SINR-Based MCS Level Adaptation in CSMA/CA Wireless Networks to Embrace IoT Devices
Abstract
:1. Introduction
- Using the SINRs of ACK frames, we propose a novel modulation and coding scheme (MCS) level adaptation algorithm: senders adapt data sending rates by adjusting MCS levels of packets to be sent to their receivers based on the estimated channel statuses from the SINRs of ACK frames. In addition, senders decrease the MCS levels of packets in the absence of ACK frames after a given number of retransmissions (i.e., a retry limit event occurs).
- We demonstrate and evaluate the performance of the proposed algorithm using the ns-2 [13] network simulator (version 2.35) for IEEE 802.11a [14] wireless networks with various numbers of participating nodes (i.e., access points and wireless devices) distributed in a given area using independent homogeneous Poisson point processes (PPPs).
2. Related Work
3. Proposed Algorithm
3.1. SINR and MCS
3.2. Automatic-MCS-Level Adaptation
Algorithm 1: Adjustment of MCS level k for receiver i. |
4. Demonstrations Using Simulations
4.1. Simulation Environments
4.2. A Single User in a Single Cell
4.3. Multiple Users in Multiple Cells
5. Performance Evaluation
5.1. The Same Number of Access Points and Users
5.2. Fixed Number of Users
5.3. Fixed Number of Access Points
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Kang, W.M.; Moon, S.Y.; Park, J.H. An enhanced security framework for home appliances in smart home. Hum.-Centric Comput. Inf. Sci. 2017, 7. [Google Scholar] [CrossRef]
- Sharma, P.; Moon, S.Y.; Park, J.H. Block-VN: A distributed blockchain based vehicular network architecture in smart City. J. Inf. Proc. Syst. 2017, 13, 184–195. [Google Scholar]
- Lee, J.K.; Jeong, Y.S.; Park, J.H. s-ITSF: A service based intelligent transportation system framework for smart accident management. Hum.-Centric Comp. Inf. Sci. 2015, 5, 34. [Google Scholar] [CrossRef]
- Maity, S.; Park, J.H. Powering IoT devices: A novel design and analysis technique. J. Converg. 2016, 7, 16071001. [Google Scholar]
- Stankovic, J.G. Research directions for Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [Google Scholar] [CrossRef]
- Ratasuk, R.; Prasad, A.; Li, Z.; Ghosh, A.; Uusitalo, M.A. Recent advancements in M2M communications in 4G networks and evolution toward 5G. In Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks (ICIN), Paris, France, 17–19 Feburary 2015. [Google Scholar]
- IEEE Computer Soceity. IEEE Std 802.11-2016 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE Computer Soceity: Washington, DC, USA, 2016. [Google Scholar]
- IEEE Computer Society. IEEE Std 802.15.4-2015: IEEE Standard for Low-Rate Wireless Networks; IEEE Computer Soceity: Washington, DC, USA, 2015. [Google Scholar]
- Weber, S.; Andrews, J.G.; Jindal, N. An overview of the transmission capacity of wireless networks. IEEE Trans. Commun. 2010, 58, 3593–3604. [Google Scholar] [CrossRef]
- Chiu, S.; Stoyan, D.; Kendall, W.S.; Mecke, J. Stochastic Geometry and Its Applications, 3rd ed.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Zhang, J.; Tan, K.; Zhao, J.; Wu, H.; Zhang, Y. A practical SNR-guided rate adaptation. In Proceedings of the IEEE INFOCOM 2008 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18 April 2008. [Google Scholar]
- The Network Simulator—ns-2. Available online: http://www.isi.edu/nsnam/ns (accessed on 1 September 2017).
