Depositional Model for the Early Triassic Braided River Delta and Controls on Oil Reservoirs in the Eastern Junggar Basin, Northwestern China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Methods
4. Results
4.1. Petrological Characteristics
4.1.1. Rock and Mineral Characteristics
4.1.2. Sedimentary Structures
4.1.3. Particle Size Characteristics
4.2. Physical Reservoir Properties
4.2.1. Pore Space Characterization
4.2.2. Porosity and Permeability
4.3. Sedimentary Systems
4.3.1. Types and Characteristics of Lithofacies
4.3.2. Lithofacies Association and Subenvironments
- (1)
- Braided river delta plain
- (a)
- Flood plain
- (b)
- Braided channel above lake level
- (c)
- Natural levee above lake level
- (2)
- Braided river delta front
- (a)
- Braided channel under lake level
- (b)
- Natural levee under lake level
- (c)
- Interdistributary bay
- (d)
- Mouth bar
- (3)
- Prodelta
- (a)
- Prodelta mud
- (b)
- Beach bar
5. Discussion
5.1. Depositional Model
5.2. Impacts on Reservoir
5.2.1. Influence of Detrital Particle Composition on Reservoir Quality
5.2.2. Influence of Lithofacies Types on Reservoir Quality
5.2.3. Influence of Depositional Model on Reservoir Quality
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moshood Olayiwola, A.; Marion Bamford, K. Depositional environment and reservoir characterization of the deep offshore Upper Miocene to Early Pliocene Agbada Formation, Niger delta, Nigeria. J. Afr. Earth Sci. 2019, 159, 103578. [Google Scholar] [CrossRef]
- Moridis, G.-J.; Collett, T.-S.; Dallimore, S.-R.; Satoh, T.; Hancock, S.; Brian Weatherill, B. Organic geochemistry of possible Middle Miocene–Pliocene source rocks in the west and northwest Nile Delta, Canada. J. Pet. Sci. Eng. 2004, 43, 219–238. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.-N.; Tao, S.-Z.; Gu, Z.-D. Formation Conditions and Distribution Rules of Large Lithologic Oil-Gas Fields with Low Abundance in China. Acta Geol. Sin. 2006, 80, 1739–1751. [Google Scholar]
- Ikiensikimama, S.-S.; Ogboja, O. Evaluation of empirically derived oil viscosity correlations for the Niger Delta crude. J. Pet. Sci. Eng. 2009, 69, 214–218. [Google Scholar] [CrossRef]
- Xu, Q.-S.; Wang, J.; Cao, Y.-C.; Wang, X.-T.; Xiao, J.; Muhammad, K. Characteristics and evolution of the late Permian “source-to-sink” system of the Beisantai area in the eastern Junggar Basin, NW China. J. Asian Earth Sci. 2019, 181, 103907. [Google Scholar] [CrossRef]
- Xue, X.-K.; Li, X.-B.; Wang, J.-H. Reservoir Formation Mode and Exploration Target in the Eastern Junggar Basin. Xinjiang Pet. Geol. 2000, 21, 462–535. [Google Scholar]
- Zhang, J.-S.; Hu, C.-L.; Tian, J.-J.; Wang, X.-C.; Miao, M.; Zhang, X.-C. Sedimentary model and hydrocarbon accmulation conditions of Dabasong uplift in Junggar Basin. Fault-Block Oil Gas Field 2021, 28, 631–635. [Google Scholar]
- Song, F. Research on Sedimentary Faeies and Reservoir Characteristic of Shaofanggou and Jiueaiyuanzi Formation of Bei80 Oil Field in the East of Junggar Basin. Master’s Thesis, Northwest University, Xi’an, China, 2007. [Google Scholar]
- Yu, C.-F.; Shen, J.-L. Analysis on Sedimentary Source of Middle Triassic Karamay Formation in Santai and Beisantai Area, Junggar Basin. Bull. Geol. Sci. Technol. 2011, 30, 51–54. [Google Scholar]
- Shao, G.-L.; Du, S.-K.; Tang, X.-L.; Zhao, G.-L.; Dai, L.; Zhang, D.-Q. Sedimentary system and reservoir characteristics of Lower-Middle Triassic in Beisantai swell, Junggar Basin. Lithol. Reserv. 2013, 25, 58–91. [Google Scholar]
