google Scholar] [CrossRef]
- Smeets, J.P.C.; Overboom, T.T.; Jansen, J.W.; Lomonova, E.A. Three-dimensional analytical modeling technique of electromagnetic fields of air-cored coils surrounded by different ferromagnetic boundaries. IEEE Trans. Magn. 2013, 49, 5698–5708. [Google Scholar] [CrossRef]
- Shin, K.-H.; Bang, T.-K.; Cho, H.-W.; Kim, K.-H.; Hong, K.; Choi, J.-Y. Characteristic Analysis of Wave Power Generator Considering Bolting to Fix Permanent Magnet Based on Analytical Method. IEEE Trans. Magn. 2019, 55, 7501805. [Google Scholar] [CrossRef]
- Shin, K.-H.; Lee, J.-H.; Sung, S.; Park, J.-H.; Choi, J.-Y. Electromagnetic Analysis Technique and Experimental Study of Permanent Magnet Synchronous Machine Considering End Effects Using Subdomain Method. IEEE Trans. Magn. 2023, 59, 8103905. [Google Scholar] [CrossRef]
- Gu, Q.S.; Gao, H.Z. Air Gap Field for Pm Electric Machines. Electr. Mach. Power Syst. 1985, 10, 459–470. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Wu, L.J.; Xia, Z.P. An accurate subdomain model for magnetic field computation in slotted surface-mounted permanent magnet machines. IEEE Trans. Magn. 2010, 46, 1100–1115. [Google Scholar] [CrossRef]
- Park, M.-G.; Choi, J.-Y.; Shin, H.-J.; Lee, K.; Hong, K. Electromagnetic analysis and experimental testing of a tubular linear synchronous machine with a double-sided axially magnetized permanent magnet mover and coreless stator windings by using semianalytical techniques. IEEE Trans. Magn. 2014, 50, 8205204. [Google Scholar] [CrossRef]
- Dreishing, F.; Kreischer, C. Optimization of Force-to-Weight Ratio of Ironless Tubular Linear Motors Using an Analytical Field Calculation Approach. IEEE Trans. Magn. 2022, 58, 7401704. [Google Scholar] [CrossRef]
- Jannot, Y.; Degiovanni, A. Thermal Properties and Measurement of Materials; Wiley-ISTE: London, UK, 2018; pp. 299–300. [Google Scholar]
Method | Prediction Accuracy | Computational Efficiency | Parameter Sensitivity |
---|---|---|---|
MEC | ±15% | high | low |
EMP | ±10% | high | medium |
EMC | ±5% | medium | high |
FEA | ±2% | low | low |
Designation | Symbol | Value/(Unit) |
---|---|---|
Permanent magnet material | N42 | / |
Remanence density | 1.359 T | |
Inner radius of permanent magnet | 1.5 mm | |
Outer radius of permanent magnet | 5 mm | |
Outer radius of primary sleeve | 6 mm | |
Pole pitch | 24 mm | |
Inner radius of coil | 7 mm | |
Outer radius of coil | 11.5 mm | |
Winding width | 7.5 mm | |
Number of turns of coil group | 152 turns | |
Total length of coils | 10 m | |
Magnet wire gauge | 0.3 mm | |
Input voltage peak | 24 V | |
Output power peak | 80 W |
Symbol | Description | Unit | Result | RMS | Force Fluctuations |
---|---|---|---|---|---|
Back EMF constant | Analytical | 4.21 | / | ||
FEA | 4.29 | / | |||
Experimental | 4.14 | / | |||
Thrust force constant | Analytical | 8.28 | ±1.01% | ||
FEA | 8.27 | ±1.02% | |||
Experimental | 8.23 | ±3.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, W.; Xing, P.; Deng, B.; Liu, C.; Liu, Y.; Zhao, H.; Peng, Y. Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor. Symmetry 2025, 17, 1480. https://doi.org/10.3390/sym17091480
Shao W, Xing P, Deng B, Liu C, Liu Y, Zhao H, Peng Y. Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor. Symmetry. 2025; 17(9):1480. https://doi.org/10.3390/sym17091480
Chicago/Turabian StyleShao, Weiyi, Pengda Xing, Bo Deng, Caiyi Liu, Yang Liu, Hanzhang Zhao, and Yan Peng. 2025. "Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor" Symmetry 17, no. 9: 1480. https://doi.org/10.3390/sym17091480
APA StyleShao, W., Xing, P., Deng, B., Liu, C., Liu, Y., Zhao, H., & Peng, Y. (2025). Electromagnetic Analysis and Experimental Validation of an Ironless Tubular Permanent Magnet Synchronous Linear Motor. Symmetry, 17(9), 1480. https://doi.org/10.3390/sym17091480