Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Characterization
2.2. High-Pressure Raman Spectroscopy
3. Results and Discussion
3.1. Spin Transition of FeCO3
3.2. Phase Transitions of Iron-Bearing Dolomite at High Pressure
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shcheka, S.S.; Wiedenbeck, M.; Frost, D.J.; Keppler, H. Carbon solubility in mantle minerals. Earth Planet. Sci. Lett. 2006, 245, 730–742. [Google Scholar] [CrossRef] [Green Version]
- Boulard, E.; Guyot, F.; Fiquet, G. High-pressure transformations and stability of ferromagnesite in the Earth’s mantle. Carbon Earth’s Inter. 2020, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Hazen, R.M.; Downs, R.T.; Jones, A.P.; Kah, L. Carbon mineralogy and crystal chemistry. Rev. Mineral. Geochem. 2013, 75, 7–46. [Google Scholar] [CrossRef]
- Hazen, R.M.; Schiffries, C.M. Why deep carbon? Rev. Mineral. Geochem. 2013, 75, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Brenker, F.E.; Vollmer, C.; Vincze, L.; Vekemans, B.; Szymanski, A.; Janssens, K.; Szaloki, I.; Nasdala, L.; Joswig, W.; Kaminsky, F. Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet. Sci. Lett. 2007, 260, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Pasteris, J.D.; Meyer, H.O.A.; Dele-Duboi, M.L. Magnesite-bearing inclusion assemblage in natural diamond. Earth Planet. Sci. Lett. 1996, 141, 293–306. [Google Scholar] [CrossRef]
- Fu, S.; Yang, J.; Lin, J.F. Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle. Phys. Rev. Lett. 2017, 118, 036402. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, F.; Malki, M.; Iacono-Marziano, G.; Pichavant, M.; Scaillet, B. Carbonatite melts and electrical conductivity in the asthenosphere. Science 2008, 322, 1363–1365. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Wu, Z.; Zou, F.; Sun, W. Thermodynamic and elastic properties of magnesite at mantle conditions: First-principles calculations. Geochem. Geophys. Geosystems 2018, 19, 2719–2731. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.F.; Mao, Z.; Prakapenka, V.B. Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature. Am. Mineral. 2014, 99, 84–93. [Google Scholar] [CrossRef]
- Boulard, E.; Pan, D.; Galli, G.; Liu, Z.; Mao, W.L. Tetrahedrally coordinated carbonates in Earth’s lower mantle. Nat. Commun. 2015, 6, 6311. [Google Scholar] [CrossRef] [PubMed]
- Cerantola, V.; Wilke, M.; Kantor, I.; Ismailova, L.; Kupenko, I.; McCammon, C.; Pascarelli, S.; Dubrovinsky, L.S. Experimental investigation of FeCO3 (siderite) stability in Earth’s lower mantle using XANES spectroscopy. Am. Mineral. 2019, 104, 1083–1091. [Google Scholar] [CrossRef]
- Liu, J.; Hu, Q.; Bi, W.; Yang, L.; Xiao, Y.; Chow, P.; Meng, Y.; Prakapenka, V.B.; Mao, H.K.; Mao, W.L. Altered chemistry of oxygen and iron under deep Earth conditions. Nat. Commun. 2019, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Wang, C.; Lv, C.; Su, X.; Tang, R.; Chen, J.; Hu, Q.; Mao, H.-K.; Mao, W. Evidence for oxygenation of Fe-Mg oxides at mid-mantle conditions and the rise of deep oxygen. Natl. Sci. Rev. 2020, 1, 1–6. [Google Scholar] [CrossRef]
- Cerantola, V.; Bykova, E.; Kupenko, I.; Merlini, M.; Ismailova, L.; McCammon, C.; Bykov, M.; Chumakov, A.I.; Petitgirard, S.; Kantor, I.; et al. Stability of iron-bearing carbonates in the deep Earth’s interior. Nat. Commun. 2017, 8, 15960. [Google Scholar] [CrossRef]
