The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland
Abstract
:1. Introduction
1.1. Geological Background
1.2. Weathering and Thermally Altered Coal-Bearing Deposits
2. Materials and Methods
2.1. Sample Description and Preparation
2.2. Organic Petrography
2.3. Mineralogy and Chemistry
2.4. Palynology
2.5. Organic Geochemistry
3. Results and Discussion
3.1. Organic Petrography
3.2. Mineralogy and Chemistry
3.3. Palynology
3.4. Organic Geochemistry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kowalski, W.C. Procesy wietrzeniowe i epigenetyczne w obrębie pstrych utworów Rybnickiego Okręgu Węglowego. Prz. Geol. 1983, 31, 591–595, (In Polish and English Summary). [Google Scholar]
- Gabzdyl, W.; Probierz, K. The occurrence of anthracites in the area characterised by low rank coals in the Upper Silesian Coal Basin of Poland. Int. J. Coal Geol. 1987, 7, 209–225. [Google Scholar] [CrossRef]
- Klika, Z.; Osovsky, M. Thermally altered coal from Upper Silesian Coal Basin. J. Czech Geol. Soc. 1999, 44, 343–352. [Google Scholar]
- Probierz, K. Coal Petrology in recognition of coking coal in Jastrzębie area. Kwart. Górnictwo Geol. 2012, 7, 87–117, (In Polish and English Summary). [Google Scholar]
- Klika, Z. Geochemistry of Coal from Region of the Red Beds Bodies of the Upper Silesian Coal Basin; VSB—Technical University Ostrava, HGF—Faculty of Minig and Geology: Ostrava, Czech Republic, 1998; pp. 1–85. [Google Scholar]
- Klika, Z.; Koszubek, T.; Martinec, P.; Kliková, C.; Dostál, Z. Mathematical modeling of bituminous coal seams burning contemporaneously with the formation of a variegated beds body. Int. J. Coal Geol. 2004, 59, 137–151. [Google Scholar] [CrossRef]
- Muszyński, M.; Skowroński, A.; Lipiarski, I. Red beds of the collapse-type breccia from the “Marcel” Coal Mine (Upper Silesian Coal Basin). Geologia 2006, 32, 345–367, (In Polish and English Summary). [Google Scholar]
- Jura, D. Discordances of the top surface of Carboniferous deposits of the Upper Silesian Coal Basin. Pol. Geol. Inst. Spec. Pap. 2002, 7, 125–132. [Google Scholar]
- Jureczka, J.; Dopita, M.; Gałka, M.; Krieger, W.; Kwarciński, J.; Martinec, P. Geological Atlas of Coal Deposits of the Polish Czech Patrs of the Upper Silesian Coal Basin 1:200 000; Polish Geological Institute: Warszawa, Poland, 2005. [Google Scholar]
- Jurczak-Drabek, A. Petrographical Atlas of the Deposits Upper Silesian Coal Basin 1:300 000; Polish Geological Institute: Warszawa, Poland, 1996. [Google Scholar]
- Wagner, M. Petrological Character of Bituminous Coal from the Mottled Sediments (Upper Carboniferous), Southern Part of Rybnik Coal District. Geologia 1983, 9, 87–105, (In Polish and English Summary). [Google Scholar]
- Kotas, A. Geological bacground. In Coal-Bed Methane Potential of the Upper Silesian Coal Basin; Państwowy Instytut Geologiczny: Warszawa, Poland, 1994; Volume 142, pp. 6–15. [Google Scholar]
- Jura, D. Late Variscan and Alpine Geodynamics of the Upper Silesian Coal Basin. In Proceedings of the XIII Congress of the Carboniferous and Permian; Polish Geological Institute: Warsaw, Poland, 1997; Volume 157, pp. 169–176. [Google Scholar]
- Jura, D. Morphotectonics and evolution of discordances of different age oresent in the top surface of the Carboniferous of the Upper Silesian Coal Basin. Pr. Nauk. Uniw. Sląskiego Katowicach 1952, 2001, 1–176, (In Polish and English summary). [Google Scholar]
- Kędzior, S. Distribution of methane contents and coal rank in the profiles of deep boreholes in the Upper Silesian Coal Basin, Poland. Int. J. Coal Geol. 2019, 202, 190–208. [Google Scholar] [CrossRef]
- Kotarba, M.J.; Clayton, J.L. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. Int. J. Coal Geol. 2003, 55, 73–94. [Google Scholar] [CrossRef]
- Dill, H.G.; Sachsenhofer, R.F. Fossil fuels, ore and industrial minerals. In The Geology of Central Europe; The Geological Society: London, UK, 2008; pp. 1341–1449. [Google Scholar]
