Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings
Abstract
:1. Introduction
1.1. Geological Background
1.2. Geophysical Methods in Mining
2. Methods and Instruments
2.1. FEMR Methods and Instrument
2.2. SRfr Method and Instrument Used
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yakubchuk, A.; Nikishin, A. Norilsk-Talnakh Cu-Ni-PGE deposits: A revised tectonic model. Miner. Depos. 2004, 39, 125–142. [Google Scholar] [CrossRef]
- Khramov, I.V. Maslovsky Ore Deposit of Norilsk Region: Morphology and Internal Structure of a Layered Intrusion. Mosc. Univ. Geol. Bull. 2010, 65, 134–137. [Google Scholar] [CrossRef]
- Starostin, V.I.; Sorokhtin, O.G. A new interpretation for the origin of the Norilsk type PG-Cu-Ni sulfide deposits. Geosci. Front. 2011, 2, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Krivolutskaya, N.A.; Tolstykh, N.; Kedrovskaya, T.B.; Naumov, K.; Kubrakova, I.; Tyutyunnik, O.A.; Gongalsky, B.; Kovalchuk, E.N.; Magazina, L.; Bychkova, Y.V.; et al. World-Class PGE-Cu-Ni Talnakh Deposit: New Data on the Structure and Unique Mineralization of the South-Western Branch. Minerals 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Krivolutskaya, N.A.; Gongalsky, B.I.; Kedrovskaya, T.B.; Kubrakova, I.V.; Tyutyunnik, O.A.; Chikatueva, V.Y.; Bychkova, Y.V.; Magazina, L.; Kovalchuk, E.N.; Yakushev, A.I.; et al. Geology of the western flanks of the Oktyabr’skoe deposit, Norilsk district, Russia: Evidence of a closed magmatic system. Miner. Depos. 2019, 54, 611–630. [Google Scholar] [CrossRef]
- Sereda, E.; Belyatsky, B.; Krivolutskaya, N. Geochemistry and Geochronology of Southern Norilsk Intrusions, SW Siberian Traps. Minerals 2020, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.J.; Malitch, K.N.; Yudovskaya, M.A. Introduction to a Special Issue on the Norilsk-Talnakh Ni-Cu-Platinum Group Element Deposits. Econ. Geol. 2020, 115, 1157–1172. [Google Scholar] [CrossRef]
- Freidin, A.M.; Tapsiev, A.P.; Uskov, V.A.; Nazarova, L.A.; Zaporozhtsev, A.A.; Sergunin, M.P. Re-equipment and development of mining method at Zapolyarny mine. J. Min. Sci. 2007, 43, 290–299. [Google Scholar] [CrossRef]
- Lamzin, A.N.; Arshavskii, V.V.; Tapsiev, A.P.; Samorodov, B.N.; Zhilkina, A.F. Features of extensive deposit mining in the Oktyabrsky mine. J. Min. Sci. 2002, 38, 134–139. [Google Scholar] [CrossRef]
- Uskov, V.A.; Eremenko, A.A.; Darbinyan, T.P.; Marysyuk, V.P. Geodynamic Hazard Assessment for Tectonic Structures in Underground Mining of North Ore Bodies in the Oktyabrsky Deposit. J. Min. Sci. 2019, 55, 77–87. [Google Scholar] [CrossRef]
- Oparin, V.N.; Tapsiev, A.P.; Vostrikov, V.I.; Usol’tseva, O.M.; Arshavskii, V.V.; Zhilkina, A.F.; Babkin, E.A.; Samorodov, B.N.; Nagovitsyn, Y.N.; Smolov, K.V. On possible causes of the increase in seismic activity of minefields in the Oktyabrsky and Taimyrsky mines of the Norilsk deposit in 2003. Part IV: Influence of undermining of overlying rock masses. J. Min. Sci. 2005, 41, 1–5. [Google Scholar] [CrossRef]
- Gauthier, P.T.; Blewett, T.A.; Garman, E.R.; Schlekat, C.E.; Middleton, E.T.; Suominen, E.; Crémazy, A. Environmental risk of nickel in aquatic Arctic ecosystems. Sci. Total Environ. 2021, 797, 148921. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, K.; Fedorova, L.; Fedorov, M. Prospecting and Evaluation of Underground Massive Ice by Ground-Penetrating Radar. Geosciences 2020, 10, 274. [Google Scholar] [CrossRef]