- He, W.-J.; Liu, M.-Z.; Wu, J.-J.; Yang, T.-Y.; Zhu, K.; Li, X.; Yao, T.-Y. Forward modeling of sedimentation in the Triassic Jiucaiyuanzi Formation in Well Fu19 area of the Fudong slope. Junggar Basin. Petrol. Geol. Rec. Effic. 2018, 25, 7–15. [Google Scholar]
- Fu, Q. Structure Interpretation and Reservoirs Prediction in Triassic Jiucaiyuanzi Formation in Bei80 Well Region, East of the Junggar Basin. Master’s Thesis, China University of Geosciences, Beijing, China, 2009. [Google Scholar]
- Xie, N.; Wang, J.; Cao, Y.-C.; Xi, K.-L.; Chen, H.; Xiao, J. Reservoir characteristics and controlling factors of the Triassic Jiucaiyuanzi Formation in Fudong Slope Belt in Junggar Basin. J. Northeast. Pet. Univ. 2019, 43, 25–37. [Google Scholar]
- Yu, J.-W.; Ji, H.-C.; Shi, Y.-Q.; Wang, Z.-S.; Lu, B.-X.; Li, Y.; Wang, L.-Z. Diagenesis and Its Effects on the Reservoir Property of the Triassic Jiucaiyuanzi Formation of Fudong Slope, Junggar Basin. Northwest. Geol. 2021, 54, 99–110. [Google Scholar]
- Li, Y.; Cao, H.-X. Reservoir characteristics and main controlling factors analysis of Jiucaiyuanzi Formation in Fudong Slope of Junggar Basin. China Energy Environ. Prot. 2022, 44, 7–15. [Google Scholar]
- Miall, A.-D. Lithofacies types and vertical profile models in braided river deposits. Fluvial sedimentology. AAPG Memoir. 1977, 5, 597–604. [Google Scholar]
- Yuan, G.-H.; Cao, Y.-C.; Qiu, L.-W.; Chen, Z.-G. Genetic mechanism of high-quality reservoirs in Permian tight fan delta con-glomerates at the northwestern margin of the Junggar Basin, northwestern China. AAPG Bull. 2017, 101, 1995–2019. [Google Scholar] [CrossRef]
- Liu, D.-D.; Zhang, C.; Yang, D.-G.; Pan, Z.-K.; Kong, X.-Y.; Huang, Z.-X.; Wang, J.-B.; Song, Y. Petrography and geochemistry of the Lopingian (upper Permian)-Lower Triassic strata in the southern Junggar and Turpan basins, NW China: Implications for weathering, provenance, and palaeogeography. Int. Geol. Rev. 2019, 61, 1016–1036. [Google Scholar] [CrossRef]
- Cao, Y.-C.; Yuan, G.-H.; Wang, Y.-Z.; Xi, K.-L.; Kuang, L.-C.; Wang, X.-L.; Jia, X.-Y.; Song, Y. Genetic mechanisms of low permeability reservoirs of Qingshuihe Formation in Beisantai area, Junggar Basin. Acta Pet. Sin. 2012, 33, 758–771. [Google Scholar]
- Du, J.-H.; Zhi, D.-M.; Li, J.-Z.; Yang, D.-H.; Tang, Y.; Qi, X.-F.; Xiao, L.-X.; Wei, L.-Y. Major breakthrough of Well Gaotan 1 and exploration prospects of lower assemblage in southern margin of Junggar Basin, NW China. Pet. Explor. Dev. 2019, 46, 216–227. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, M.; Feng, X.-Q.; Ji, D.-S.; Zhou, L.; Liu, S.-X.; Zhang, L.-Y.; Tan, Y.-L.; Qian, Z.-L.; Yang, Z. Interpretation on tectonic stress and deformation of Sikeshu sag in Junggar Basin. Acta Pet. Sin. 2022, 43, 494–506. [Google Scholar]
- Lu, J.-G.; Wang, L.; Chen, S.-J.; Han, H.; Zhang, H.-X.; Huang, Y.-L.; He, X.-B.; Zhan, P.; Zhou, S.-Y.; Zhang, A.-R.; et al. Features and origin of oil degraded gas of Santai field in Junggar Basin, NW China. Pet. Explor. Dev. 2015, 42, 425–433. [Google Scholar] [CrossRef]
- Zheng, M.-L.; Tian, A.-J.; Yang, T.-Y.; He, W.-J.; Chen, L.; Wu, H.-S.; Ding, J. Structural evolution and hydrocarbon accumulation in the eastern Junggar Basin. Oil Gas Geol. 2018, 39, 907–917. [Google Scholar]
- Wei, Z.-D.; Li, S.-L.; Zhang, R.-J.; Yao, Z.-Q.; Yan, Y.-C.; Zhang, T.; Liu, Y.; Xu, W.-Q. Sedimentary Microfacies ldentification and Controlling Factors of the Toutunhe Formation (2nd Member) in the Eastern Fukang Slope, Junggar Basin. Geoscience 2022, 36, 709–718. [Google Scholar]