- Jura, D.; Trzepierczyński, J. Morphotectonic development of the sub-Permian surface along the Upper Silesian Coal Basin. In Proceedings of the XIII Congress of the Carboniferous and Permian; Polish Geological Institute: Warsaw, Poland, 1997; Volume 157, pp. 177–182. [Google Scholar]
- Kim, A.G. Coal formation and the origin of coal fires. In Coal and Peat Fires, A Global Perspective; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 1–23. [Google Scholar]
- Sokol, E.V.; Maksimova, N.V.; Nigmatulina, E.N.; Sharygin, V.V.; Kalugin, V.M. Combustion Metamorphism; SB RAS: Novosibirsk, Russia, 2005; pp. 1–312, (In Russian, with some English Abstracts). [Google Scholar]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. Coal and Peat Fires: A Global Perspective; Elsevier: Amsterdam, The Netherlands, 2011; Volume 1, pp. 1–357. [Google Scholar]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. Coal and Peat Fires: A Global Perspective; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2, pp. 1–554. [Google Scholar]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. Coal and Peat Fires: A Global Perspective; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 1–786. [Google Scholar]
- Martinec, P.; Dopita, M. Paleorelief of the epivariscan platform and its rocks mantle. In Geology of the Czech Part of the Upper Silesian Basin; Ministry of the Environment of the Czech Republik: Praha, Czech Republic, 1997; pp. 181–187, (In Czech and English Summary). [Google Scholar]
- Krs, M.; Kssová, M.; Martinec, P.; Pruner, P. Paleomagnetism of the Carboniferous and Variegated Layers of the Moravian-Silesian Region. Geol. Carpathica 1993, 44, 301–314. [Google Scholar]
- Klika, Z.; Kraussova, J. Propierties of altered coals associated with Carboniferous red beds in the Upper Silesian Coal Basin and their tentative classification. Int. J. Coal Geol. 1993, 22, 217–235. [Google Scholar] [CrossRef]
- Yoksoulian, L.E.; Rimmer, S.M.; Rowe, H.D. Anatomy of an intruded coal, II: Effect of contact metamorphism on organic δ13C and implications for the release of thermogenic methane, Springfield (No. 5) Coal, Illinois Basin. Int. J. Coal Geol. 2016, 158, 129–136. [Google Scholar] [CrossRef]
- Rahman, M.W.; Rimmer, S.M.; Rowe, H.D.; Huggett, W.W. Carbon isotope analysis of whole-coal and vitrinite from intruded coals from the Illinois Basin: No isotopic evidence for thermogenic methane generation. Chem. Geol. 2017, 453, 1–11. [Google Scholar] [CrossRef]
- Rahman, M.W.; Rimmer, S.M.; Rowe, H.D. The impact of rapid heating by intrusion on the geochemistry and petrography of coals and organic-rich shales in the Illinois Basin. Int. J. Coal Geol. 2018, 187, 45–53. [Google Scholar] [CrossRef]
- Sanders, M.M.; Rimmer, S.M. Revisiting the thermally metamorphosed coals of the Transantarctic Mountains, Antarctica. Int. J. Coal Geol. 2020, 228, 103550. [Google Scholar] [CrossRef]
- Ciesielczuk, J.; Górka, M.; Fabiańska, M.J.; Misz-Kennan, M.; Jura, D. The influence of heating on the carbon isotope composition, organic geochemistry and petrology of coal from the Upper Silesian Coal Basin (Poland): An experimental and field study. Int. J. Coal Geol. 2021, 241, 103749. [Google Scholar] [CrossRef]
- ISO 7404-2. Methods for the Petrographic Analysis of Coals—Part 2: Methods of Preparing Coal Samples; ISO: Geneva, Switzerland, 2009; 12p. [Google Scholar]
- ISO 7404-3. Methods for the Petrographic Analysis of Coals—Part 3: Method of Determining Maceral Group Composition; ISO: Geneva, Switzerland, 2009; 7p. [Google Scholar]
- International Committee for Coal and Organic Petrology. New vitrinite classification (ICCP system 1994). Fuel 1998, 77, 349–358. [Google Scholar] [CrossRef]
- International Committee for Coal and Organic Petrology. New inertinite classification (ICCP system 1994). Fuel 2001, 80, 459–471. [Google Scholar] [CrossRef]
