Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Textural Descriptions
5. Mineral Chemistry
6. The U–Pb Age of Rutile
7. Discussion
7.1. Paragenetic Sequence
7.2. Magma Mingling Revealed by the Coexistence of Two Spinels in the Groundmass
7.3. Volatiles in the Kimberlitic Melt
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitchell, R.H. Kimberlites: Mineralogy, Geochemistry, and Petrology; Plenum Press: New York, NY, USA, 1986. [Google Scholar]
- Yang, Y.H.; Wu, F.Y.; Wilde, S.A.; Liu, X.M.; Zhang, Y.B.; Xie, L.W.; Yang, J.H. In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem. Geol. 2009, 264, 24–42. [Google Scholar] [CrossRef]
- Xu, J.; Melgarejo, J.; Castillo-Oliver, M. Styles of alteration of Ti oxides of the kimberlite groundmass: Implications on the petrogenesis and classification of kimberlites and similar rocks. Minerals 2018, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.S.; Golovin, A.V.; Maas, R.; Giuliani, A.; Kamenetsky, M.B.; Weiss, Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals. Earth Sci. Rev. 2014, 139, 145–167. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Oliver, M.; Galí, S.; Melgarejo, J.C.; Griffin, W.L.; Belousova, E.; Pearson, N.J.; Watangua, M.; O’Reilly, S.Y. Trace-element geochemistry and U-Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): Petrogenetic and tectonic implications. Chem. Geol. 2016, 426, 118–134. [Google Scholar] [CrossRef]
- Smith, B.S.; Nowicki, T.E.; Russell, J.K.; Webb, K.J.; Mitchell, R.H.; Hetman, C.M.; Harder, M.; Skinner, E.M.W.; Robey, J.A. Kimberlite Terminology and Classification. In Proceedings of the 10th International Kimberlite Conference, Bangalore, India, 6–11 February 2012; Pearson, D.G., Grütter, H.S., Harris, J.W., Kjarsgaard, B.A., O’Brien, H., Chalapathi Rao, N.V., Sparks, S., Eds.; Springer: New Delhi, India, 2013; Volume 2, pp. 1–17. [Google Scholar]
- Sparks, R.S.J. Kimberlite Volcanism. Annu. Rev. Earth Planet. Sci. 2013, 41, 497–528. [Google Scholar] [CrossRef]
- Jarvis, W.; Kalliokoski, J. Michigan kimberlite province. In Proceedings of the 34th Annual Institute on Lake Superior Geology, Proceedings and Abstracts, Marquette, MI, USA, 12–13 May 1988; Klasner, J., Ed.; Marquette: Milwaukee, WI, USA, 1988; Volume 43, pp. 46–48. [Google Scholar]
- Jarvis, W. Michigan Kimberlites: An Update. In Proceedings of the 61st Annual Meeting; Prospectors & Developers Association of Canada: Toronto, ON, Canada, 1993; paper M-10; pp. 46–48. [Google Scholar]
- Heaman, L.M.; Kjarsgaard, B.A.; Creaser, R.A. The timing of kimberlite magmatism in North America: Implications for global kimberlite genesis and diamond exploration. Lithos 2003, 71, 153–184. [Google Scholar] [CrossRef]
- Paces, J.B.; Zartman, R.E.; Taylor, L.A.; Futa, K.; Kwak, L.M. Pb isotopic evidence for multiple episodes of lower crustal growth and modification in granulite nodules from superior Province, Michigan. In Proceedings of the Program with Abstracts, Geological Society of America Conference, Dallas, TX, USA, 27–29 December 1990; p. A119. [Google Scholar]