- Liu, J.; Lin, J.F.; Prakapenka, V.B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier. Sci. Rep. 2015, 5, 7640. [Google Scholar] [CrossRef] [Green Version]
- Lavina, B.; Dera, P.; Downs, R.T.; Yang, W.; Sinogeikin, S.; Meng, Y.; Shen, G.; Schiferl, D. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition. Phys. Rev. B 2010, 82, 064110. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, S.S.; Goncharov, A.F.; Litasov, K.D. Optical properties of siderite (FeCO3) across the spin transition: Crossover to iron-rich carbonates in the lower mantle. Am. Mineral. 2015, 100, 1059–1064. [Google Scholar] [CrossRef]
- Cerantola, V.; McCammon, C.; Kupenko, I.; Kantor, I.; Marini, C.; Wilke, M.; Ismailova, L.; Solopova, N.; Chumakov, A.; Pascarelli, S.; et al. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. Am. Mineral. 2015, 100, 2670–2681. [Google Scholar] [CrossRef]
- Lin, J.-F.; Liu, J.; Jacobs, C.; Prakapenka, V.B. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am. Mineral. 2012, 97, 583–591. [Google Scholar] [CrossRef]
- Nagai, T.; Ishido, T.; Seto, Y.; Nishio-Hamane, D.; Sata, N.; Fujino, K. Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements. J. Phys. Conf. Ser. 2010, 215, 012002. [Google Scholar] [CrossRef]
- Spivak, A.; Solopova, N.; Cerantola, V.; Bykova, E.; Zakharchenko, E.; Dubrovinsky, L.; Litvin, Y. Raman study of MgCO3–FeCO3 carbonate solid solution at high pressures up to 55 GPa. Phys. Chem. Miner. 2014, 41, 633–638. [Google Scholar] [CrossRef]
- Wei Chariton s, C.; Sternemann, C.; Cerantola, V.; Sahle, C.J.; Spiekermann, G.; Harder, M.; Forov, Y.; Kononov, A.; Sakrowski, R.; Yavas, H.; et al. Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci. Rep. 2017, 7, 16526. [Google Scholar]
- Efthimiopoulos, I.; Germer, M.; Jahn, S.; Harms, M.; Reichmann, H.J.; Speziale, S.; Schade, U.; Sieber, M.; Koch-Müller, M. Effects of hydrostaticity on the structural stability of carbonates at lower mantle pressures: The case study of dolomite. High Press. Res. 2018, 39, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Binck, J.; Chariton, S.; Stekiel, M.; Bayarjargal, L.; Morgenroth, W.; Milman, V.; Dubrovinsky, L.; Winkler, B. High-pressure, high-temperature phase stability of iron-poor dolomite and the structures of dolomite-IIIc and dolomite-V. Phys. Earth Planet. Inter. 2020, 299, 106403. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M. Combined high-pressure and high-temperature vibrational studies of dolomite: Phase diagram and evidence of a new distorted modification. Phys. Chem. Miner. 2017, 44, 465–476. [Google Scholar] [CrossRef]
- Mao, Z.; Armentrout, M.; Rainey, E.; Manning, C.E.; Dera, P.; Prakapenka, V.B.; Kavner, A. Dolomite III: A new candidate lower mantle carbonate. Geophys. Res. Lett. 2011, 38, L22303. [Google Scholar] [CrossRef] [Green Version]
- Merlini, M.; Cerantola, V.; Gatta, G.D.; Gemmi, M.; Hanfland, M.; Kupenko, I.; Lotti, P.; Müller, H.; Zhang, L. Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle. Am. Mineral. 2017, 102, 1763–1766. [Google Scholar] [CrossRef]
- Vennari, C.E.; Williams, Q. A novel carbon bonding environment in deep mantle high-pressure dolomite. Am. Mineral. 2018, 103, 171–174. [Google Scholar] [CrossRef]