- Kutepova, N.A. Engineering-Geological Substantiation of the Forecast of Hydro-Geomechanical Processes While Mining Operations. Ph.D. Thesis, Saint Petersburg Mining University, St. Petersburg, Russia, 2010. [Google Scholar]
- Brady, B.; Brown, E. Rock Mechanics for Underground Mining; Kluwer Academic Publishers: New York, NY, USA, 2004. [Google Scholar]
- Bacha, S.; Mu, Z.; Javed, A.; Al Faisal, S. A Review of Rock Burst’s Experimental Progress, Warning, Prediction, Control, and Damage Potential Measures. J. Min. Environ. 2020, 11, 31–48. [Google Scholar] [CrossRef]
- Bazaluk, O.; Petlovanyi, M.; Lozynskyi, V.; Zubko, S.; Sai, K.; Saik, P. Sustainable Underground Iron Ore Mining in Ukraine with Backfilling Worked-Out Area. Sustainability 2021, 3, 834. [Google Scholar] [CrossRef]
- Oparin, V.N.; Vostrikov, V.I.; Usol’tseva, O.M.; Mulev, S.N.; Rodionova, E. Assessment of Rockburst Hazard Based on the Data of Mine Seismology. Procedia Eng. 2017, 191, 795–801. [Google Scholar] [CrossRef]
- Hudyma, M.; Potvin, Y.H. An Engineering Approach to Seismic Risk Management in Hardrock Mines. Rock Mech. Rock Eng. 2010, 43, 891–906. [Google Scholar] [CrossRef]
- Muraviev, E.I.; Karelin, V.N.; Shabarov, A.N. Problems and ways of developing the mineral resource base of the Polar Branch of OJSC MMC Norilsk Nickel. Notes Min. Inst. 2012, 198, 126–130. [Google Scholar]
- Shabarov, A.N.; Kutepova, N.A.; Kutepov, Y.I. Engineering-geological security of mining operations in water-saturated massifs. Notes Min. Inst. 2012, 197, 197–202. [Google Scholar]
- He, J.; Dou, L.; Gong, S.; Li, J.; Ma, Z. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Int. J. Rock Mech. Min. Sci. 2017, 93, 46–53. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.K.; Martin, C.D. Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int. J. Rock Mech. Min. Sci. 2001, 38, 1135–1145. [Google Scholar] [CrossRef]
- Lockner, D.A.; Byerlee, J.D.; Kuksenko, V.S.; Ponomarev, A.V.; Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 1991, 350, 39. [Google Scholar] [CrossRef]
- Frid, V.; Rabinovitch, A.; Bahat, D. Earthquake forecast based on its nucleation stages and the ensuing electromagnetic radiations. Phys. Lett. A 2020, 384, 126102. [Google Scholar] [CrossRef]
- Ding, H.-H.; Jiang, W.-W. Application of Geophysical Methods in Tunnel Exploration. In Proceedings of the 5th International Conference on Civil, Architectural and Hydraulic Engineering, Zhuhai, China, 30–31 July 2016; Atlantis Press: Zhuhai, China, 2016; pp. 188–192. [Google Scholar]
- Li, S.; Li, S.; Zhang, Q.; Xue, Y.; Liu, B.; Su, M.; Wang, Z.; Wang, S. Predicting geological hazards during tunnel construction. J. Rock Mech. Geotech. Eng. 2010, 2, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Hatherly, P. Overview on the application of geophysics in coal mining. Int. J. Coal Geol. 2013, 114, 74–84. [Google Scholar] [CrossRef]
- Fallon, G.N.; Fullagar, P.K.; Sheard, S.N. Application of geophysics in metalliferous mines. Aust. J. Earth Sci. 1997, 44, 391–409. [Google Scholar] [CrossRef]
- Logacheva, V.M. Development of an Underground-Field Electrometric method for predicting the State of Flooded Coal-Rock Massifs of the Moscow Basin. Ph.D. Thesis, Tula State University, Tula, Russia, 2010. [Google Scholar]
- Prostov, S.M. Substantiation and Development of Methods for Geoelectric Control of the Parameters of Fracturing and Cementation of Rocks around Workings. Ph.D. Thesis, Kemerovo State University, Kemerovo, Russia, 1996. [Google Scholar]