- Mcgee, E.S.; Hearn, B.C. The Lake Ellen Kimberlite, Michigan, U.S.A. In Proceedings of the 3rd International Kimberlite Conference, Clermont Ferrand, France, September 1982; Kornprobst, J., Ed.; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1984; Volume 1, pp. 143–154. [Google Scholar]
- Carlson, S.M.; Floodstrand, W. Part 4-Michigan Kimberlites and Diamond Exploration Techniques, Proceedings Institute on Lake Superior Geology 40th Annual Meeting, 11–14 May 1994; Michigan Technological University: Houghton, MI, USA, 1994; Volume 40, p. 15. [Google Scholar]
- Robinson, G.W. Mineralogy of Michigan; Heinrich, E.W., Ed.; Seaman Mineral Museum: Houghton, MI, USA, 2004. [Google Scholar]
- Fults, M.E. A Trace Element Geochemical Analysis of the Lake Ellen Kimberlite, Crystal Falls, Michigan, USA; Western Michigan University: Kalamazoo, MI, USA, 1987. [Google Scholar]
- Carlson, S.M.; Adams, G.W. The diamondiferous Six-Pak ultramafic lamprophyre diatreme, Kenosha, Wisconsin. In Proceedings of the 43rd Annual Meeting of Institute on Lake Superior Geology, Sudbury, Ontario, Canada, 6–11 May 1997; Sage, R., Meyer, W., Eds.; Institute on Lake Superior Geology: Sudbury, ON, Canada, 1997; Volume 43, pp. 11–12. [Google Scholar]
- Li, Q.; Lin, W.; Su, W.; Li, X.; Shi, Y.; Liu, Y.; Tang, G. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos 2011, 122, 76–86. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Wu, F.; Liu, Y.; Tang, G. Accessary minerals SIMS U-Th-Pb dating for kimberlite and lamproite. Acta Geol. Sin. Engl. Ed. 2016, 90, 74–75. [Google Scholar] [CrossRef]
- Zhou, T.; Li, Q.; Klemd, R.; Shi, Y.; Tang, X.; Li, C.; Liu, Y. Multi-system geochronology of North Dabie eclogite: Ineffective garnet ‘shielding’ on rutile inclusions under multi-thermal conditions. Lithos 2020, 368–369, 105573. [Google Scholar] [CrossRef]
- Li, Q.L.; Yang, Y.N.; Shi, Y.H.; Lin, W. Eclogite rutile U-Pb dating: Constraint for formation and evolution of continental collisional orogen. Chin. Sci. Bull. 2013, 23, 2279–2284. [Google Scholar]
- Roeder, P.L.; Schulze, D.J. Crystallization of groundmass spinel in kimberlite. J. Petrol. 2008, 49, 1473–1495. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites, Orangeites, and Related Rocks; Plenum Press: New York, NY, USA, 1995. [Google Scholar]
- Wyatt, B.A.; Baumgartner, M.; Anckar, E.; Grutter, H. Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 2004, 77, 819–840. [Google Scholar] [CrossRef]
- Malkovets, V.G.; Rezvukhin, D.I.; Belousova, E.A.; Griffin, W.L.; Sharygin, I.S.; Tretiakova, I.G.; Gibsher, A.A.; O’Reilly, S.Y.; Kuzmin, D.V.; Litasov, K.D.; et al. Cr-rich rutile: A powerful tool for diamond exploration. Lithos 2016, 265, 304–311. [Google Scholar] [CrossRef]