- Pickel, W.; Kus, J.; Flores, D.; Kalaitzidis, S.; Christanis, K.; Cardott, B.J.; Misz-Kennan, M.; Rodrigues, S.; Hentschel, A.; Hamor-Vido, M.; et al. ICCP. Classification of liptinite—ICCP System 1994. Int. J. Coal Geol. 2017, 169, 40–61. [Google Scholar] [CrossRef] [Green Version]
- ISO 7404-5. Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite; ISO: Geneva, Switzerland, 2009; 14p. [Google Scholar]
- Wood, G.; Gabriel, A.M.; Lawson, J.C. Palynological techniques—Processing and microscopy. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; American Association of Stratigraphic Palynologists Foundation: Salt Lake City, UT, USA, 1996; Volume 1, pp. 29–50. [Google Scholar]
- Philp, R.P. Fossil Fuel Biomarkers. Application and Spectra; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Wiley/NBS. Registry of Mass Spectral; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Jureczka, J.; Kotas, A. Coal deposits. Upper Silesian Coal Basin. In The Carboniferous System in Poland; Zdanowski, A., Żakowa, H., Eds.; Polish Geological Institute: Warsaw, Poland, 1995; pp. 164–173. [Google Scholar]
- Parzentny, H.R. Spatial macroscale variability of the role of mineral matter in concentrating some trace elements in bituminous coal in a coal basin—A case study from the Upper Silesian Coal Basin in Poland. Minerals 2020, 10, 422. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Křibek, B.; Sýkorová, I.; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V. Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic. Int. J. Coal Geol. 2017, 173, 158–175. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Clayton, G.; Coquel, R.; Doubinger, J.; Gueinn, K.; Loboziak, S.; Owens, B.; Streel, M. Carboniferous Spores of Western Europe. Illustration and Zonation. Report of Commission Internationale de Microflore du Paléozoïque, Working Group on Carboniferous Stratigraphical Palynology. Meded. Rijks Geol. Dienst 1977, 29, 1–71. [Google Scholar]
- Batten, J. Palynofacies, palaeoenvironments and petrolum. J. Micropaleont. 1982, 1, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Batten, D.J. Palynofacies and palaeoenvironmental interpretation. In Palynology: Principles and Applications; Jansonius, J., McGregor, D.C., Eds.; American Association of Stratigraphy Palynologists Foundation: Salt Lake City, UT, USA, 1996; Volume 3, pp. 1011–1064. [Google Scholar]
- Traverse, A. Paleopalynology, 2nd ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1–813. [Google Scholar]
- Fabiańska, M.J.; Ćmiel, S.R.; Misz-Kennan, M. Biomarkers and aromatic hydrocarbons in bituminous coals of Upper Silesian Coal Basin: Example from 405 coal seam of the Zaleskie Beds (Poland). Int. J. Coal Geol. 2013, 107, 96–111. [Google Scholar] [CrossRef]
- Misz-Kennan, M.; Fabiańska, M.J. Thermal transformation of organic matter in coal waste from Rymer Cones (Upper Silesian Coal Basin, Poland). Int. J. Coal Geol. 2010, 81, 343–358. [Google Scholar] [CrossRef]
- Misz-Kennan, M.; Fabiańska, M.J. Application of organic petrology and geochemistry to coal waste studies. Int. J. Coal Geol. 2011, 88, 1–23. [Google Scholar] [CrossRef]
- Misz-Kennan, M. Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland. Mineralogia 2010, 41, 105–236. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Fabiańska, M.J. Use of geochemical analysis and vitrinite reflectance to assess different self-heating processes in coal-waste dumps (Upper Silesia, Poland). Fuel 2016, 181, 102–119. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide. Biomarkers and Isotopes in Petroleum Exploration and Earth History; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Bray, E.E.; Evans, E.D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta 1961, 22, 2–15. [Google Scholar] [CrossRef]
- Didyk, B.M.; Simoneit, B.R.T.; Brassell, S.C.; Eglington, G. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 1978, 272, 216–222. [Google Scholar] [CrossRef]