- Cui, Z.-H.; Tang, L.-J.; Wang, Z.-X. Basin-formation Evolution and Its Effect on Petroleum Formation in the Southern and Northern Margins of Bogda. Acta Sedimentol. Sin. 2007, 25, 59–64. [Google Scholar]
- Yang, R.-C.; Fan, A.-P.; Van Loon, A.-J.; Han, Z.-Z.; Wang, X.-P. Depositional and diagenetic controls on sandstone reservoirs with low porosity and low permeability in the eastern sulige gas field, China. Acta Geol. 2015, 88, 1513–1534. [Google Scholar] [CrossRef]
- Zhang, X. Sedimentary System Types of Middle-Upper Permian in Southeast Margin of Junggar Basin and Shale Petrography of Lucaogou Formation. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. [Google Scholar]
- He, K.; He, X.-Y.; Li, J.; Ceng, L.-X.; Xu, X.-L. Genetic analysis on low-resistive formation of bottom Triassic system in Bei 80 well field in east of Junggar Basin. Xinjiang Oil Gas 2007, 3, 7–10. [Google Scholar]
- Cohen, K.-M.; Finney, S.-C.; Gibbard, P.-L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Epis. J. Int. Geosci. 2013, 36, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Miall, A.-D. Architectural elements and bounding surfaces in fluvial deposits: Anatomy of the Kayenta Formation (lower Jurassic), Southwest Colorado. Sediment. Geol. 1988, 55, 233–262. [Google Scholar] [CrossRef]
- Folk, R.-L. Petrology of Sedimentary Rocks; Hemphill Publishing Company: Austin, TX, USA, 1980; pp. 1–184. [Google Scholar]
- Jiao, T.; Cui, Y.-M.; Wang, B.-T.; Lu, W.; Xie, Y.-R.; Zhao, X.-H.; Chen, Z.-W.; Zhang, H.-T. Research on sedimentary microfacies of Yan 9 oil-bearing formation of Yan’an Formation in Shijiawan-Baoziwan area. Fault-Block Oil Gas Field 2021, 28, 487–492. [Google Scholar]
- Jiang, Z.-X. Sedimentology, 2nd ed.; Petroleum Industry Press: Beijing, China, 2010; pp. 1–424. [Google Scholar]
- Collinson, J. Sedimentary Structures, 4th ed.; Dunedin Academic Press Ltd.: Edinburgh, UK, 2019; pp. 1–340. [Google Scholar]
- Olariu, C.; Steel, R.-J.; Petter, A.-L. Delta-front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah. AAPG Bull. 2010, 94, 819–845. [Google Scholar] [CrossRef]
- Zhu, X.-M.; Li, S.-L.; Wu, D.; Zhu, S.-F.; Dong, Y.-L.; Zhao, D.-N.; Wang, X.-L.; Zhang, Q. Sedimentary characteristics of shallow-water braided delta of the Jurassic, Junggar basin, Western China. J. Pet. Sci. Eng. 2017, 149, 591–602. [Google Scholar] [CrossRef]
- Olariu, C.; Bhattacharya, J.-P. Terminal distributary channels and delta front architecture of river-dominated delta systems. J. Sediment. Res. 2006, 76, 212–233. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.-W.; Jiang, Z.-X.; Quaye, J.-A.; Duan, Y.; Hu, C.-L.; Liu, C.; Han, C. Ichnology and sedimentology of the trace fossil-bearing fluvial red beds from the lowermost member of the Paleocene Funing Formation in the Jinhu Depression, Subei Basin, East China. Mar. Pet. Geol. 2018, 99, 393–415. [Google Scholar] [CrossRef]
- Hu, C.-L.; Zhang, Y.-F.; Wang, Z.-F.; Li, J.-J.; Zhang, H.-B. Shale Features and Exploration Prospect of Shale Gas in Longmaxi Formation in Northern Guizhou. Spec. Oil Gas Reserv. 2014, 21, 44–47. [Google Scholar]
- Hu, C.-L.; Zhang, Y.-F.; Jiang, Z.-X.; Wang, M.; Gao, Y.; Bai, Y.-M. Morphologic changes in modern onshore beach bar of Poyang Lake under wind and wave actions. Acta Pet. Sin. 2015, 12, 1543–1552. [Google Scholar]