- Haggerty, S.E. Oxide mineralogy of the upper mantle. In Oxide Minerals: Petrologic and Magnetic Significance. Reviews in Mineralogy (Volume 25); Lindsey, D.H., Ed.; de Gruyter: New York, NY, USA, 1991; pp. 355–416. [Google Scholar]
- Wang, L.; Essene, E.J.; Zhang, Y. Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle. Contrib. Mineral. Petrol. 1999, 135, 164–178. [Google Scholar] [CrossRef] [Green Version]
- Rezvukhin, D.I.; Malkovets, V.G.; Sharygin, I.S.; Kuzmin, D.V.; Litasov, K.D.; Gibsher, A.A.; Pokhilenko, N.P.; Sobolev, N.V. Inclusions of Cr- and Cr-Nb-Rutile in pyropes from the Internatsionalnaya kimberlite pipe, Yakutia. Dokl. Earth Sci. 2016, 466, 173–176. [Google Scholar] [CrossRef]
- Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P. Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: Some aspects of kimberlite magma evolution during late crystallization stages. Petrology 2007, 15, 168–183. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Golovin, A.V.; Pokhilenko, N.P.; Kamenetsky, V.S. Djerfisherite in the Udachnaya-East pipe kimberlites (Sakha-Yakutia, Russia): Paragenesis, composition and origin. Eur. J. Mineral. 2007, 19, 51–63. [Google Scholar] [CrossRef]
- Bulanova, G.P.; Spetsius, Z.V.; Leskova, N.V. Sulphides in Diamonds and Xenoliths from Yakutian Kimberlite Pipes (in Russian); Nauka: Novosibirsk, Russia, 1990. [Google Scholar]
- Distler, V.V.; Ilupin, I.P.; Laputina, I.P. Sulfides of deep-seated origin in kimberlites and some aspects of copper-nickel mineralization. Int. Geol. Rev. 1987, 29, 456–464. [Google Scholar] [CrossRef]
- Dobrovol’skaya, M.G.; Tsepin, A.I.; Ilupin, I.P.; Ponomarenko, A.I. Djerfisherite from Yakutia kimberlites. In Deposits, Minerals and parageneses of endogenic (In Russian); Tatarinov, P.M., Ed.; Nauka: Leningrad, Russia, 1975; pp. 3–11. [Google Scholar]
- Misra, K.C.; Anand, M.; Taylor, L.A.; Sobolev, N.V. Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib. Mineral. Petrol. 2004, 146, 696–714. [Google Scholar] [CrossRef]
- Solov’eva, L.V.; Barankevich, V.G.; Zav’yalova, L.L.; Lipskaya, V.I. Metasomatic alterations in ferromagnesian eclogites from the Udachnaya pipe. Dokl. Akad. Nauk. 1988, 303, 1450–1454. [Google Scholar]
- Zedgenizov, D.A.; Logvinova, A.M.; Shatskii, V.S.; Sobolev, N.V. Inclusions in microdiamonds from some kimberlite diatremes of Yakutia. Dokl. Akad. Nauk. 1998, 359, 204–208. [Google Scholar]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- Xu, J.; Melgarejo, J.C.; Castillo-Oliver, M. Ilmenite as a recorder of kimberlite history from mantle to surface: Examples from Indian kimberlites. Mineral. Petrol. 2018, 112, 569–581. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Xu, J.; Melgarejo, J.C.; Castillo-Oliver, M.; Arqués, L.; Santamaria, J. Ilmenite generations in kimberlite from Banankoro, Guinea Conakry. Neues Jahrb. Miner. Abh. 2018, 195, 191–204. [Google Scholar] [CrossRef]