- Lei, Y. Application of Geophysical Technique in the Coal Mining. iJOE 2015, 11, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. ISRM Suggested Methods for land geophysics in rock engineering. Int. J. Rock Mech. Min. Sci. 2004, 41, 885–914. [Google Scholar] [CrossRef]
- Takahashi, T.; Takeuchi, T.; Sassa, K. ISRM Suggested Methods for borehole geophysics in rock engineering. Int. J. Rock Mech. Min. Sci. 2006, 43, 337–368. [Google Scholar] [CrossRef]
- Lehmann, B.; Orlowsky, D.; Misiek, R. Exploration of Tunnel Alignment using Geophysical Methods to Increase Safety for Planning and Minimizing Risk. Rock Mech. Rock Eng. 2010, 43, 105–116. [Google Scholar] [CrossRef]
- Guy, E.D.; Nolen-Hoeksema, R.C.; Daniels, J.J.; Lefchik, T. High-resolution SH-wave seismic reflection investigations near a coal mine-related roadway collapse feature. J. Appl. Geophys. 2003, 54, 51–70. [Google Scholar] [CrossRef]
- Isiaka, A.I.; Durrheim, R.J.; Manzi, M.S.D. High-Resolution Seismic Reflection Investigation of Subsidence and Sinkholes at an Abandoned Coal Mine Site in South Africa. Pure Appl. Geophys. 2019, 176, 1531–1548. [Google Scholar] [CrossRef]
- Genzwill, D.J.; Brehm, R. High-resolution seismic reflections in potash mines. Geophysics 1993, 58, 741–748. [Google Scholar] [CrossRef]
- Luxbacher, K.; Westman, E.; Swanson, P.; Karfakis, M. Three-dimensional time-lapse velocity tomography of an underground longwall panel. Int. J. Rock Mech. Min. Sci. 2008, 45, 478–485. [Google Scholar] [CrossRef]
- Dou, L.; Chen, T.; Gong, S.; He, H.; Zhang, S. Rockburst hazard determination by using computed tomography technology in deep workface. Saf. Sci. 2012, 50, 736–740. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Cao, A.; Gong, S.; Li, Z. Application of seismic velocity tomography in underground coal mines: A case study of Yima mining area Henan, China. J. Appl. Geophys. 2014, 109, 140–149. [Google Scholar] [CrossRef]
- Cao, A.; Dou, L.; Cai, W.; Gong, S.; Liu, S.; Zhao, Y. Tomographic imaging of high seismic activities in underground island longwall face. Arab. J. Geosci. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Czarny, R.; Pilecki, Z.; Nakata, N.; Pilecka, E.; Krawiec, K.; Harba, P.; Barnaś, M. 3D S-wave velocity imaging of a subsurface disturbed by mining using ambient seismic noise. Eng. Geol. 2019, 251, 115–127. [Google Scholar] [CrossRef]
- Li, X.; Gong, S.; Dou, L.; Chai, Y. Detection of stress redistribution in a complex isolated coal pillar with active SVT technology. Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Chlebowski, D.; Burtan, Z. Geophysical and analytical determination of overstressed zones in exploited coal seam: A case study. Acta Geophys. 2021, 69, 701–771. [Google Scholar] [CrossRef]
- Chlebowski, D.; Burtan, Z. Mining-Induced Seismicity during Development Works in Coalbeds in the Context of Forecasts of Geomechanical Conditions. Energies 2021, 14, 6675. [Google Scholar] [CrossRef]
- Goodfellow, S.D.; Young, R.P.A. Laboratory acoustic emission experiment under in situ conditions. Geophys. Res. Lett. 2014, 41, 3422–3430. [Google Scholar] [CrossRef]
- Golebiowski, T.; Zogala, B.; Mendecki, M.J.; Malysa, T. The utility of rock-bolts as long electrodes for underground ERT surveys in mine-settings. J. Appl. Geophys. 2018, 155, 122–130. [Google Scholar] [CrossRef]
- Bharti, A.K.; Prakash, A.; Verma, A.; Singh, K.K.K. Assessment of hydrological condition in strata associated with old mine working during and post-monsoon using electrical resistivity tomography: A case study. Bull. Eng. Geol. Environ. 2021, 80, 5159–5166. [Google Scholar] [CrossRef]