- Leythaeuser, D.; Schwarzkopf, T. The pristane/n-heptadecane ratio as an indicator for recognition of hydrocarbon migration effects. Org. Geochem. 1986, 10, 191–197. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. Use of biological markers in petroleum exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Huang, W.-Y.; Meinschein, W.G. Sterols as ecological indicators. Geochim. Cosmochim. Acta 1979, 43, 739–745. [Google Scholar] [CrossRef]
- Fabiańska, M.J.; Smołka-Danielowska, D. Biomarker compounds in ash from coal combustion in domestic furnaces (Upper Silesia Coal Basin, Poland). Fuel 2012, 102, 333–344. [Google Scholar] [CrossRef]
- Fabiańska, M.; Kozielska, B.; Konieczyński, J. Differences in the Occurrence of Polycyclic Aromatic Hydrocarbons and Geochemical Markers in the Dust Emitted from Various Coal-Fired Boilers. Energy Fuels 2017, 31, 2585–2595. [Google Scholar] [CrossRef]
- Schubert, P.; Schantz, M.; Sander, L.; Wise, S. Determination of polycyclic aromatic hydrocarbons with molecular weight 300 and 302 in environmental-matrix standard reference materials by gas chromatography/ mass spectrometry. Anal. Chem. 2003, 75, 234–246. [Google Scholar] [CrossRef]
- Masala, S.; Bergvall, C.; Westerholm, R. Determination of benzo[a]pyrene and dibenzopyrenes in a Chinese coal fly ash certified reference material. Sci. Total Environ. 2012, 432, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Seidel, A.; Frank, H.; Behnke, A.; Schneider, D.; Jacob, J. Determination of dibenzo[a,l]pyrene and other fjord-region PAH isomers with mw 302 in environmental samples. Polycycl. Aromat. Compd. 2004, 24, 759–771. [Google Scholar] [CrossRef]
- Pace, C.; Betowski, L. Measurement of high-molecular-weight polycyclic aromatic hydrocarbons in soils by particle beam high performance liquid chromatography-mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Prus, W.; Fabiańska, M.J.; Łabno, R. Geochemical markers of soil anthropogenic contaminants in polar scientific stations nearby (Antarctica, King George Island). Sci. Total. Environ. 2015, 518–519, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Sauvain, J.; VuDuc, T. Approaches to identifying and quantifying polycyclic aromatic hydrocarbons of molecular weight 302 in diesel particulates. J. Sep. Sci. 2004, 27, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Bergvall, C.; Westerholm, R. Identification and determination of highly carcinogenic dibenzopyrene isomers in air particulate samples from a street canyon, a rooftop, and a subway station in Stockholm. Environ. Sci. Technol. 2007, 41, 731–737. [Google Scholar] [CrossRef]
- Mininni, G.; Sbrilli, A.; Guerriero, E.; Rotatori, M. Polycyclic aromatic hydrocarbons formation in sludge incineration by fluidised bed and rotary kiln furnace. Water Air Soil Pollut. 2004, 154, 3–18. [Google Scholar] [CrossRef]
- Ikegami, M. Soot formation Fundamentals. In Growth and Destruction of Soot Particles; Someya, T., Ed.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 161–204. [Google Scholar]
- Sarofim, A.F.; Longwell, J.P.; Wornat, M.J.; Mukherjee, J. The Role of Biaryl Reactions in PAH and Soot Formation. In Soot Formation in Combustion; Bockhorn, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 485–499. [Google Scholar]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Radke, M.; Welte, D.H. The methylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons. Adv. Org. Geochem. 1981, 1983, 504–512. [Google Scholar]
- Radke, M. Organic geochemistry of aromatic hydrocarbons. Adv. Pet. Geochem. 1988, 2, 141–203. [Google Scholar]
- Radke, M.; Vriend, S.P.; Ramanampisoa, L.R. Alkyldibenzofurans in terrestrial rocks: Influence of organic facies and maturation. Geochim. Cosmochim. Acta 2000, 64, 275–286. [Google Scholar] [CrossRef]
- Alexander, R.; Kagi, R.I.; Rowland, S.J.; Sheppard, P.N.; Chirila, T.V. The effects of thermal maturation on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. Geochim. Cosmochim. Acta 1985, 49, 385–395. [Google Scholar] [CrossRef]
- Kruge, M.A. Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds. Int. J. Coal Geol. 2000, 43, 27–51. [Google Scholar] [CrossRef]