- Ogilvie-Harris, R.C.; Field, M.; Sparks, R.S.J.; Walter, M.J. Perovskite from the Dutoitspan kimberlite, Kimberley, South Africa: Implications for magmatic processes. Mineral. Mag. 2009, 73, 915–928. [Google Scholar] [CrossRef]
- Xu, J. Optimization of the Use of Diamond Indicator Minerals in Diamond Exploration in Kimberlites. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 26 April 2019. [Google Scholar]
- Reid, A.M.; Donaldson, C.H.; Dawson, J.B.; Brown, R.W.; Ridley, W.I. The Igwisi Hills extrusive “kimberlites”. Phys. Chem. Earth 1975, 9, 199–218. [Google Scholar] [CrossRef]
- Pasteris, J.D. Spinel zonation of the De Beers kimberlite, South Africa: Possible role of phlogopite. Can. Mineral. 1983, 21, 41–58. [Google Scholar]
- Ulrych, J.; Pivec, E.; Rutsek, J. Spinel zonation in melilite rocks of the Ploucnice river region, Czechoslovakia. Neues Jahrb. Miner. Abh. 1986, 155, 129–146. [Google Scholar]
- Jaques, A.L.; Foley, S.F. The origin of Al-rich spinel inclusions in leucite from the leucite lamproites of Western Australia. Am. Mineral. 1985, 70, 11431150. [Google Scholar]
- Mitchell, R.H.; Bergman, S.C. Petrology of Lamproites; Springer: Boston, MA, USA, 1991; ISBN 978-1-4613-6688-1. [Google Scholar]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Giuliani, A.; Howarth, G.H.; Castillo-Oliver, M.; Thompson, J.; Cherry, A.; Kamenetsky, M.; Cherry, A. Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): Textural, petrographic and melt inclusion constraints. Lithos 2019, 324–325, 297–314. [Google Scholar] [CrossRef]
- Dawson, J.B.; Hawthorne, J.B. Magmatic sedimentation and carbonatitic differentiation in kimberlite sills at Benfontein, South Africa. J. Geol. Soc. London 1973, 12, 61–85. [Google Scholar] [CrossRef]
- Pascal, M.-L.; Fonteilles, M.; Boudouma, O.; Principe, C. Qandilite from Vesuvius skarn ejecta: Conditions of formation and miscibility gap in the ternary spinel-qandilite-magnesioferrite. Can. Mineral. 2011, 49, 459–485. [Google Scholar] [CrossRef]
- Fuchs, L.H. Djerfisherite, alkali copper-iron sulfide: A new mineral from enstatite chondrites. Science 1966, 153, 166–167. [Google Scholar] [CrossRef]
- Kogarko, L.N.; Plant, D.A.; Henderson, C.M.B.; Kjarsgaard, B.A. Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia. Contrib. Mineral. Petrol. 1991, 109, 124–129. [Google Scholar] [CrossRef]
- Korobeinikov, A.N.; Mitrofanov, F.P.; Gehor, S.; Laajoki, K.; Pavlov, V.P.; Mamontov, V.P. Geology and copper sulphide mineralization of the Salmagorskii Ring igneous complex, Kola Peninsula, NW Russia. J. Petrol. 1998, 39, 2033–2041. [Google Scholar] [CrossRef]
- Clarke, D.B.; Chapman, C.A.T.; MacKay, R.M.; Mitchell, R.H. Occurrence and origin of djerfisherite from the Elwin Bay Kimberlite, Somerset Island, Northwest Territories. Can. Mineral. 1994, 32, 815–823. [Google Scholar]