- Chen, T.; Wang, X.; Mukerji, T. In situ identification of high vertical stress areas in an underground coal mine panel using seismic refraction tomography. Int. J. Coal Geol. 2015, 149, 55–66. [Google Scholar] [CrossRef]
- Paul, A.; Mallika, V.; Murthy, S.R.; Prakash, A.; Singh, A.K. Estimation of rock load in development workings of underground coal mines a modified RMR approach. Curr. Sci. 2018, 114, 2167–2174. [Google Scholar] [CrossRef]
- Lin, P.; Wei, P.; Wang, C.; Kang, S.; Wang, X. Effect of rock mechanical properties on electromagnetic radiation mechanism of rock fracturing. J. Rock Mech. Geotech. Eng. 2021, 13, 798–810. [Google Scholar] [CrossRef]
- Wang, E.; He, X.; Liu, X.; Li, Z.; Wang, C.; Xiao, D. A non-contact mine pressure evaluation method by electromagnetic radiation. J. Appl. Geophys. 2011, 75, 338–344. [Google Scholar] [CrossRef]
- Frid, V.; Vozoff, K. Electromagnetic radiation induced by mining rock failure. Intern. J. Coal Geol. 2005, 64, 57–65. [Google Scholar] [CrossRef]
- Frid, V. Electromagnetic radiation method for rock and gas outburst forecast. J. Appl. Geoph. 1998, 38, 97–104. [Google Scholar] [CrossRef]
- Frid, V. Rock-burst hazard forecast by electromagnetic radiation excited by rock fracture. J. Rock Mech. Rock Eng. 1997, 30, 229–236. [Google Scholar] [CrossRef]
- Frid, V.; Shabarov, A.; Proskurjakov, V. Formation of electromagnetic radiation in coal stratum. J. Min. Sci. 1992, 28, 139–145. [Google Scholar] [CrossRef]
- Frid, V.; Wang, E.Y.; Mulev, S.N.; Li, D.X. The Fracture Induced Electromagnetic Radiation—Approach and Protocol for the Stress State Assessment for Mining. Geotech. Geol. Eng. 2021, 4, 3285–3291. [Google Scholar] [CrossRef]
- Frid, V.; Shabarov, A. Modern principles of nondestructive stress monitoring in mine workings—Overview. In Eurock 2018. Geomechanics and Geodynamics of Rock Masses; Taylor & Francis Group: London, UK, 2018; pp. 513–518. ISBN 978-1-138-61645-5. [Google Scholar]
- Das, S.; Mallik, J.; Bandyopadhyay, K.; Das, A. Evaluation of maximum horizontal near-surface stress (SHmax) azimuth and its distribution along Narmada-Son Lineament, India by geogenic Electromagnetic Radiation (EMR) technique. J. Geodyn. 2020, 133, 101672. [Google Scholar] [CrossRef]
- Das, S.; Mallik, J.; Dhankhar, S.; Suthar, N.; Singh, A.K.; Dutta, V.; Gupta, U. Application of Fracture Induced Electromagnetic Radiation (FEMR) technique to detect landslide-prone slip planes. Nat. Hazards 2020, 101, 505–535. [Google Scholar] [CrossRef]
- Frid, V.; Mulev, S. Rock stress assessment based on the fracture induced electromagnetic radiation. In Eurock 2018. Geomechanics and Geodynamics of Rock Massesl; Taylor & Francis Group: London, UK, 2018; pp. 505–512. ISBN 978-1-138-61645-5. [Google Scholar]
- Yakovitskaya, G.E. Development of a Method and Measuring Instruments for Diagnosing Critical States of Rocks Based on Electromagnetic Emission. Ph.D. Thesis, Novosibirsk State University, Novosibirsk, Russia, 2007. [Google Scholar]
- Mulev, S.N.; Starnikov, V.N.; Romanevich, O.A. The current stage in the development of the geophysical method for recording natural electromagnetic radiation (EEMI). Coal 2019, 10, 1123. [Google Scholar]
- Romanevich, K.V. Development of Criteria and Methods for Finding Geodynamic Processes by Electromagnetic Radiation Near Shallow Workings. Ph.D. Thesis, IPCON RAN, Moscow, Russia, 2015. [Google Scholar]
- Rabinovitch, A.; Bahat, D.; Frid, V. Similarity and dissimilarity of electromagnetic radiation from carbonate rocks under compression, drilling and blasting. Intern J. Rock Mech. Min. Sci. 2002, 39, 125–129. [Google Scholar] [CrossRef]
