A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images
Abstract
:1. Introduction
2. Proposed Method
2.1. Shearlet Transform
2.2. Neutrosophic Indeterminacy Filtering
2.3. Line Structure Enhancement
2.4. Algorithm of the Proposed Approach
- Take the shearlet transform on green channel Ig;
- Transform the Ig into neutrosophic set domain using the shearlet transform results, and the neutrosophic components are denoted as T and I;
- Process indeterminacy filtering on T using I and the result is denoted as T′;
- Perform the line-like structure enhancement filter on T′ and obtain the En;
- Obtain the feature vector FV = [T′ I En] for the input of the neural network;
- Train the neural network as a classifier to identify the vessel pixels;
- Identify the vessel pixels using the classification results by the neural network.
3. Experimental Results
3.1. Retinal Fundus Image Datasets
3.2. Experiment on Retinal Vessel Detection
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kanski, J.J. Clinical Ophthalmology: A Systematic Approach; Butterworth-Heinemann: London, UK, 1989. [Google Scholar]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. 2003, 25, 131–137. [Google Scholar] [CrossRef]
- Walter, T.; Klein, J.C. Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. Med. Data Anal. 2001, 2199, 282–287. [Google Scholar] [CrossRef]
- Soares, J.V.; Leandro, J.J.; Cesar, R.M.; Jelinek, H.F.; Cree, M.J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 2006, 25, 1214–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, J.; Bhoi, N. Detection of Retinal Blood Vessels from Ophthalmoscope Images Using Morphological Approach. ELCVIA 2017, 16, 1–14. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Wang, X.H.; Wang, X.F.; Shih, F.Y. Retinal vessels segmentation based on level set and region growing. Pattern Recognit. 2014, 47, 2437–2446. [Google Scholar] [CrossRef]
- Levet, F.; Duval-Poo, M.A.; De Vito, E.; Odone, F. Retinal image analysis with shearlets. In Proceedings of the Smart Tools and Apps in computer Graphics, Genova, Italy, 3–4 October 2016; pp. 151–156. [Google Scholar] [CrossRef]
- Bankhead, P.; Scholfield, C.N.; McGeown, J.G.; Curtis, T.M. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE 2012, 7, e32435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Kande, G.B.; Subbaiah, P.V.; Savithri, T.S. Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. J. Med. Syst. 2010, 34, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, M.; Li, J.; Zhang, E. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method. Biomed. Res. Int. 2017, 2017, 1263056. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, Y.; Cao, G.; Wei, B.; Zheng, Y.; Yang, G. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 2015, 149(Part B), 708–717. [Google Scholar] [CrossRef]
- Liskowski, P.; Krawiec, K. Segmenting Retinal Blood Vessels with Deep Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef] [PubMed]
- Maji, D.; Santara, A.; Mitra, P.; Sheet, D. Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. CoRR 2016, arXiv:1603.04833. [Google Scholar]
- Yi, S.; Labate, D.; Easley, G.R.; Krim, H. A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 2009, 18, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Easley, G.; Labate, D.; Lim, W.Q. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon A 2008, 25, 25–46. [Google Scholar] [CrossRef]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale vessel enhancement filtering. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 1998; pp. 130–137. [Google Scholar] [CrossRef]
- Labate, D.; Lim, W.Q.; Kutyniok, G.; Weiss, G. Sparse multidimensional representation using shearlets. In Proceedings of the SPIE 5914 Wavelets XI Optics and Photonics, San Diego, CA, USA, 17 September 2005; p. 59140U. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability; American Research Press: Rehoboth, NM, USA, 2003. [Google Scholar]
- Guo, Y.; Xia, R.; Şengür, A.; Polat, K. A novel image segmentation approach based on neutrosophic c-means clustering and indeterminacy filtering. Neural Comput. Appl. 2016, 28, 3009–3019. [Google Scholar] [CrossRef]
- Guo, Y.; Şengür, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity score. Measurement 2014, 58, 175–186. [Google Scholar] [CrossRef]
- Guo, Y.; Sengur, A. A novel color image segmentation approach based on neutrosophic set and modified fuzzy c-means. Circ. Syst. Signal Process. 2013, 32, 1699–1723. [Google Scholar] [CrossRef]
- DRIVE: Digital Retinal Images for Vessel Extraction. Available online: http://www.isi.uu.nl/Research/Databases/DRIVE/ (accessed on 3 May 2017).
- STructured Analysis of the Retina. Available online: http://cecas.clemson.edu/~ahoover/stare/ (accessed on 3 May 2017).
- Fu, H.; Xu, Y.; Lin, S.; Wong, D.W.K.; Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. In Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, Athens, Greece, 17–21 October 2016; pp. 132–139. [Google Scholar] [CrossRef]
- Niemeijer, M.; Staal, J.; Van Ginneken, B.; Loog, M.; Abramoff, M.D. Comparative study of retinal vessel segmentation methods on a new publicly available database. In Proceedings of the SPIE Medical Imaging 2004: Image Processing, San Diego, CA, USA, 14–19 February 2004; Volume 5370, pp. 648–656. [Google Scholar] [CrossRef]
- Hoover, A.D.; Kouznetsova, V.; Goldbaum, M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 2000, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Budak, Ü.; Şengür, A.; Smarandache, F. A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images. Symmetry 2017, 9, 235. https://doi.org/10.3390/sym9100235
Guo Y, Budak Ü, Şengür A, Smarandache F. A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images. Symmetry. 2017; 9(10):235. https://doi.org/10.3390/sym9100235
Chicago/Turabian StyleGuo, Yanhui, Ümit Budak, Abdulkadir Şengür, and Florentin Smarandache. 2017. "A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images" Symmetry 9, no. 10: 235. https://doi.org/10.3390/sym9100235
APA StyleGuo, Y., Budak, Ü., Şengür, A., & Smarandache, F. (2017). A Retinal Vessel Detection Approach Based on Shearlet Transform and Indeterminacy Filtering on Fundus Images. Symmetry, 9(10), 235. https://doi.org/10.3390/sym9100235