- Ishiwatari, R.; Fukushima, K. Generation of unsaturated and aromatic hydrocarbons by thermal alteration of young kerogen. Geochim. Cosmochim. Acta 1979, 43, 1343–1349. [Google Scholar] [CrossRef]
- Garrigues, P.; Connan, J.; Parlanti, E.; Bellocq, J.; Ewald, M. Relationship between rank and distribution of methylaromatic hydrocarbons for condensates of different origins. Org. Geochem. 1988, 13, 1115–1121. [Google Scholar] [CrossRef]
Sample No. | Vitrinite (%) | Liptinite (%) | Inertinite (%) | Minerals (%) | Rr (%) | SD | n | Extraction Yield (wt.%) |
---|---|---|---|---|---|---|---|---|
N1 | 2.4 | 0.0 | 0.6 | 97.0 | 1.16 | 0.06 | 50 | 0.0520 |
N2 | 1.4 | 0.0 | 0.0 | 98.6 | 1.37 | 0.21 | 50 | 0.0511 |
N3 | 0.8 | 0.0 | 0.2 | 99.0 | 1.42 | 0.27 | 50 | 0.0400 |
N4 | 2.2 | 0.0 | 0.0 | 97.8 | 1.17 | 0.18 | 50 | 0.0379 |
N5 | 1.2 | 0.0 | 1.0 | 97.8 | 1.10 | 0.16 | 50 | 0.0580 |
N6 | 28.0 | 0.0 | 0.0 | 72.0 | 1.33 | 0.05 | 50 | 0.0352 |
N7 | 1.8 | 0.0 | 0.0 | 98.2 | 1.25 | 0.21 | 50 | 0.0222 |
N8 | 0.6 | 0.0 | 0.0 | 99.4 | 1.50 | 0.31 | 50 | 0.0104 |
S1 | 0.0 | 0.0 | 0.0 | 100.0 | - | - | - | 0.0008 |
S2 | 1.6 | 0.0 | 0.0 | 98.4 | 1.08 | 0.19 | 25 | 0.0153 |
S3 | 0.0 | 0.0 | 0.0 | 100.0 | - | - | - | 0.0190 |
S4 | 0.6 | 0.0 | 0.0 | 99.4 | 1.27 | 0.25 | 25 | 0.0090 |
S5 | 0.0 | 0.0 | 0.0 | 100.0 | - | - | - | 0.0035 |
S6 | 0.0 | 0.0 | 0.0 | 100.0 | - | - | - | 0.0196 |
Average N | 4.8 | 0.0 | 0.2 | 95.0 | 1.29 | 0.18 | 50 | 0.0383 |
Average S | 0.4 | 0.0 | 0.0 | 99.6 | 1.18 * | 0.22 * | 25 | 0.0112 |
Mineral Phase | N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | S1 | S2 | S3 | S4 | S5 | S6 | N | S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartz SiO2 | 30 | 29 | 35 | 41 | 29 | 25 | 30 | 36 | 30 | 21 | 74 | 70 | 37 | 56 | 32 | 48 |
Illite/muscovite KAl2(AlSi3O10)(OH)2 | 38 | 34 | 31 | 40 | 39 | 38 | 38 | 36 | 41 | 4 | 7 | 3 | 50 | 5 | 37 | 18 |
Kaolinite group Al2(Si2O5)(OH)4 | 14 | 13 | 10 | 12 | 10 | 4 | 9 | 8 | 22 | 6 | 23 | tr | 13 | 10 | 11 | |
Chlorite (Mg,Fe2+)5Al (AlSi3O10)(OH)8 | 17 | 19 | 20 | 4 | 21 | tr | 19 | 12 | 10 | 2 | 14 | 2 | ||||
Hematite Fe2O3 | tr | tr | tr | tr | tr | tr | tr | 13 | tr | 1 | 2 | 3 | tr | 3 | ||
Cristobalite-tridimite SiO2 | 1 | 2 | 2 | 2 | 1 | 1 | 9 | 1 | 2 | |||||||
K-feldspar K2AlSi3O8 | 32 | 11 | 6 | 6 | 4 | 4 | ||||||||||
Na-feldspar Na2AlSi3O8 | 6 | tr | 3 | 0 | 2 | |||||||||||
Calcite CaCO3 | 1 | tr | 1 | tr | 1 | 1 | tr | 2 | 1 | tr | ||||||
Dolomite CaMg(CO3)2 | 27 | 2 | 2 | 0 | 5 | |||||||||||
Siderite FeCO3 | 1 | 1 | tr | 4 | 2 | tr | 1 | |||||||||
Siderite-magnesite (Fe, Mg)CO3 | tr | 1 | 1 | tr | 1 | 2 | 2 | 5 | tr | 1 | 1 | |||||
Zircon ZrSiO4 | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | ||||
Monazite CePO4 | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | ||||||
Xenotime YPO4 | tr | tr | tr | tr | 0 | |||||||||||
Chalcopyrite CuFeS2 | tr | tr | tr | 0 | ||||||||||||
Pyrite FeS2 | tr | tr | tr | tr | tr | tr | tr | tr | ||||||||
Organic matter | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | tr | |||||
Halite NaCl | tr | tr | 0 | |||||||||||||
Anatase TiO2 | tr | tr | tr | tr | tr | tr | tr | 1 | 4 | tr | tr | 0.2 | 0.7 | |||
Alunite KAl3(SO4)2(OH)6 | 2 | 2 | 2 | 2 | 0.8 | 0.3 | ||||||||||
Alunogen Al2(SO4)3 · 17H2O | 16 | 0 | 2.7 | |||||||||||||
ZnS | tr | tr | tr | tr | tr | tr | 0 | |||||||||
Berlinite? AlPO4 | tr | tr | 0 | |||||||||||||
Barite BaSO4 | tr | tr | tr | tr | tr | tr | tr | tr | tr | |||||||
Goethite α-Fe3+O(OH) | tr | tr | 2 | tr | 0.4 | |||||||||||
Hydroxylapatite Ca5(PO4)3(OH) | tr | tr | tr | tr | tr | tr | 3 | tr | tr | tr | tr | 0.5 | tr | |||
Murashkoite? FeP | tr | tr | 0 | |||||||||||||
Pb elemental | tr | tr | 0 |
N1 | N2 | N3 | N4 | N5 | N6 | N7 | N8 | S1 | S2 | S3 | S4 | S5 | S6 | N | S | Possible Cause or Mode of Occurrence | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2, % | 56.46 | 56.96 | 57.21 | 56.92 | 56.43 | 68.03 | 58.6 | 60.94 | 66.5 | 16.4 | 84.16 | 63.84 | 59.32 | 54.37 | 58.94 | 57.43 | |