- Hu, C.-L.; Zhang, Y.-F.; Feng, D.-Y.; Wang, M.; Jiang, Z.-X.; Jiao, C.-W. Flume tank simulation on depositional mechanism and controlling factors of beach-bar reservoirs. J. Earth Sci. 2017, 28, 1153–1162. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Hu, C.-L.; Wang, M.; Ma, M.-F.; Jiang, Z.-X. A quantitative sedimentary model for the modern lacustrine beach bar (Qinghai Lake, Northwest China). J. Paleolimnol. 2018, 59, 279–296. [Google Scholar] [CrossRef]
- Hu, C.-L.; Zhang, Y.-F.; Jiang, Z.-X.; Wang, M.; Han, C. Development of large-scale sand bodies in a fault-bounded lake basin: Pleistocene-Holocene Poyang Lake, Southern China. J. Paleolimnol. 2021, 65, 407–428. [Google Scholar] [CrossRef]
- Arnaud, B.; Hugo, B.; Gilles, E. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 239, 374–395. [Google Scholar]
- Zhang, T.; Zhang, C.-M.; Fan, T.-L.; Zhang, L.; Zhu, R.; Tao, J.Y.; Li, M.-S. Cyclostratigraphy of Lower Triassic terrestrial successions in the Junggar Basin, northwestern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 539, 109493. [Google Scholar] [CrossRef]
- Ashraf, A.-R.; Sun, G.; Wang, X.; Uhl, D.; Mosbrugger, V. The Triassic-Jurassic boundary in the Junggar Basin (NW-China) Preliminary palynostratigraphic results. Acta Palaeobot. Suppl. 1999, 2, 85–89. [Google Scholar]
- Ouyang, S.; Norris, G. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwestern China. Rev. Palaeobot. Palynol. 1999, 106, 1–56. [Google Scholar] [CrossRef]
- Shi, Y.-Q.; Wang, J.; Zhang, G.-Y.; Liu, M.; Xiang, Z.-B.; Ji, H.-C. Tectono-climatic-sedimentary evolution and coupling mechanism during the middle Permian-early Triassic in Bogda area, Xinjiang. J. Palaeogeogr. 2021, 23, 389–404. [Google Scholar]
- Ford, C.-C.; Dirstein, J.-K.; Stanley, A.-J. Prospectivity insights from automated pre-interpretation processing of open-file 3d seismic data: Characterising the late triassic mungaroo formation of the carnarvon basin, north west shelf of australia. APPEA J. 2015, 55, 15–34. [Google Scholar] [CrossRef]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Xia, C.-C.; Zhu, H.-T.; Yang, X.-H.; Huang, Z.; Zhuang, W.-J.; Cao, X.-R.; Zeng, Z.-W. Large-scale shallow braided river delta depositional characteristics and depositional pattern of Mungaroo Formation in Late Triassic, North Carnarvon Basin, Australia. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 2983–2991. [Google Scholar]
- Heldreich, G.; Redfern, J.; Legler, B.; Gerdes, K.; Williams, B.-P.-J. Challenges in characterizing subsurface paralic reservoir geometries: A detailed case study of the Mungaroo Formation, North West shelf, Australia. Geol. Soc. Lond. Spec. Publ. 2017, 444, 59–108. [Google Scholar] [CrossRef]
- Zeng, Z.-W.; Zhu, H.-T.; Yang, X.-H.; Zeng, H.-L.; Hu, X.-L.; Xia, C.-C. The Pangaea Megamonsoon records: Evidence from the Triassic Mungaroo Formation, Northwest Shelf of Australia. Gondwana Res. 2019, 69, 1–24. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Song, C.-C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Han, C.-C.; Tian, J.-J.; Hu, C.-L.; Liu, H.-L.; Wang, W.-F.; Huan, Z.-P.; Feng, S. Lithofacies characteristics and their controlling effects on reservoirs in buried hills of metamorphic rocks: A case study of late Paleozoic units in the Aryskum depression, South Turgay Basin, Kazakhstan. J. Pet. Sci. Eng. 2020, 191, 107137. [Google Scholar] [CrossRef]
- Marchand, A.-M.-E.; Apps, G.; Li, W.-G.; Rotzien, J.-R. Depositional processes and impact on reservoir quality in deepwater Paleogene reservoirs, US Gulf of Mexico. AAPG Bull. 2015, 99, 1635–1648. [Google Scholar] [CrossRef]