- Merlini, M.; Crichton, W.A.; Hanfland, M.; Gemmi, M.; Muller, H.; Kupenko, I.; Dubrovinsky, L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. Proc. Natl. Acad. Sci. USA 2012, 109, 13509–13514. [Google Scholar] [CrossRef] [Green Version]
- Farsang, S.; Facq, S.; Redfern, S.A. Raman modes of carbonate minerals as pressure and temperature gauges up to 6 GPa and 500 °C. Am. Mineral. J. Earth Planet. Mater. 2018, 103, 1988–1998. [Google Scholar]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Zhao, C.S.; Lv, C.J.; Xu, L.X.; Liu, J. Raman signatures of the distortion and stability of MgCO3 to 75 GPa. Am. Mineral. 2021, 106. in press. [Google Scholar] [CrossRef]
- Shen, G.; Wang, Y.; Dewaele, A.; Wu, C.; Fratanduono, D.E.; Eggert, J.; Klotz, S.; Dziubek, K.F.; Loubeyre, P.; Fat’yanov, O.V.; et al. Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020). High Press. Res. 2020, 40, 299–314. [Google Scholar] [CrossRef]
- Mao, H.; Xu, J.-A.; Bell, P. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Rividi, N.; van Zuilen, M.; Philippot, P.; Menez, B.; Godard, G.; Poidatz, E. Calibration of carbonate composition using micro-Raman analysis: Application to planetary surface exploration. Astrobiology 2010, 10, 293–309. [Google Scholar] [CrossRef] [Green Version]
- Boulard, E.; Guyot, F.; Fiquet, G. The influence on Fe content on Raman spectra and unit cell parameters of magnesite–siderite solid solutions. Phys. Chem. Miner. 2012, 39, 239–246. [Google Scholar] [CrossRef]
- Lavina, B.; Dera, P.; Downs, R.T.; Prakapenka, V.; Rivers, M.; Sutton, S.; Nicol, M. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition. Geophys. Res. Lett. 2009, 36, L23306. [Google Scholar] [CrossRef] [Green Version]
- Farfan, G.; Wang, S.; Ma, H.; Caracas, R.; Mao, W.L. Bonding and structural changes in siderite at high pressure. Am. Mineral. 2012, 97, 1421–1426. [Google Scholar] [CrossRef]
- Müller, J.; Speziale, S.; Efthimiopoulos, I.; Jahn, S.; Koch-Müller, M. Raman spectroscopy of siderite at high pressure: Evidence for a sharp spin transition. Am. Mineral. 2016, 101, 2638–2644. [Google Scholar] [CrossRef]
- Santamaría-Pérez, D.; Gracia, L.; Garbarino, G.; Beltrán, A.; Chuliá-Jordán, R.; Gomis, O.; Errandonea, D.; Ferrer-Roca, C.; Martínez-García, D.; Segura, A. High-pressure study of the behavior of mineral barite by x-ray diffraction. Phys. Rev. B 2011, 84, 054102. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.S.; Li, H.P.; Jiang, J.J.; He, Y.; Liang, W. Phase transition and vibration properties of MnCO3 at high pressure and high-temperature by Raman spectroscopy. High Press. Res. 2018, 38, 212–223. [Google Scholar] [CrossRef]
- Chariton, S.; McCammon, C.; Vasiukov, D.M.; Stekiel, M.; Kantor, A.; Cerantola, V.; Kupenko, I.; Fedotenko, T.; Koemets, E.; Hanfland, M.; et al. Seismic detectability of carbonates in the deep Earth: A nuclear inelastic scattering study. Am. Mineral. 2020, 105, 325–332. [Google Scholar]
- Stekiel, M.; Nguyen-Thanh, T.; Chariton, S.; McCammon, C.; Bosak, A.; Morgenroth, W.; Milman, V.; Refson, K.; Winkler, B. High pressure elasticity of FeCO3-MgCO3 carbonates. Phys. Earth Planet. Inter. 2017, 271, 57–63. [Google Scholar] [CrossRef]
- Hsu, H.; Huang, S.-C. Spin crossover and hyperfine interactions of iron in (Mg,Fe)CO3 ferromagnesite. Phys. Rev. B 2016, 94, 060404. [Google Scholar] [CrossRef]
