Mudrocks Lithofacies Characteristics and North-South Hydrocarbon Generation Difference of the Shahejie Formation in the Dongpu Sag
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Thin-Section Observation
3.2. X-Ray Diffraction
3.3. Elements Measurement
3.4. Pyrolysis
4. Results
4.1. Lithofacies Microstructure Characteristics
4.2. Lithofacies Mineralogical Composition
4.3. Lithofacies Pyrolysis Analysis Results
4.4. Lithofacies Elemental Geochemistry Characteristics
5. Discussion
5.1. Lithofacies OM Characteristics
5.2. Co-Response Between Sedimentary Environment and Lithofacies Characteristics
5.2.1. Sedimentary Environment Reconstruction
5.2.2. Influences of Environment on the Deposition of Mudrocks and OM
5.3. Hydrocarbon Generation Discussion
5.3.1. The Deposition Process and Hydrocarbon Generation of the Lithofacies
5.3.2. Discussion of the North-South Hydrocarbon Production Difference of Dongpu Sag
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyson, R.V. Sedimentary Organic matter: Organic Facies and Palynofacies; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Hedges, J.I.; Keil, R.G. Sedimentary organic matter preservation: An assessment and speculative synthesis. Mar. Chem. 1995, 49, 81–115. [Google Scholar] [CrossRef]
- Lu, L.; Cai, J.; Lei, T.; Guo, Z.G.; Teng, G.E. Composition and geochemical characteristics of free and bound fatty acids in clay fraction of surface sediments, Easy China Sea. Geochimica 2011, 40, 188–198. [Google Scholar]
- Cai, J.G.; Zeng, X.; Wei, H.L.; Song, M.S.; Wang, X.J.; Liu, Q. From water body to sediments: Exploring the depositional pro-cesses of organic matter and their implications. J. Palaeogeogr. 2019, 21, 55–72. [Google Scholar]
- Taylor, R.; Fletcher, R.L.; Raven, J.A. Preliminary Studies on the Growth of Selected ‘Green Tide’ Algae in Laboratory Culture: Effects of Irradiance, Temperature, Salinity and Nutrients on Growth Rate. Bot. Mar. 2001, 44, 327–336. [Google Scholar] [CrossRef]
- Moisander, P.H.; McClinton, E.; Paerl, H.W. Salinity Effects on Growth, Photosynthetic Parameters, and Nitrogenase Activity in Estuarine Planktonic Cyanobacteria. Microb. Ecol. 2002, 43, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.; Baudin, F.; Riboulleau, A. Analysis of marine environmental conditions based onmolybdenum–uranium covariation—Applications to Mesozoic paleoceanography. Chem. Geol. 2012, 324–325, 46–58. [Google Scholar] [CrossRef]
- Chiou, W.; Faas, R.; Kasprowicz, J.; Li, H.; Lomenick, T.; OBrien, N.; Pamukcu, S.; Smart, P.; Weaver, C.; Yamamoto, T. Mi-crostructure of Fine-Grained Sediments: From Mud to Shale; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Haberlah, D.; McTainsh, G.H. Quantifying particle aggregation in sediments. Sedimentology 2010, 58, 1208–1216. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Z.; Liang, C.; Wu, J.; Xian, B.; Li, Q. Lacustrine massive mudrock in the Eocene Jiyang Depression, Bohai Bay Basin, China: Nature, origin and significance. Mar. Pet. Geol. 2016, 77, 1042–1055. [Google Scholar] [CrossRef]
- Cantero, M.I.; Cantelli, A.; Pirmez, C.; Balachandar, S.; Mohrig, D.; Hickson, T.A.; Yeh, T.-H.; Naruse, H.; Parker, G. Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents. Nat. Geosci. 2012, 5, 42. [Google Scholar] [CrossRef]
- Ilgen, A.G.; Heath, J.E.; Akkutlu, I.Y.; Bryndzia, L.T.; Cole, D.R.; Kharaka, Y.K.; Kneafsey, T.J.; Milliken, K.L.; Pyrak-Nolte, L.J.; Suarez-Rivera, R. Shales at all scales: Exploring coupled processes in mudrocks. Earth-Sci. Rev. 2017, 166, 132–152. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Jiang, F.; Zhu, C.; Huang, R.; Hu, T.; Xu, T.; Li, W.; Xiong, H. Gas Generation Potential and Characteristics of Oil-Prone Shale in the Saline Lacustrine Rifting Basins: A Case Study of the Dongpu Depression, Bohai Bay Basin. Energy Fuels 2021, 35, 2192–2208. [Google Scholar] [CrossRef]
- Chen, J.; Lu, K.; Feng, Y.; Yuan, K.H.; Wang, D.B.; Cui, H.; Zhang, W.J. Evaluation on hydrocarbon source rocks in different environments and characteristics of hydrocarbon generation and expulsion in Dongpu Depression. Fault-Block Oil Gas Field 2012, 19, 35–38. [Google Scholar]