- Daniel, B.; Kane, I.-A.; Pont’en, A.-S.; Flint, S.-S.; Hodgson, D.-M.; Barrett, B.-J. Spatial variability in depositional reservoir quality of deep-water channel-fill and lobe deposits. Mar. Pet. Geol. 2018, 98, 97–115. [Google Scholar]
- Haile, B.-G.; Klausen, T.-G.; Czarniecka, U.; Xi, K.; Jahren, J.; Hellevang, H. How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard. Mar. Pet. Geol. 2018, 92, 519–546. [Google Scholar] [CrossRef]
- Li, Y.; Fan, A.; Yang, R.; Sun, Y.; Lenhardt, N. Sedimentary facies control on sandstone reservoir properties: A case study from the Permian Shanxi Formation in the southern Ordos Basin, central China. Mar. Pet. Geol. 2021, 129, 105083. [Google Scholar] [CrossRef]
- Crundwell, F.-K. The mechanism of dissolution of minerals in acidic and alkaline solutions: Part II Application of a new theory to silicates, aluminosilicates and quartz. Hydrometallurgy 2014, 149, 265–275. [Google Scholar] [CrossRef]
- Jin, L.; Wang, G.-W.; Wang, S.; Cao, J.-T.; Li, M.; Pang, X.-J.; Zhou, Z.-L.; Fan, X.-Q.; Dai, Q.-Q.; Yang, L.; et al. Review of diagenetic facies in tight sandstones: Diagenesis, diagenetic minerals, and prediction via well logs. Earth-Sci. Rev. 2018, 185, 234–258. [Google Scholar]
- Garzanti, E. Petrographic classification of sand and sandstone. Earth-Sci. Rev. 2019, 192, 545–563. [Google Scholar] [CrossRef]
- Li, Y.; Fan, A.-P.; Yang, R.-C.; Sun, Y.-P.; Lenhardt, N. Braided deltas and diagenetic control on tight sandstone reservoirs: A case study on the Permian Lower Shihezi Formation in the southern Ordos Basin (central China). Sediment. Geol. 2022, 435, 106156. [Google Scholar] [CrossRef]
Lithofacies | Lithology | Depositional Interpretation |
---|---|---|
Massive bedding mudstone | Red-brown, gray mudstone | Flooding plain deposits in common exposed environments of red massive mudstone |
Parallel bedding siltstone | Gray siltstone | It reflects that the hydrodynamic force is strong, and the water is shallow and fast |
Wavy bedding sandstone | Gray fine- to medium- grained sandstone | It was washed and transformed by waves |
Plane bedding sandstone | Green medium-grained sandstone | It is formed by downstream or lateral accretion |
Trough bedding sandstone | Green and brown coarse-grained sandstone | Downcutting of river course |
Massive bedding sandstone | Green, brown sandstone with unequal particles, small amount of gravel | Sediments accumulate rapidly, and water kinetic energy is strong |
Massive bedding gravel | Gray conglomerate | Bottom scour, gravel deposition |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Hu, C.; Dan, S.; Han, C.; Liu, Z. Depositional Model for the Early Triassic Braided River Delta and Controls on Oil Reservoirs in the Eastern Junggar Basin, Northwestern China. Minerals 2022, 12, 1409. https://doi.org/10.3390/min12111409
Tang Y, Hu C, Dan S, Han C, Liu Z. Depositional Model for the Early Triassic Braided River Delta and Controls on Oil Reservoirs in the Eastern Junggar Basin, Northwestern China. Minerals. 2022; 12(11):1409. https://doi.org/10.3390/min12111409
Chicago/Turabian StyleTang, Yani, Chenlin Hu, Shunhua Dan, Changcheng Han, and Ziming Liu. 2022. "Depositional Model for the Early Triassic Braided River Delta and Controls on Oil Reservoirs in the Eastern Junggar Basin, Northwestern China" Minerals 12, no. 11: 1409. https://doi.org/10.3390/min12111409
APA StyleTang, Y., Hu, C., Dan, S., Han, C., & Liu, Z. (2022). Depositional Model for the Early Triassic Braided River Delta and Controls on Oil Reservoirs in the Eastern Junggar Basin, Northwestern China. Minerals, 12(11), 1409. https://doi.org/10.3390/min12111409