- Sharygin, V.V.; Kamenetsky, V.S.; Kamenetsky, M.B. Potassium sulfides in kimberlite-hosted chloride-”nyerereite” and chloride clasts of Udachnaya-East Pipe, Yakutia, Russia. Can. Mineral. 2008, 46, 1079–1095. [Google Scholar] [CrossRef]
- Dawson, J.B.; Smith, J.V.; Steele, I.M. Petrology and Mineral Chemistry of Plutonic Igneous Xenoliths from the Carbonatite Volcano, Oldoinyo Lengai, Tanzania. J. Petrol. 1995, 36, 797–826. [Google Scholar] [CrossRef]
- Solovova, I.P.; Girnis, A.V.; Ryabchikov, I.D. Inclusions of carbonate and silicate melts in minerals of alkali basaltoids from the East Pamirs. Petrology 1996, 4, 319–341. [Google Scholar]
- Panina, L.I.; Sazonov, A.M.; Usol’tseva, L.M. Melilitic and monticellite- bearing rocks of the Krestovskaya intrusion (northern Siberian Platform) and their genesis. Geol. Geofiz. 2001, 42, 1314–1332. [Google Scholar]
- Spetsius, Z.V.; Bulanova, G.P.; Leskova, N.V. Djerfisherite and its genesis in kimberlitic rocks. Dokl. Akad. Nauk. 1987, 293, 199–202. [Google Scholar]
- Bulanova, G.P.; Shestakova, O.E.; Leskova, N.V. Djerfisherite in diamond-hosted sulfide inclusions. Dokl. Akad. Nauk. 1980, 225, 430–433. [Google Scholar]
- Golovin, A.V.; Sharygin, V.V.; Pokhilenko, N.P.; Mal’kovets, V.G.; Kolesov, B.A.; Sobolev, N.V. Secondary melt inclusions in olivine from unaltered kimberlites of the Udachnaya-East pipe, Yakuti. Dokl. Earth Sci. 2003, 388, 93–96. [Google Scholar]
- Kamenetsky, V.S.; Maas, R.; Kamenetsky, M.B.; Paton, C.; Phillips, D.; Golovin, A.V.; Gornova, M.A. Chlorine from the mantle: Magmatic halides in the Udachnaya-East kimberlite, Siberia. Earth Planet. Sci. Lett. 2009, 285, 96–104. [Google Scholar] [CrossRef]
- Logvinova, A.M.; Wirth, R.; Fedorova, E.N.; Sobolev, N.V. Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: New insights on diamond formation. Eur. J. Mineral. 2008, 20, 317–331. [Google Scholar] [CrossRef]
- Minin, D.A.; Sharygin, I.S.; Litasov, K.D.; Sharygin, V.V.; Shatskiy, A.; Ohtani, E. High-pressure stability of djerfisherite: Implication for its origin in diamonds and mantle xenoliths. Proceedings of Advances in high Pressure Research II: Deepest Understanding 2015, Novosibirsk-Irkutsk, Russia, 29 August–4 September 2015; p. 14. [Google Scholar]
- Sharygin, I.S.; Golovin, A.V.; Pokhilenko, N.P. Djerfisherite in xenoliths of sheared peridotite in the Udachnaya-East pipe (Yakutia): Origin and relationship with kimberlitic magmatism. Russ. Geol. Geophys. 2012, 53, 247–261. [Google Scholar] [CrossRef]
- Abersteiner, A.; Kamenetsky, V.S.; Goemann, K.; Golovin, A.V.; Sharygin, I.S.; Giuliani, A.; Rodemann, T.; Spetsius, Z.V.; Kamenetsky, M. Djerfisherite in kimberlites and their xenoliths: Implications for kimberlite melt evolution. Contrib. Mineral. Petrol. 2019, 174, 8. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Mitchell, R.H. Three compositional varieties of perovskite from kimberlites of the Lac de Gras field (Northwest Territories, Canada). Mineral. Mag. 2001, 65, 133–148. [Google Scholar] [CrossRef]