- Mattila, A.; Pylkkänen, T.; Rueff, J.P.; Huotari, S.; Vankó, G.; Hanfland, M.; Lehtinen, M.; Hämäläinen, K. Pressure induced magnetic transition in siderite FeCO3 studied by x-ray emission spectroscopy. J. Phys. Condens. Matter 2007, 19, 386206. [Google Scholar] [CrossRef]
- Chao, K.-H.; Hsieh, W.-P. Thermal conductivity anomaly in (Fe0.78Mg0.22)CO3 siderite across spin transition of iron. J. Geophys. Res. Solid Earth 2019, 124, 1388–1396. [Google Scholar] [CrossRef]
- Boulard, E.; Menguy, N.; Auzende, A.L.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.P.; et al. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. Solid Earth 2012, 117, B02208. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, J.; Nishida, R.; Tsuchiya, T. First Principles calculation of the stability of iron bearing carbonates at high pressure conditions. Minerals 2020, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Williams, Q.; Collerson, B.; Knittle, E. Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am. Mineral. 1992, 77, 1158–1165. [Google Scholar]
- Solomatova, N.V.; Asimow, P.D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U. Phys. Chem. Miner. 2017, 45, 293–302. [Google Scholar] [CrossRef]
- Zucchini, A.; Prencipe, M.; Belmonte, D.; Paola, C. Ab initio study of the dolomite to dolomite-II high pressure phase transition. Eur. J. Mineral. 2017, 29, 227–238. [Google Scholar] [CrossRef]
- Santillán, J.; Williams, Q.; Knittle, E. Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Fiquet, G.; Guyot, F.; Itie, J.-P. High-pressure X-ray diffraction study of carbonates MgCO3, CaMg(CO3)2, and CaCO3. Am. Mineral. 1994, 79, 15–23. [Google Scholar]
- Ross, N.L.; Reeder, R.J. High-pressure structural study of dolomite and ankerite. Am. Mineral. 1992, 77, 412–421. [Google Scholar]
- Gillet, P.; Biellmann, C.; Reynard, B.; McMillan, P. Raman spectroscopic studies of carbonates part I: High-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys. Chem. Miner. 1993, 20, 1–18. [Google Scholar] [CrossRef]
- Kraft, S.; Knittle, E.; Williams, Q. Carbonate stability in the Earth’s mantle: A vibrational spectroscopic study of aragonite and dolomite at high pressures and temperatures. J. Geophys. Res. 1991, 96, 17997. [Google Scholar] [CrossRef]
Composition | PTM | Transition P | Method | Reference |
---|---|---|---|---|
Fe0.998Mn0.002CO3 | He | 42–44 | Raman | This study |
Fe0.998Mn0.002CO3 | NaCl | 40–47 | Raman | This study |
Fe0.998Mn0.002CO3 | NaCl | 38–48 | XRD | This study |
FeCO3 | Ne | 44.6-46.2 | XRD | [43] |
FeCO3 | n.a. | ~40 | DFT, ISS | [44] |
FeCO3 | Ne | 40.0–40.8 | X-ray Raman | [23] |
FeCO3 | Argon | 42.1–46.5 | X-ray Raman | [23] |
FeCO3 | Argon | 42.8–47 | Raman | [40] |
FeCO3 | n.a. | 45–50 | DFT | [45] |
FeCO3 | Ne | 40–47 | Raman | [19] |
FeCO3 | Ne | ~42 | XRD | [16] |
FeCO3 | Ne | 40–47 | Raman | [22] |
FeCO3 | Ne | 44–45 | XRD | [17] |
Fe0.96Mn0.04CO3 | Argon | ~50 | XES | [46] |
Fe0.96Mn0.04CO3 | None | ~50 | XES | [46] |
Fe0.95Mn0.05CO3 | Ne | 43–45 | UV-VIS | [18] |
Fe0.89Mn0.07Mg0.03Ca0.01CO3 | Ne | 43.3–45.5 | Raman | [40] |
(Fe0.78Mg0.22)CO3 | Silicone oil | 47.7–55.4 | Raman | [47] |
(Fe0.75Mg0.25)CO3 | none | 50 | XRD | [48] |
Fe0.65Mg0.33Mn0.02CO3 | Ne | 43–47 | XRD | [10] |
Fe0.65Mg0.33Mn0.02CO3 | Ne | 45 | XRD | [20] |
Fe0.65Mg0.33Mn0.02CO3 | Ne | 45 | Raman | [20] |
(Fe0.73Mg0.22Mn0.05)CO3 | Argon | 47–50 | XRD | [21] |
(Fe0.72Mg0.24Mn0.03Ca0.01)CO3 | Ne | ~43 | XRD | [38] |