- Bahat, D.; Rabinovitch, A.; Frid, V. Fracture characterization of chalk in uniaxial and triaxial tests by rock mechanics, fractographic and electromagnetic methods. J. Struct. Geol. 2001, 23, 1531–1547. [Google Scholar] [CrossRef]
- Qiu, L.; Zhu, Y.; Song, D.; He, X.; Wang, W.; Liu, Y.; Xiao, Y.; Wei, M.; Shan Yin, S.; Liu, Q. Study on the Nonlinear Characteristics of EMR and AE during Coal Splitting Tests. Minerals 2022, 12, 108. [Google Scholar] [CrossRef]
- Contoyiannis, Y.; Potirakis, S.M.; Eftaxias, K.; Contoyianni, L. Tricritical crossover in earthquake preparation by analyzing preseismic electromagnetic emissions. J. Geodyn. 2015, 84, 40–54. [Google Scholar] [CrossRef]
Profile Length, m | Profile 2 | Profile Length, m | Profile 3 | Profile Length, m | Profile 4 | Profile Length, m | Profile 5 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | ||||
10 | 6.25 | 0.0344 | 0 | 7.08 | 0.0335 | 20 | 9.01 | 0.0091 | 15 | 9.01 | 0.0104 |
15 | 6.30 | 0.0318 | 5 | 6.99 | 0.0316 | 25 | 9.03 | 0.0103 | 20 | 9.12 | 0.0092 |
20 | 6.47 | 0.0325 | 10 | 6.55 | 0.0372 | 30 | 9.04 | 0.0099 | 25 | 9.02 | 0.0097 |
25 | 6.33 | 0.0345 | 15 | 6.53 | 0.0343 | 35 | 8.99 | 0.0100 | 30 | 9.01 | 0.0104 |
30 | 6.33 | 0.0322 | 20 | 6.54 | 0.0318 | 40 | 9.11 | 0.0099 | 35 | 9.02 | 0.0105 |
35 | 6.49 | 0.0343 | 25 | 6.13 | 0.0335 | 45 | 8.97 | 0.0103 | 40 | 9.06 | 0.0100 |
40 | 6.26 | 0.0332 | 30 | 6.16 | 0.0352 | 50 | 9.06 | 0.0102 | 45 | 9.05 | 0.0108 |
45 | 6.18 | 0.0345 | 35 | 6.26 | 0.0332 | 55 | 8.96 | 0.0098 | 50 | 9.00 | 0.0099 |
50 | 6.24 | 0.0316 | 40 | 6.32 | 0.0332 | 60 | 9.03 | 0.0100 | 55 | 9.05 | 0.0109 |
55 | 6.23 | 0.0350 | 45 | 6.09 | 0.0334 | 65 | 8.99 | 0.0107 | 60 | 9.05 | 0.0096 |
60 | 6.17 | 0.0317 | 50 | 6.15 | 0.0356 | 70 | 9.05 | 0.0104 | 65 | 9.00 | 0.0104 |
65 | 6.24 | 0.0347 | 55 | 6.20 | 0.0349 | 75 | 9.02 | 0.0096 | 70 | 8.99 | 0.0100 |
70 | 6.26 | 0.0375 | 60 | 6.12 | 0.0319 | 80 | 9.00 | 0.0112 | 75 | 9.04 | 0.0098 |
75 | 6.28 | 0.0381 | 65 | 6.11 | 0.0337 | 85 | 8.98 | 0.0101 | 80 | 9.03 | 0.0103 |
80 | 6.45 | 0.0324 | 70 | 6.16 | 0.0321 | 90 | 9.05 | 0.0110 | 85 | 8.97 | 0.0105 |
85 | 6.43 | 0.0315 | 75 | 6.16 | 0.0336 | 95 | 9.05 | 0.0086 | 90 | 9.02 | 0.0100 |
90 | 6.16 | 0.0345 | 80 | 6.17 | 0.0330 | 100 | 9.01 | 0.0104 | 95 | 9.04 | 0.0108 |
95 | 6.21 | 0.0337 | 85 | 6.26 | 0.0324 | 105 | 9.02 | 0.0106 | 100 | 9.04 | 0.0101 |
100 | 6.27 | 0.0341 | 90 | 6.11 | 0.0333 | 110 | 9.01 | 0.0097 | 105 | 9.02 | 0.0105 |
105 | 6.26 | 0.0333 | 95 | 6.22 | 0.0334 | 115 | 9.01 | 0.0101 | 110 | 9.06 | 0.0105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniliev, S.; Danilieva, N.; Mulev, S.; Frid, V. Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings. Minerals 2022, 12, 609. https://doi.org/10.3390/min12050609
Daniliev S, Danilieva N, Mulev S, Frid V. Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings. Minerals. 2022; 12(5):609. https://doi.org/10.3390/min12050609
Chicago/Turabian StyleDaniliev, Sergei, Natali Danilieva, Sergei Mulev, and Vladimir Frid. 2022. "Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings" Minerals 12, no. 5: 609. https://doi.org/10.3390/min12050609
APA StyleDaniliev, S., Danilieva, N., Mulev, S., & Frid, V. (2022). Integration of Seismic Refraction and Fracture-Induced Electromagnetic Radiation Methods to Assess the Stability of the Roof in Mine-Workings. Minerals, 12(5), 609. https://doi.org/10.3390/min12050609