- Kitayama, Y.; Thomassot, E.; Galy, A.; Golovin, A.; Korsakov, A.; D’Eyrames, E.; Assayag, N.; Bouden, N.; Ionov, D. Co-magmatic sulfides and sulfates in the Udachnaya-East pipe (Siberia): A record of the redox state and isotopic composition of sulfur in kimberlites and their mantle sources. Chem. Geol. 2017, 455, 315–330. [Google Scholar] [CrossRef]
Type | MUM-g | MUM-g | MUM-r | MUM-r | Sp-o | Sp-o | Sp-g | Sp-g |
---|---|---|---|---|---|---|---|---|
wt.% | ||||||||
SiO2 | bdl | bdl | 0.06 | 0.02 | bdl | 0.12 | bdl | 0.11 |
Al2O3 | 2.62 | 9.94 | 7.86 | 7.54 | 52.33 | 58.92 | 59.05 | 57.00 |
MgO | 14.39 | 18.19 | 28.11 | 26.26 | 21.09 | 22.31 | 21.99 | 21.58 |
ZnO | 0.06 | bdl | bdl | bdl | bdl | 0.05 | 0.04 | 0.07 |
FeO | 25.58 | 20.13 | 13.71 | 17.53 | 8.73 | 6.90 | 7.35 | 8.34 |
Fe2O3 | 36.00 | 32.36 | 20.42 | 17.21 | 6.00 | 5.54 | 5.31 | 5.22 |
MnO | 0.33 | 0.40 | 0.49 | 0.52 | 0.09 | 0.10 | 0.11 | 0.07 |
V2O3 | 0.57 | 0.60 | 0.28 | 0.30 | 0.22 | 0.17 | 0.17 | 0.20 |
Cr2O3 | 1.15 | 0.43 | 1.32 | 1.87 | 9.28 | 3.33 | 3.52 | 4.59 |
TiO2 | 18.36 | 17.34 | 26.99 | 28.14 | 1.19 | 0.66 | 0.80 | 1.20 |
Nb2O5 | 0.07 | 0.02 | 0.11 | 0.05 | 0.05 | bdl | bdl | bdl |
ZrO2 | bdl | bdl | 0.17 | 0.20 | bdl | bdl | bdl | bdl |
NiO | 0.28 | 0.16 | 0.09 | 0.12 | 0.16 | 0.17 | 0.16 | 0.16 |
CaO | 0.16 | 0.19 | 0.14 | 0.08 | 0.08 | 0.16 | 0.46 | 0.16 |
Total | 99.58 | 99.79 | 99.73 | 99.87 | 99.39 | 98.43 | 99.06 | 98.75 |
apfu | Cations on the basis of 4 O atoms | |||||||
Si | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 0.10 | 0.37 | 0.28 | 0.27 | 1.63 | 1.79 | 1.79 | 1.75 |
Mg | 0.72 | 0.86 | 1.25 | 1.18 | 0.83 | 0.86 | 0.84 | 0.84 |
Zn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | 0.72 | 0.53 | 0.34 | 0.44 | 0.19 | 0.15 | 0.16 | 0.18 |
Fe3+ | 0.91 | 0.77 | 0.46 | 0.39 | 0.12 | 0.11 | 0.10 | 0.10 |
Mn | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
V | 0.02 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr | 0.03 | 0.01 | 0.03 | 0.04 | 0.19 | 0.07 | 0.07 | 0.09 |
Ti | 0.47 | 0.41 | 0.61 | 0.64 | 0.02 | 0.01 | 0.02 | 0.02 |
Nb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ni | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 |
MgAl2O4 | 5.26 | 18.75 | 13.98 | 13.54 | 81.90 | 89.51 | 89.15 | 87.30 |
Fe3O4 | 46.15 | 38.97 | 23.19 | 19.73 | 5.99 | 5.61 | 5.44 | 5.33 |
Mg2TiO4 | 33.41 | 33.79 | 55.06 | 51.64 | 2.37 | 1.34 | 1.63 | 2.45 |
Mn2TiO4 | 0.47 | 0.54 | 0.61 | 0.66 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2TiO4 | 13.17 | 7.40 | 5.58 | 12.18 | 0.00 | 0.00 | 0.00 | 0.00 |
FeCr2O4 | 1.55 | 0.55 | 1.58 | 2.25 | 9.74 | 3.54 | 3.78 | 4.92 |
MnCr2O4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
MgCr2O4 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 | 0.00 |
Mineral | Ilmenite | Rutile | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | 1 | 2 | 3 | 4a | 4b | 4c | 1 | 1 | 2 | 2 | 3 | 3 |