Al2O3, % | 22.89 | 23.04 | 22.7 | 22.72 | 23.01 | 16.32 | 21.93 | 17.23 | 16.5 | 6.39 | 8.07 | 15.14 | 18.56 | 21.48 | 21.23 | 14.36 | clays, chlorite |
Fe2O3, % | 4.45 | 4.48 | 4.62 | 4.3 | 4.28 | 4.16 | 4.51 | 8.07 | 5.27 | 46.45 | 2.49 | 7.66 | 9.65 | 9.77 | 4.86 | 13.55 | hematite, goethite |
MgO, % | 1.56 | 1.56 | 1.55 | 1.6 | 1.52 | 0.73 | 1.48 | 1.42 | 1.27 | 5.81 | 0.31 | 1.53 | 0.86 | 0.95 | 1.43 | 1.79 | |
CaO, % | 0.13 | 0.13 | 0.14 | 0.16 | 0.15 | 0.21 | 0.18 | 0.25 | 0.26 | 3.92 | 0.08 | 0.48 | 0.31 | 0.34 | 0.17 | 0.90 | dolomite |
Na2O, % | 0.35 | 0.35 | 0.33 | 0.34 | 0.33 | 0.42 | 0.44 | 0.36 | 0.84 | 0.29 | 0.15 | 0.16 | 0.56 | 0.69 | 0.37 | 0.45 | albite |
K2O, % | 4.79 | 4.59 | 4.53 | 4.81 | 4.61 | 3.03 | 4.94 | 3.58 | 3.83 | 0.9 | 2.17 | 2.23 | 3.53 | 1.85 | 4.36 | 2.42 | illite, alunite |
TiO2, % | 0.92 | 1.00 | 0.99 | 0.91 | 0.93 | 0.78 | 0.97 | 0.81 | 0.89 | 0.31 | 0.39 | 0.81 | 0.94 | 1.07 | 0.91 | 0.74 | |
P2O5, % | 0.09 | 0.11 | 0.09 | 0.08 | 0.08 | 0.1 | 0.09 | 0.1 | 0.11 | 0.88 | 0.05 | 0.1 | 0.15 | 0.12 | 0.09 | 0.24 | |
MnO, % | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.04 | 0.05 | 0.15 | 0.08 | 0.61 | 0.03 | 0.13 | 0.03 | 0.04 | 0.06 | 0.15 | |
Cr2O3, % | 0.02 | 0.02 | 0.019 | 0.019 | 0.018 | 0.014 | 0.019 | 0.015 | 0.016 | 0.009 | 0.009 | 0.014 | 0.017 | 0.021 | 0.02 | 0.01 | |
LOI, % | 8.1 | 7.5 | 7.5 | 7.9 | 8.4 | 6.0 | 6.6 | 6.9 | 4.2 | 17.7 | 2.0 | 7.7 | 5.8 | 8.8 | 7.36 | 7.70 | |
Total | 99.83 | 99.83 | 99.83 | 99.85 | 99.85 | 99.88 | 99.83 | 99.86 | 99.86 | 99.8 | 99.91 | 99.86 | 99.85 | 99.83 | 99.85 | 99.85 | |
TOT/C, % | 1.92 | 1.47 | 1.4 | 1.99 | 2.23 | 0.64 | 1.08 | 1.12 | 0.10 | 4.83 | 0.05 | 1.34 | 0.05 | 0.08 | 1.48 | 1.08 | organic matter |
TOT/S, % | 0.04 | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.03 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.00 | pyrite |
Ba | 658 | 618 | 609 | 635 | 621 | 400 | 628 | 479 | 489 | 713 | 326 | 325 | 907 | 2844 | 581.00 | 934.00 | barite |
Ni | 73 | 69 | 65 | 89 | 76 | 41 | 84 | 53 | 57 | 119 | 25 | 55 | 64 | 69 | 68.75 | 64.83 | |
Sc | 20 | 21 | 20 | 21 | 20 | 12 | 18 | 13 | 15 | 11 | 8 | 14 | 16 | 18 | 18.13 | 13.67 | |
Be | 7 | 7 | 6 | 3 | 6 | 1 | 3 | 1 | 3 | 1 | 0 | 1 | 4 | 4 | 4.25 | 2.17 | |
Co | 26.2 | 19.4 | 18.1 | 28.3 | 26.7 | 10.8 | 42.5 | 19.9 | 16.4 | 55.9 | 17.6 | 15.0 | 24.4 | 26.5 | 23.99 | 25.97 | |
Cs | 14.2 | 11.9 | 12.1 | 10.9 | 11.9 | 4.8 | 12.2 | 6.9 | 9.9 | 3.4 | 2.2 | 4.8 | 7.2 | 6.4 | 10.61 | 5.65 | |
Ga | 28.8 | 29.0 | 29.5 | 27.5 | 27.3 | 19.8 | 28.8 | 20.6 | 20.4 | 7.7 | 7.2 | 19 | 22.8 | 29.2 | 26.41 | 17.72 | Al, coal |
Hf | 4.7 | 5.2 | 5.3 | 4.2 | 4.4 | 6.0 | 5.6 | 5.5 | 6.5 | 1.8 | 7.5 | 7.2 | 6.5 | 6.5 | 5.11 | 6.00 | |
Nb | 15.5 | 16.4 | 16.0 | 14.2 | 14.7 | 12.2 | 15.4 | 13.2 | 13.9 | 5.7 | 6.2 | 12.7 | 14.0 | 16.5 | 14.70 | 11.50 | |
Rb | 200.9 | 189.1 | 189.5 | 180.6 | 181.6 | 115.5 | 202.1 | 143.9 | 152.5 | 44.6 | 75.5 | 90.2 | 108.1 | 44.6 | 175.40 | 85.92 | affinity to illite |
Sn | 4 | 5 | 4 | 4 | 4 | 3 | 4 | 4 | 4 | 1 | 2 | 3 | 4 | 5 | 4.00 | 3.17 | |
Sr | 97.3 | 90.3 | 91.0 | 85.3 | 82.6 | 58.2 | 80.0 | 51.9 | 74.1 | 83.1 | 64.1 | 68.9 | 95.7 | 141.2 | 79.58 | 87.85 | Ba |
Ta | 1.0 | 1.3 | 1.1 | 0.7 | 0.9 | 0.9 | 1.0 | 0.9 | 1.1 | 0.4 | 0.4 | 1.0 | 1.1 | 1.3 | 0.98 | 0.88 | |
Th | 15.3 | 16.0 | 16.3 | 13.0 | 14.1 | 10.8 | 15.2 | 11.3 | 11.8 | 4.8 | 13.1 | 12.8 | 13.8 | 16.5 | 14.00 | 12.13 | |
U | 5.2 | 5.0 | 5.3 | 4.9 | 5.0 | 3.4 | 4.9 | 3.5 | 3.2 | 4.7 | 2.3 | 4.1 | 4.0 | 4.8 | 4.65 | 3.85 | |
V | 141 | 145 | 148 | 149 | 148 | 86 | 130 | 90 | 100 | 70 | 37 | 87 | 108 | 119 | 129.63 | 86.83 | affinity to illite |
W | 2.5 | 3.1 | 2.6 | 2.5 | 2.6 | 2.6 | 2.6 | 1.7 | 2.5 | 1.4 | 1.4 | 2.4 | 2.3 | 2.3 | 2.53 | 2.05 | |
Zr | 168.3 | 198.2 | 196.9 | 149.8 | 162.7 | 226.8 | 204.3 | 206.6 | 237.7 | 66.0 | 270.4 | 277.7 | 230.3 | 247.0 | 189.20 | 221.52 | zircon |