Fe0.65Mg0.35CO3 | Ne | 42.4–46.5 | BS, ISS | [7] |
(Fe0.5Mg0.5)CO3 | n.a. | 45–50 | DFT | [45] |
(Fe0.26Mg0.74)CO3 | Ne | 44.0-48.5 | XRD | [43] |
(Fe0.26Mg0.74)CO3 | Argon | 42.6–47.0 | X-ray Raman | [23] |
(Fe0.167Mg0.833)CO3 | n.a. | None | DFT | [49] |
(Fe0.125Mg0.875)CO3 | n.a. | 45–50 | DFT | [45] |
(Fe0.09Mg0.91)CO3 | Ne | 41–49 | Raman | [22] |
(Fe0.05Mg0.95)CO3 | Ne | 42–50 | Raman | [22] |
Raman | Sid100 a (He) | Sid98 b (ME) | Sid89 c (Ne) | Sid100 d (Ne) | Sid76 e (Silicone oil) | Sid65 f (Ne) | ||||
---|---|---|---|---|---|---|---|---|---|---|
modes | dνi/dP | γi | dνi/dP | γi | dνi/dP | dνi/dP | γig | dνi/dP | dνi/dP | γi |
T (HS) | 2.75(8) | 1.75(7) | 3.98(9) | 2.54 | - | 2.51 | 1.18 | - | 2.51(1) | 1.96(3) |
L (HS) | 3.65(7) | 1.50(4) | 4.52(5) | 1.86 | - | 3.82 | 1.16 | 3.74 | 3.64(18) | 1.87(3) |
ν4 (HS) | 1.53(13) | 0.24(2) | 2.4(2) | 0.38 | - | 1.37 | 0.21 | - | 1.49(6) | 0.41(1) |
ν1 (HS) | 2.28(3) | 0.24(1) | 2.60(7) | 0.28 | 2.2(1) | 2.17 | 0.22 | 2.20 | 2.17(7) | 0.39(1) |
T (LS) | - | - | - | - | - | - | - | - | 1.86(16) | 1.69(3) |
L (LS) | 2.42(7) | 0.75(3) | - | - | - | 2.68 | 0.72 | - | 1.64(17) | 1.08(2) |
ν4 (LS) | 1.81(13) | 0.36(1) | - | - | - | 1.86 | 0.32 | - | 1.07(8) | 0.44(1) |
ν1 (LS) | 1.38(2) | 0.20(1) | - | - | 1.5(1) | 1.6 | 0.21 | - | 0.94(9) | 0.30(1) |
Composition | Dol-Ib | Dol-IV (Pnma) | Dol-V (C2/c) | Methods | PTM | References | ||
---|---|---|---|---|---|---|---|---|
Ca1.02Mg0.76Fe0.20Mn0.02(CO3) | 8 | 15 | 36 | - | - | Raman | Argon | This study |
CaMg0.6Fe0.4(CO3)2 | - | 15.58 | 36.81 (IIIb) a | 115.18 GPa and 2500 K | - | XRD | Ne | [28] |
- | 17 | 35 (IIIb) | - | - | XRD | Ne | [30] | |
CaMg0.92Fe0.08(CO3)2 | - | 15 | 40 | - | - | Raman | Ne | [29] |
- | - | - | - | - | XRD | MEW | [53] | |
- | - | - | - | - | MIR | KBr | [53] | |
Ca0.988Mg0.918Fe0.078Mn0.016(CO3)2 | - | 17 b | 36 c | 45 GPa and 1500 K | - | XRD | Ne | [27] |
CaMg0.98Fe0.02(CO3)2 | - | - | - | - | 46.2 GPa and 300 K d | XRD | Ne | [25] |
- | 17 | 35.3 | - | - | FIR | Petroleum jelly | [24] | |
- | 39.4 | - | - | Raman | Ne | [24] | ||
9.1 | 14.5 | 36.2 (IIIc) | - | 39.5 GPa, and 1880 K | Raman | Ne | [25] | |
11 | 16 | 36 (IIIc) | - | - | Raman and MIR | Argon | [26] | |
CaMg0.98Fe0.01Mn0.02(CO3)2 | - | - | - | - | - | XRD | Silicone oil | [54] |
- | - | - | - | - | XRD | ME | [55] | |
Ca1.001Mg0.987Fe0.01Mn0.002(CO3)2 | - | 14 | - | - | - | XRD | Ne | [52] |
CaMg(CO3)2 | - | - | 43.4 (IIIc) e | - | 43 GPa | DFT | n.a. | [25] |
- | 18.16 | 41.5 (IIIc) | - | - | XRD | Ne | [28] | |
N/A | - | - | - | - | - | Raman | KBr | [56] |
N/A | - | - | - | - | - | Raman | ME | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Xu, L.; Gui, W.; Liu, J. Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure. Minerals 2020, 10, 1142. https://doi.org/10.3390/min10121142
Zhao C, Xu L, Gui W, Liu J. Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure. Minerals. 2020; 10(12):1142. https://doi.org/10.3390/min10121142
Chicago/Turabian StyleZhao, Chaoshuai, Liangxu Xu, Weibin Gui, and Jin Liu. 2020. "Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure" Minerals 10, no. 12: 1142. https://doi.org/10.3390/min10121142
APA StyleZhao, C., Xu, L., Gui, W., & Liu, J. (2020). Phase Stability and Vibrational Properties of Iron-Bearing Carbonates at High Pressure. Minerals, 10(12), 1142. https://doi.org/10.3390/min10121142