- Zhang, P.; Zhang, J.C.; Huang, Y.Q. The lithofacies characteristics of Es3 in the Northern Dongpu Depression. Sci. Technol. Eng. 2015, 2015, 21. [Google Scholar]
- Huang, C.; Zhang, J.; Hua, W.; Yue, J.; Lu, Y. Sedimentology and lithofacies of lacustrine shale: A case study from the Dongpu sag, Bohai Bay Basin, Eastern China. J. Nat. Gas Sci. Eng. 2018, 60, 174–189. [Google Scholar] [CrossRef]
- Tang, L.; Pang, X.; Xu, T.; Hu, T.; Pan, Z.; Guo, K. Hydrocarbon generation thresholds of Paleogene Shahejie Fm source rocks and their north-south differences in the Dongpu Sag, Bohai Bay Basin. Nat. Gas Ind. 2017, 37, 26–37. [Google Scholar]
- Yawar, Z.; Schieber, J. On the origin of silt laminae in laminated shales. Sediment. Geol. 2017, 360, 22–34. [Google Scholar] [CrossRef]
- Turner, J.T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 2015, 130, 205–248. [Google Scholar] [CrossRef]
- Kase, Y.; Sato, M.; Nishida, N.; Ito, M.; Mukti, M.M.; Ikehara, K.; Takizawa, S. The use of microstructures for discriminating turbiditic and hemipelagic muds and mudstones. Sedimentology 2016, 63, 2066–2086. [Google Scholar] [CrossRef]
- Zeng, X.; Cai, J.; Zhe, D.; Wang, X.; Hao, Y. Sedimentary characteristics and hydrocarbon generation potential of mudstone and shale: A case study of Middle Submember of Member 3 and Upper Submember of Member 4 in Shahejie Formation in Dongying sag. Acta Pet. Sin. 2017, 38, 31–43. [Google Scholar]
- Zeng, X.; Cai, J.; Dong, Z.; Bian, L.; Li, Y. Relationship between Mineral and Organic Matter in Shales: The Case of Shahejie Formation, Dongying Sag, China. Minerals 2018, 8, 222. [Google Scholar] [CrossRef] [Green Version]
- Schieber, J.; Bose, P.K.; Eriksson, P.G.; Banerjee, S.; Sarkar, S.; Altermann, W.; Catuneanu, O. Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2. [Google Scholar]
- Jiang, Z.R.; Zuo, Y.H.; Yang, M.H.; Zhang, Y.X.; Zhou, Y.S. Source rocks evaluation of the Paleogene Shahejie 3 Formation in the Dongpu Depression, Bohai Bay Basin. Energy Explor. Exploit. 2019, 37, 394–411. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Routh, J.; Roychoudhury, A.N.; Klump, J.V. Major and trace element geochemistry in Zeekoevlei, South Africa: A lacustrine record of present and past processes. Appl. Geochem. 2008, 23, 2496–2511. [Google Scholar] [CrossRef]
- Bouchez, J.; Gaillardet, J.; France-Lanord, C.; Maurice, L.; Dutra-Maia, P. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Lupker, M.; France-Lanord, C.; Lavé, J.; Bouchez, J.; Galy, V.; Métivier, F.; Gaillardet, J.; Lartiges, B.; Mugnier, J.-L. A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin. J. Geophys. Res. Space Phys. 2011, 116, 4. [Google Scholar] [CrossRef] [Green Version]
- Garzanti, E.; Andó, S.; France-Lanord, C.; Censi, P.; Vignola, P.; Galy, V.; Lupker, M. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planet. Sci. Lett. 2011, 302, 107–120. [Google Scholar] [CrossRef]
- Gan, S.; Wu, Y.; Zhang, J. Bioavailability of dissolved organic carbon linked with the regional carbon cycle in the East China Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2016, 124, 19–28. [Google Scholar] [CrossRef]
- Liu, Q.; Zeng, X.; Wang, X.J.; Cai, J.G. Lithofacies of mudstone and shale deposits of the Es3z-Es4s formation in Dongying Sag and their depositional environment. Mar. Geol. Quat. Geol. 2017, 3, 147–156. (In Chinese) [Google Scholar] [CrossRef]
- Wenzhi, Z.H.A.O.; Rukai, Z.H.U.; Suyun, H.U.; Lianhua, H.O.U.; Songtao, W.U. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their sig-nificance in shale oil evaluation. Pet. Explor. Dev. 2020, 47, 1160–1171. [Google Scholar]
- Emmings, J.F.; Davies, S.J.; Vane, C.H.; Moss-Hayes, V.; Stephenson, M.H. From marine bands to hybrid flows: Sedimentology of a Mississippian black shale. Sedimentology 2019, 67, 261–304. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Xi, B.D.; Xu, Q.J. Research of the possibility of using salinity as entrophication criteria indicator of saline lakes. J. Environ. Eng. Technol. 2011, 1, 260–263. (In Chinese) [Google Scholar] [CrossRef]