Y | 34.1 | 35.8 | 38.4 | 32.4 | 35.2 | 26.5 | 31.6 | 29.2 | 28.3 | 24.9 | 31.9 | 26.8 | 30.4 | 37.1 | 32.90 | 29.90 | |
La | 42.5 | 42.2 | 42.5 | 38.1 | 39.6 | 31.7 | 40.0 | 31.9 | 34.0 | 14.4 | 35.5 | 34.0 | 36.9 | 43.6 | 38.56 | 33.07 | |
Ce | 89.1 | 86.6 | 86.7 | 72.3 | 79.5 | 65.2 | 83.3 | 65.4 | 68.9 | 29.7 | 68.8 | 68.1 | 73.8 | 87.7 | 78.51 | 66.17 | |
Pr | 9.79 | 10.13 | 10.18 | 8.67 | 9.25 | 7.33 | 9.66 | 7.50 | 7.98 | 3.49 | 7.24 | 7.66 | 8.86 | 9.90 | 9.06 | 7.52 | |
Nd | 36.9 | 39.2 | 40.9 | 32.3 | 37.5 | 29.5 | 37.1 | 29.4 | 32.5 | 14.9 | 25.7 | 28.9 | 33.5 | 37.5 | 35.35 | 28.83 | |
Sm | 7.40 | 7.88 | 8.14 | 6.82 | 7.26 | 5.68 | 7.52 | 5.94 | 6.22 | 3.41 | 4.59 | 5.93 | 6.93 | 7.67 | 7.08 | 5.79 | |
Eu | 1.61 | 1.61 | 1.66 | 1.5 | 1.58 | 1.03 | 1.37 | 1.08 | 1.21 | 0.81 | 0.71 | 1.12 | 1.31 | 1.51 | 1.43 | 1.11 | |
Gd | 7.00 | 7.10 | 7.13 | 6.64 | 7.02 | 5.45 | 6.12 | 5.53 | 5.76 | 4.14 | 4.56 | 5.35 | 6.24 | 7.06 | 6.50 | 5.52 | |
Tb | 1.11 | 1.14 | 1.13 | 1.03 | 1.03 | 0.89 | 0.99 | 0.87 | 0.91 | 0.66 | 0.79 | 0.82 | 0.98 | 1.12 | 1.02 | 0.88 | |
Dy | 6.50 | 6.60 | 6.83 | 6.12 | 6.10 | 4.97 | 5.99 | 5.25 | 5.18 | 3.80 | 5.14 | 5.05 | 5.66 | 6.84 | 6.05 | 5.28 | |
Ho | 1.36 | 1.37 | 1.41 | 1.19 | 1.29 | 1.03 | 1.20 | 1.10 | 1.10 | 0.80 | 1.24 | 1.05 | 1.13 | 1.36 | 1.24 | 1.11 | |
Er | 3.88 | 4.03 | 4.22 | 3.55 | 3.79 | 2.71 | 3.63 | 3.28 | 2.99 | 2.43 | 3.80 | 3.09 | 3.39 | 4.16 | 3.64 | 3.31 | |
Tm | 0.55 | 0.56 | 0.58 | 0.51 | 0.54 | 0.40 | 0.52 | 0.45 | 0.44 | 0.31 | 0.53 | 0.46 | 0.46 | 0.56 | 0.51 | 0.46 | |
Yb | 3.65 | 3.73 | 3.67 | 3.50 | 3.68 | 2.70 | 3.44 | 3.02 | 2.83 | 1.77 | 3.56 | 2.74 | 3.00 | 3.71 | 3.42 | 2.94 | |
Lu | 0.57 | 0.55 | 0.55 | 0.44 | 0.52 | 0.39 | 0.49 | 0.44 | 0.42 | 0.27 | 0.55 | 0.44 | 0.48 | 0.58 | 0.49 | 0.46 | |
Mo | 0.6 | 0.3 | 0.2 | 0.6 | 0.5 | 0.3 | 1.1 | 0.6 | 0.3 | 4.3 | 0.4 | 0.4 | 0.2 | 0.1 | 0.53 | 0.95 | |
Cu | 33.4 | 34.8 | 33.5 | 40.3 | 37.1 | 19.1 | 33.0 | 20.8 | 19.9 | 8.2 | 10.7 | 25.0 | 32.2 | 30.6 | 31.50 | 21.10 | chalcopyrite |
Pb | 24.4 | 26.0 | 24.6 | 23.7 | 23.6 | 24.0 | 31.3 | 24.2 | 24.3 | 41.0 | 15.5 | 52.3 | 19.8 | 16.1 | 25.23 | 28.17 | |
Zn | 119 | 126 | 123 | 127 | 123 | 119 | 131 | 127 | 75 | 202 | 68 | 90 | 112 | 139 | 124.38 | 114.33 | ZnS |
Ni | 60.1 | 54.3 | 53.1 | 80.7 | 64.5 | 35.1 | 78.6 | 46.0 | 47.5 | 104.5 | 23.2 | 46.3 | 58.2 | 49.4 | 59.05 | 54.85 | |
As | 10.6 | 2.2 | 4.7 | 1.6 | 3.6 | 10.2 | 7.5 | 2.8 | 10.9 | 21.6 | 16.4 | 3.3 | 4.0 | 1.1 | 5.40 | 9.55 | affinity to hematite |
Cd | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.1 | 0.2 | 0.3 | 0.2 | 0.3 | 0.0 | 0.2 | 0.0 | 0.0 | 0.24 | 0.12 | |
Sb | 0.2 | 0.1 | 0.0 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.0 | 0.7 | 0.5 | 0.1 | 0.0 | 0.0 | 0.13 | 0.22 | |
Bi | 0.4 | 0.5 | 0.4 | 0.5 | 0.4 | 0.2 | 0.4 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.4 | 0.38 | 0.22 | |
Ag | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.03 | 0.00 | |
Au | 0.9 | 0.9 | 1.4 | 0.0 | 1.5 | 0.6 | 1.0 | 0.0 | 1.3 | 2.6 | 1.4 | 4.0 | 1.4 | 0.9 | 0.79 | 1.93 | |
Hg | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.00 | 0.02 | 0.05 | 0.05 | 0.08 | 0.03 | 0.03 | 0.04 | 0.02 | 0.05 | |
Tl | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.13 | 0.10 | clay minerals |
Se | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0.00 |
Sample No | Σ2/Σ1 (1) | CPI (2) | Pr/Ph (3) | Pr/C17 (4) | Ph/C18 (5) | Ts/(Tm+Ts) (6) | C30βα/ (αβ + βα) (7) | C30ββ/ (ββ + αβ+ βα) (8) | C31S/ (S + R) (9) | C30S/ (S + R) (10) | C29αββ/ (ααα + αββ) (11) | C29/C27 (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
N1 | 0.58 | 0.98 | 2.02 | 0.59 | 0.77 | - | - | - | - | 0.34 | 0.14 | 0.66 |
N2 | 0.56 | 1.98 | 1.06 | 0.83 | 1.20 | - | - | - | - | |||
N3 | 1.16 | 1.40 | 0.55 | 0.91 | 1.65 | - | - | - | - | 0.33 | 0.47 | 0.93 |
N4 | 0.38 | 1.66 | 2.01 | 0.61 | 0.61 | - | - | - | - | - | - | - |
N5 | 0.50 | 1.26 | 1.15 | 0.56 | 0.56 | - | - | - | - | - | - | - |
N6 | 0.44 | 1.85 | 0.64 | 0.81 | 0.97 | 0.35 | 0.39 | 0.17 | 0.37 | 0.35 | 0.28 | 1.01 |