wt.% | ||||||||||||
SiO2 | bdl | bdl | 0.05 | bdl | bdl | 0.10 | 0.05 | 0.08 | bdl | bdl | bdl | 0.03 |
Al2O3 | 0.39 | 0.29 | 0.53 | 0.35 | 0.04 | 0.03 | bdl | bdl | bdl | bdl | bdl | bdl |
MgO | 13.96 | 12.88 | 16.08 | 17.49 | 26.00 | 23.65 | 0.62 | 0.15 | bdl | 0.11 | 0.12 | bdl |
ZnO | bdl | bdl | bdl | bdl | bdl | bdl | 0.73 | 0.84 | 0.21 | 0.17 | 0.40 | 0.30 |
FeO | 23.71 | 25.18 | 20.26 | 19.15 | 7.39 | 11.30 | bdl | bdl | bdl | bdl | bdl | bdl |
Fe2O3 | 4.82 | 5.35 | 4.51 | 4.27 | bdl | bdl | - | - | - | - | - | - |
MnO | 0.32 | 0.29 | 0.27 | 0.33 | 0.56 | 0.44 | bdl | bdl | bdl | bdl | bdl | bdl |
V2O3 | 0.60 | 0.68 | 0.55 | 0.62 | 0.58 | 0.57 | 0.75 | 0.86 | 0.68 | 0.78 | 0.59 | 0.68 |
Cr2O3 | 1.18 | 0.76 | 2.41 | 1.16 | 3.28 | 1.61 | 1.55 | 4.45 | 1.18 | 2.98 | 0.84 | 1.16 |
TiO2 | 54.61 | 53.74 | 54.87 | 56.32 | 61.60 | 62.36 | 94.83 | 91.46 | 96.60 | 94.45 | 97.49 | 96.60 |
Nb2O5 | 0.07 | 0.23 | 0.09 | 0.11 | 0.17 | 0.30 | 1.31 | 1.62 | 1.05 | 1.72 | 0.90 | 1.16 |
ZrO2 | 0.07 | bdl | 0.10 | bdl | 0.06 | 0.06 | 0.14 | 0.24 | 0.30 | 0.31 | 0.22 | 0.27 |
NiO | 0.17 | 0.13 | 0.13 | 0.10 | 0.05 | 0.09 | 0.03 | 0.03 | 0.02 | bdl | bdl | bdl |
CaO | 0.13 | 0.03 | 0.19 | 0.03 | 0.12 | 0.01 | 0.05 | 0.01 | 0.07 | 0.05 | 0.27 | 0.09 |
Total | 100.06 | 99.63 | 100.04 | 100.00 | 99.86 | 100.51 | 100.10 | 99.77 | 100.16 | 100.62 | 100.86 | 100.35 |
apfu | Cations on the basis of 3 O atoms | Cations on the basis of 2 O atoms | ||||||||||
Si | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mg | 0.47 | 0.44 | 0.54 | 0.58 | 0.81 | 0.75 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Zn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | 0.45 | 0.49 | 0.38 | 0.36 | 0.13 | 0.20 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe3+ | 0.08 | 0.09 | 0.08 | 0.07 | 0.00 | 0.00 | - | - | - | - | - | - |
Mn | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
V | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Cr | 0.02 | 0.01 | 0.04 | 0.02 | 0.05 | 0.03 | 0.02 | 0.05 | 0.01 | 0.03 | 0.01 | 0.01 |
Ti | 0.94 | 0.93 | 0.93 | 0.94 | 0.97 | 1.00 | 0.96 | 0.94 | 0.97 | 0.95 | 0.97 | 0.97 |
Nb | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Zr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Total | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.02 | 1.02 | 1.01 | 1.01 | 1.01 | 1.01 |
Fe2+/(Mg + Fe2+) | 0.15 | 0.17 | 0.12 | 0.11 | 0.00 | 0.00 | - | - | - | - | - | - |
Mn/(Mn + Fe2+ + Mg) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | - | - | - | - | - | - |
FeTiO3 | 46.42 | 49.54 | 39.55 | 36.42 | 13.61 | 20.97 | - | - | - | - | - | - |
Fe2O3 | 4.24 | 4.74 | 3.97 | 3.66 | 0.00 | 0.00 | - | - | - | - | - | - |
MnTiO3 | 0.64 | 0.58 | 0.54 | 0.63 | 1.05 | 0.82 | - | - | - | - | - | - |
MgTiO3 | 48.69 | 45.15 | 55.95 | 59.29 | 85.34 | 78.21 | - | - | - | - | - | - |
Sample | 9352-B_dj | 9352-B_dj | 9352-B_dj | 9352-U_dj | 9352-R_dj | 9352-R_dj |