- IEEE Computer Society. IEEE Std 802.11a-1999 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY): High-Speed Physical Layer in the 5 GHZ Band; IEEE Computer Soceity: Washington, DC, USA, 1999. [Google Scholar]
- Kim, J.; Kim, S.; Choi, S.; Qiao, D. CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs. In Proceedings of the 25th IEEE International Conference on Computer Communications (INFOCOM 2006), Barcelona, Spain, 23–29 April 2006. [Google Scholar]
- Chen, C.; Luo, H.; Seo, E.; Vaidya, N.H.; Wang, X. Rate-adaptive framing for interfered wireless networks. In Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE INFOCOM 2007), Barcelona, Spain, 6–12 May 2007. [Google Scholar]
- Vutukuru, M.; Balakrishnan, H.; Jamieson, K. Cross-layer wireless bit rate adaptation. In Proceedings of the ACM SIGCOMM 2009 conference on Data communication (SIGCOMM ’09), Barcelona, Spain, 16–21 August 2009. [Google Scholar]
- Lee, O.; Kim, J.; Lim, J.; Choi, S. SIRA: SNR-aware intra-frame rate adaptation tested traces. IEEE Commun. Lett. 2015, 19, 90–93. [Google Scholar] [CrossRef]
- Kim, W.; Park, J.-S. Cross-layer scheduling for multi-users in cognitive multi-radio mesh networks. Wirel. Commun. Mobile Comput. 2014, 14, 1034–1044. [Google Scholar] [CrossRef]
- Andrews, J.G.; Baccelli, F.; Ganti, R.K. A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 2011, 59, 3122–3134. [Google Scholar] [CrossRef]
- Weber, S.; Yang, X.; Andrews, J.G.; Veciana, G. Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans. Inf. Theory 2005, 51, 13–17. [Google Scholar] [CrossRef]
- Roberts, L.G. ALOHA packet system with and without slots and capture. Comput. Commun. Rev. 1975, 5, 28–42. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Baccelli, F.; Kofman, D. A stochastic geometry analysis of dense IEEE 802.11 networks. In Proceedings of the 26th IEEE International Conference on Computer Communications (IEEE INFOCOM 2007), Barcelona, Spain, 6–12 May 2007. [Google Scholar]
- Haenggi, M. Mean interference in hard-core wireless networks. IEEE Commun. Lett. 2011, 15, 792–794. [Google Scholar] [CrossRef]
- Alfano, G.; Garetto, M.; Leonardi, E. New directions into the stochastic geometry analysis of dense CSMA metwork. IEEE Trans. Mob. Comput. 2014, 13, 324–336. [Google Scholar] [CrossRef]
- Chen, Q.; Schmidt-Eisenlohr, F.; Jiang, D. Overhaul of IEEE 802.11 modeling and simulation in NS-2. In Proceedings of the 10th ACM Symposium on Modeling Analysis, and Simulation of Wireless and Mobile Systems, Chania, Crete Island, Greece, 22–26 October 2007; pp. 159–168. [Google Scholar]
- Schmidt-Eisenlohr, F. Interference in Vehicle-to-Vehicle Communication Networks—Analysis, Modeling, Simulation and Assessment; KIT Scientific Publishing: Karlsruhe, Germany, 2010. [Google Scholar]
- ElSawy, H.; Hossain, E.; Haenggi, M. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 996–1019. [Google Scholar] [CrossRef]
- Chen, Q.; Schmidt-Eisenlohr, F.; Jiang, D.; Torrent-Moreno, M.; Delgrossi, L.; Hartenstein, H. Overhaul of IEEE 802.11 Modeling and Simulation in NS-2 (802.11Ext). Available online: https://dsn.tm.kit.edu/medien/downloads_old/Documentation-NS-2-80211Ext-2008-02-22.pdf (accessed on 1 September 2017).
- Postel, J. Transmission Control Protocol (RFC 793), 1981. Available online: http://www.ietf.org/rfc/rfc793.txt (accessed on 1 September 2017).
- Two-ray Ground Reflection Model in NS Version 2 Manual. Available online: http://www.isi.edu/nsnam/ns/doc/node218.html (accessed on 1 September 2017).
- NO Ad-hoc Routing Agent. Available online: http://icapeople.epfl.ch/widmer/uwb/ns-2/noah (accessed on 1 September 2017).
- Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Chiu, D.; Jain, R. Analysis of the increase and decrease algorithm for congestion avoidance in computer networks. J. Comput. Netw. ISDN 1989, 17, 1–14. [Google Scholar] [CrossRef]
MCS Level (k) | MCS | Transmission Speed (Mbps) | Min. SINR () (dB) |
---|---|---|---|
0 | BPSK, 1/2 coding | 6 | 5 |
1 | QPSK, 1/2 coding | 12 | 8 |
2 | 16QAM, 1/2 coding | 24 | 15 |
3 | 64QAM, 3/4 coding | 54 | 25 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, S. SINR-Based MCS Level Adaptation in CSMA/CA Wireless Networks to Embrace IoT Devices. Symmetry 2017, 9, 236. https://doi.org/10.3390/sym9100236
Cho S. SINR-Based MCS Level Adaptation in CSMA/CA Wireless Networks to Embrace IoT Devices. Symmetry. 2017; 9(10):236. https://doi.org/10.3390/sym9100236
Chicago/Turabian StyleCho, Soohyun. 2017. "SINR-Based MCS Level Adaptation in CSMA/CA Wireless Networks to Embrace IoT Devices" Symmetry 9, no. 10: 236. https://doi.org/10.3390/sym9100236
APA StyleCho, S. (2017). SINR-Based MCS Level Adaptation in CSMA/CA Wireless Networks to Embrace IoT Devices. Symmetry, 9(10), 236. https://doi.org/10.3390/sym9100236