- Crump, B.C.; Hopkinson, C.S.; Sogin, M.L.; Hobbie, J.E. Microbial Biogeography along an Estuarine Salinity Gradient: Combined Influences of Bacterial Growth and Residence Time. Appl. Environ. Microbiol. 2004, 70, 1494–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svarovsky, L. Solid-Liquid Separation; Butterworth-Heinemann: Oxford, UK, 2000. [Google Scholar]
- Algeo, T.J.; Maynard, J. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Homewood, P.W. Fine-Grained Turbidite Systems. Basin Res. 2001, 13, 377. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1. [Google Scholar]
- Li, W.; Liu, L.P.; Cao, L.; Yu, L.J. Research status and prospect of biological precipitation of carbonate. Adv. Earth Sci. 2009, 24, 597–605. (In Chinese) [Google Scholar]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Dupraz, C.; Visscher, P.T.; Baumgartner, L.K.; Reid, R.P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 2004, 51, 745–765. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, Q.; Xu, G.; Wang, D. Flocculation–Dewatering Behavior of Microalgae at Different Growth Stages under Inorganic Polymeric Flocculant Treatment: The Relationships between Algal Organic Matter and Floc Dewaterability. ACS Sustain. Chem. Eng. 2018, 6, 11087–11096. [Google Scholar] [CrossRef]
- Peters, K.E. Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis. AAPG Bull. 1986, 70, 318–329. [Google Scholar] [CrossRef]
Samples | Clay Minerals/% | Detrital Minerals/% | Carbonate Minerals/% | Pyrite/% | Anhydrite/% | |||
---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Calcite | Dolomite | |||||
Min of all samples | 8.00 | 4.00 | 2.00 | 1.00 | 0.00 | 0.00 | 1.00 | |
Max of all samples | 57.00 | 46.00 | 44.00 | 67.00 | 83.00 | 6.00 | 23.00 | |
Average | All samples | 35.96 | 22.82 | 12.60 | 17.50 | 7.38 | 1.11 | 2.05 |
Northern part | 35.74 | 21.51 | 12.95 | 17.97 | 8.41 | 1.14 | 2.21 | |
Southern part | 36.38 | 25.43 | 11.89 | 16.55 | 6.54 | 1.06 | 1.75 | |
Silt-rich massive mudstone | 37.59 | 27.73 | 15.80 | 10.67 | 4.88 | 1.09 | 2.02 | |
Homogeneous massive mudstone | 38.16 | 20.77 | 10.57 | 16.84 | 9.53 | 1.07 | 2.68 | |
Laminated mudstone | 29.85 | 16.00 | 9.09 | 31.61 | 10.55 | 2.35 | 1.19 | |
Pyrolysis Analysis | ||||||||
TOC/ wt.% | HI/mgHC/g org.C | OI/mgCO2/g org.C | S1/ mg/g | S2/ mg/g | PI | Tmax/°C | ||
Min | 0.05 | 0.0 | 6.0 | 0.00 | 0.00 | 0.00 | 335.0 | |
Max | 4.21 | 648.0 | 871.0 | 2.77 | 27.26 | 1.00 | 611.0 | |
Average | All samples | 0.73 | 111.1 | 164.9 | 0.21 | 1.67 | 0.21 | 451.9 |
Northern part | 0.86 | 121.5 | 186.7 | 0.25 | 2.03 | 0.24 | 453.5 | |
Southern part | 0.47 | 90.3 | 121.5 | 0.12 | 0.96 | 0.16 | 448.6 | |
Silt-rich massive mudstone | 0.39 | 39.5 | 184.5 | 0.05 | 0.31 | 0.25 | 454.4 | |
Homogeneous massive mudstone | 0.61 | 100.5 | 187.5 | 0.14 | 1.29 | 0.20 | 457.2 | |
Laminated mudstone | 1.56 | 264.2 | 96.8 | 0.61 | 4.83 | 0.14 | 440.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zeng, X.; Cai, J.; Wang, X.; Mu, X.; Zhang, Y. Mudrocks Lithofacies Characteristics and North-South Hydrocarbon Generation Difference of the Shahejie Formation in the Dongpu Sag. Minerals 2021, 11, 535. https://doi.org/10.3390/min11050535
Li Y, Zeng X, Cai J, Wang X, Mu X, Zhang Y. Mudrocks Lithofacies Characteristics and North-South Hydrocarbon Generation Difference of the Shahejie Formation in the Dongpu Sag. Minerals. 2021; 11(5):535. https://doi.org/10.3390/min11050535
Chicago/Turabian StyleLi, Yuanfeng, Xiang Zeng, Jingong Cai, Xinyu Wang, Xiaoshui Mu, and Yunxian Zhang. 2021. "Mudrocks Lithofacies Characteristics and North-South Hydrocarbon Generation Difference of the Shahejie Formation in the Dongpu Sag" Minerals 11, no. 5: 535. https://doi.org/10.3390/min11050535
APA StyleLi, Y., Zeng, X., Cai, J., Wang, X., Mu, X., & Zhang, Y. (2021). Mudrocks Lithofacies Characteristics and North-South Hydrocarbon Generation Difference of the Shahejie Formation in the Dongpu Sag. Minerals, 11(5), 535. https://doi.org/10.3390/min11050535