N7 | 0.92 | 1.55 | 1.42 | 1.94 | 0.76 | 0.39 | 0.37 | 0.08 | 0.64 | - | - | - |
N8 | 0.56 | 1.25 | 0.28 | 0.64 | 1.12 | - | - | - | - | - | - | - |
S1 | 0.73 | 1.11 | 0.58 | 0.69 | 0.74 | 0.30 | 0.20 | 0.05 | 0.52 | 0.37 | 0.41 | 0.80 |
S2 | 0.19 | 1.65 | 0.38 | 0.32 | 0.67 | 0.34 | 0.19 | 0.12 | 0.54 | 0.38 | 0.41 | 0.63 |
S3 | 1.59 | 1.19 | 0.59 | 0.56 | 0.64 | 0.34 | 0.15 | 0.04 | 0.55 | 0.37 | 0.49 | 1.07 |
S4 | 1.38 | 1.14 | 0.62 | 0.75 | 0.84 | 0.24 | 0.00 | 0.00 | 0.48 | - | - | - |
S5 | 0.98 | 1.30 | 0.56 | 0.77 | 0.92 | 0.39 | 0.29 | 0.04 | 0.56 | 0.34 | 0.48 | 0.81 |
S6 | 0.97 | 1.42 | 0.59 | 0.78 | 0.91 | 0.53 | 0.39 | 0.09 | 0.54 | 0.36 | 0.48 | 0.72 |
average N | 0.64 | 1.49 | 1.14 | 0.86 | 0.95 | 0.37 | 0.38 | 0.12 | 0.50 | 0.34 | 0.30 | 0.87 |
average S | 0.97 | 1.30 | 0.55 | 0.64 | 0.79 | 0.36 | 0.20 | 0.06 | 0.53 | 0.36 | 0.45 | 0.81 |
MNR (1) | DNR (2) | TNR1 (3) | TNR2 (4) | TNR5 (5) | MPI-3 (6) | MPI-1 (7) | DMPR (8) | MPyR (9) | Rc (10) | MP/P (11) | DMP/P (12) | MPyI1 (13) | MPyI2 (14) | MFR (15) | MFI (16) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N1 | 2.84 | 9.92 | 2.32 | 1.12 | 0.26 | 2.17 | 1.40 | 0.63 | 0.57 | 1.24 | 1.27 | 0.50 | 1.13 | 0.89 | 0.12 | 0.76 |
N2 | 3.97 | 15.50 | 1.45 | 0.94 | 0.44 | 1.74 | 1.44 | 0.53 | 0.51 | 1.26 | 1.59 | 0.74 | 1.05 | 0.82 | 0.16 | 0.72 |
N3 | - | - | - | - | - | 1.43 | 1.05 | 0.75 | 0.52 | 1.03 | 1.17 | 0.52 | 0.92 | 0.56 | 0.15 | 0.61 |
N4 | - | - | - | - | - | 1.69 | 1.30 | 0.57 | 0.60 | 1.18 | 1.39 | 0.56 | 1.00 | 0.81 | 0.11 | 0.57 |
N5 | 0.88 | 2.28 | 1.69 | 1.00 | 0.52 | 1.97 | 1.33 | 0.54 | 0.58 | 1.20 | 1.28 | 0.58 | 1.23 | 0.82 | 0.09 | 0.59 |
N6 | 1.77 | 11.05 | 1.79 | 1.12 | 0.66 | 1.50 | 0.83 | 0.58 | 0.56 | 0.90 | 0.82 | 0.46 | 1.29 | 0.93 | 0.20 | 1.16 |
N7 | 1.97 | 4.27 | 2.21 | 1.20 | 0.51 | 2.18 | 1.15 | 0.53 | 0.53 | 1.09 | 0.98 | 0.32 | 1.08 | 0.73 | 0.19 | 1.06 |
N8 | - | 3.75 | 1.92 | 1.09 | 0.62 | 1.78 | 0.96 | 0.59 | 0.57 | 0.98 | 0.87 | 0.35 | 0.92 | 0.76 | 0.19 | 1.00 |
S1 | 2.11 | 2.82 | 1.04 | 0.85 | 0.48 | 1.35 | 0.76 | 0.42 | 0.44 | 0.86 | 0.79 | 0.74 | 0.55 | 0.86 | 0.51 | 1.92 |
S2 | - | - | - | - | - | 1.19 | 0.37 | 0.39 | 0.68 | 0.62 | 0.35 | 0.11 | 0.25 | 0.73 | - | - |
S3 | 1.45 | 2.41 | 1.02 | 0.87 | 0.53 | 0.99 | 0.57 | 0.39 | 0.58 | 0.74 | 0.68 | 0.49 | 0.47 | 0.89 | 0.56 | 2.58 |
S4 | 2.10 | 3.97 | 1.23 | 0.88 | 0.45 | 1.35 | 0.31 | 0.41 | 0.59 | 0.59 | 0.27 | 0.06 | 0.20 | 0.71 | 0.69 | 2.18 |
S5 | 1.18 | 1.00 | 0.58 | 1.23 | 0.73 | 0.45 | 0.50 | 0.84 | 0.80 | 0.59 | 0.49 | 0.75 | 0.56 | 2.21 | ||
S6 | 0.69 | 5.33 | 0.84 | 0.73 | 0.42 | 1.19 | 0.67 | 0.38 | 0.53 | 0.80 | 0.73 | 0.43 | 0.35 | 0.65 | 0.60 | 1.30 |
average N | 2.29 | 7.80 | 1.90 | 1.08 | 0.50 | 1.81 | 1.18 | 0.59 | 0.55 | 1.11 | 1.17 | 0.50 | 1.08 | 0.79 | 0.15 | 0.81 |
average S | 1.59 | 3.63 | 1.06 | 0.87 | 0.49 | 1.22 | 0.57 | 0.41 | 0.55 | 0.74 | 0.60 | 0.40 | 0.39 | 0.76 | 0.58 | 2.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciesielczuk, J.; Fabiańska, M.J.; Misz-Kennan, M.; Jura, D.; Filipiak, P.; Matuszewska, A. The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland. Minerals 2021, 11, 735. https://doi.org/10.3390/min11070735
Ciesielczuk J, Fabiańska MJ, Misz-Kennan M, Jura D, Filipiak P, Matuszewska A. The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland. Minerals. 2021; 11(7):735. https://doi.org/10.3390/min11070735
Chicago/Turabian StyleCiesielczuk, Justyna, Monika J. Fabiańska, Magdalena Misz-Kennan, Dominik Jura, Paweł Filipiak, and Aniela Matuszewska. 2021. "The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland" Minerals 11, no. 7: 735. https://doi.org/10.3390/min11070735
APA StyleCiesielczuk, J., Fabiańska, M. J., Misz-Kennan, M., Jura, D., Filipiak, P., & Matuszewska, A. (2021). The Disappearance of Coal Seams Recorded in Associated Gangue Rocks in the SW Part of the Upper Silesian Coal Basin, Poland. Minerals, 11(7), 735. https://doi.org/10.3390/min11070735