---|---|---|---|---|---|---|
No. | #3 | #4 | #6 | #17 | #26 | #28 |
wt.% | ||||||
Si | 0.03 | bdl | bdl | bdl | bdl | 0.02 |
Al | 0.01 | bdl | 0.02 | 0.02 | 0.01 | 0.01 |
Ca | 0.04 | bdl | 0.02 | 0.06 | 0.04 | 0.03 |
K | 8.99 | 8.85 | 8.83 | 8.95 | 8.99 | 8.93 |
Mg | bdl | 0.03 | bdl | bdl | bdl | 0.02 |
Na | 0.03 | bdl | 0.07 | 0.07 | 0.05 | bdl |
Cu | 1.23 | 1.31 | 1.16 | 3.04 | 1.61 | 2.05 |
Ni | 16.61 | 16.33 | 16.42 | 12.96 | 18.33 | 17.77 |
Co | 0.52 | 0.48 | 0.51 | 0.16 | 0.27 | 0.24 |
Fe | 37.98 | 37.85 | 38.06 | 39.01 | 35.68 | 35.64 |
Pb | 0.33 | 0.35 | 0.36 | 0.32 | 0.36 | 0.32 |
S | 32.69 | 32.60 | 32.61 | 32.63 | 32.65 | 32.66 |
Cl | 1.36 | 1.39 | 1.39 | 1.38 | 1.39 | 1.41 |
Total | 99.82 | 99.20 | 99.45 | 98.60 | 99.37 | 99.10 |
apfu | Cations on the basis of 26 S | |||||
Si | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Al | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.01 |
Ca | 0.03 | 0.00 | 0.01 | 0.04 | 0.03 | 0.02 |
K | 5.86 | 5.79 | 5.77 | 5.85 | 5.87 | 5.83 |
Mg | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 |
Na | 0.03 | 0.00 | 0.07 | 0.08 | 0.05 | 0.00 |
Cu | 0.49 | 0.53 | 0.47 | 1.22 | 0.65 | 0.82 |
Ni | 7.22 | 7.12 | 7.15 | 5.64 | 7.97 | 7.73 |
Co | 0.23 | 0.21 | 0.22 | 0.07 | 0.12 | 0.10 |
Pb | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Fe | 17.34 | 17.33 | 17.42 | 17.85 | 16.31 | 16.29 |
S | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 | 26.00 |
Cl | 0.98 | 1.00 | 1.00 | 0.99 | 1.00 | 1.02 |
Analysis | U | Th/U | TW Concordia Columns (Uncorrect) | 207Pb Correction | f206 | |||||
---|---|---|---|---|---|---|---|---|---|---|
ppm | 238U/206Pb | Error (%) | 207Pb/206Pb | Error (%) | Age (Ma) | Error (Ma) | ||||
9352-D_rt@1 | 5.5 | 0.051 | 34.40 | 2.5 | 0.1424 | 5.7 | 0.12 | 164 | 6 | 0.12 |
9352-D_rt@2 | 5.3 | 0.051 | 34.72 | 2.9 | 0.1262 | 3.8 | 0.10 | 166 | 6 | 0.10 |
9352-D_rt@3 | 5.2 | 0.052 | 34.47 | 2.4 | 0.0983 | 5.3 | 0.06 | 173 | 5 | 0.06 |
9352-D_rt@4 | 5.2 | 0.051 | 35.68 | 2.6 | 0.0817 | 4.1 | 0.04 | 171 | 5 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Melgarejo, J.C.; Li, Q.; Abat, L.T.i.; Castillo-Oliver, M. Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals. Minerals 2020, 10, 829. https://doi.org/10.3390/min10090829
Xu J, Melgarejo JC, Li Q, Abat LTi, Castillo-Oliver M. Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals. Minerals. 2020; 10(9):829. https://doi.org/10.3390/min10090829
Chicago/Turabian StyleXu, Jingyao, Joan Carles Melgarejo, Qiuli Li, Lisard Torró i Abat, and Montgarri Castillo-Oliver. 2020. "Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals" Minerals 10, no. 9: 829. https://doi.org/10.3390/min10090829
APA StyleXu, J., Melgarejo, J. C., Li, Q., Abat, L. T. i., & Castillo-Oliver, M. (2020). Magma Mingling in Kimberlites: Evidence from the Groundmass Cocrystallization of Two Spinel-Group Minerals. Minerals, 10(9), 829. https://doi.org/10.3390/min10090829