Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Phyto-Stabilization Experiment
2.3. Biochar-Stabilization Experiment
2.4. Coupled Stabilization Experiment
2.5. Sample Collection, Handling, and Analyses
3. Results
3.1. Heavy Metal Fractionation in the Phyto-Stabilization Experiment
3.2. Heavy Metal Fractionation in the Biochar-Stabilization Experiment
3.3. Heavy Metal Fractionation in the Coupled Stabilization Experiment
4. Discussion
4.1. Evaluation of Different Stabilization Means
4.2. Relationship between Change of Fraction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Z.C.; Guo, Z.H.; Peng, C.; Liu, X.; Zhou, Z.R.; Xiao, X.Y. Heavy metals in soils around non-ferrous smelteries in China: Status, health risks and control measures. Environ. Pollut. 2021, 282, 117038. [Google Scholar] [CrossRef]
- Balabanova, B.; Stafilov, T.; Sajn, R.; Baeeva, K. Characterisation of Heavy Metals in Lichen Species Hypogymnia physodes and Evernia prunastri due to Biomonitoring of Air Pollution in the Vicinity of Copper Mine. Int. J. Environ. Res. 2012, 6, 779–792. [Google Scholar]
- Heo, J.H.; Chung, Y.; Park, J.H. Recovery of iron and removal of hazardous elements from waste copper slag via a novel aluminothermic smelting reduction (ASR) process. J. Clean. Prod. 2016, 137, 777–787. [Google Scholar] [CrossRef]
- Sun, W.; Ji, B.; Khoso, S.A.; Tang, H.H.; Liu, R.Q.; Wang, L.; Hu, Y.H. An extensive review on restoration technologies for mining tailings. Environ. Sci. Pollut. Res. 2018, 25, 33911–33925. [Google Scholar] [CrossRef]
- Xue, S.G.; Zhu, F.; Kong, X.F.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016, 23, 1120–1132. [Google Scholar] [CrossRef]
- Yáez-Espinosa, L.; Briones-Gallardo, R.; Flores, J.; del Castillo, E.A. Effect of heavy metals on seed germination and seedling development of Nama aff. stenophylla collected on the slope of a mine tailing dump. Int. J. Phytoremediat. 2020, 22, 1448–1461. [Google Scholar] [CrossRef]
- Ramirez, M.G.V.; Barrantes, J.A.G.; Thomas, E.; Miranda, L.A.G.; Pillaca, M.; Peramas, L.D.T.; Tapia, L.R.B. Heavy metals in alluvial gold mine spoils in the peruvian amazon. Catena 2020, 189, 104454. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Y.; Cobbina, S.J.; Mao, G.H.; Xu, H.; Zhang, Z.; Yang, L.Q. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; Gopalakrishnan, A.V. Heavy metal and metalloid-induced reproductive toxicity. Environ. Toxicol. Pharm. 2022, 92, 103859. [Google Scholar] [CrossRef]
- Okoye, E.A.; Bocca, B.; Ruggieri, F.; Ezejiofor, A.N.; Nwaogazie, I.L.; Domingo, J.L.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Metal pollution of soil, plants, feed and food in the Niger Delta, Nigeria: Health risk assessment through meat and fish consumption. Environ. Res. 2021, 198, 111273. [Google Scholar] [CrossRef]
- Gong, Y.Y.; Zhao, D.Y.; Wang, Q.L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef]
- Ke, X.; Zhang, F.J.; Zhou, Y.; Zhang, H.J.; Guo, G.L.; Tian, Y. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching. Chemosphere 2020, 255, 126690. [Google Scholar] [CrossRef]
- Seshadri, B.; Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Sanderson, P.; Wang, H.; Currie, L.D.; Tsang, D.C.W.; Ok, Y.S.; Kim, G. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 2017, 184, 197–206. [Google Scholar] [CrossRef]
- Ahmad, M.; Lee, S.S.; Lee, S.E.; Al-Wabel, M.I.; Tsang, D.C.W.; Ok, Y.S. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J. Soil Sediment 2017, 17, 717–730. [Google Scholar] [CrossRef]
- Egeric, M.; Smiciklas, I.; Dojcinovic, B.; Sikiric, B.; Jovic, M.; Sljivic-Ivanovic, M.; Cakmak, D. Interactions of acidic soil near copper mining and smelting complex and waste-derived alkaline additives. Geoderma 2019, 352, 241–250. [Google Scholar] [CrossRef]
- Voglar, G.E.; Lestan, D. Solidification/stabilisation of metals contaminated industrial soil from former Zn smelter in Celje, Slovenia, using cement as a hydraulic binder. J. Hazard. Mater. 2010, 178, 926–933. [Google Scholar] [CrossRef]
- Xia, M.; Muhammad, F.; Zeng, L.H.; Li, S.; Huang, X.; Jiao, B.Q.; Shiau, Y.; Li, D.W. Solidification/stabilization of lead-zinc smelting slag in composite based geopolymer. J. Clean. Prod. 2019, 209, 1206–1215. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. A review. Environ. Chem. Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Clemente, R.; Walker, D.J.; Pardo, T.; Martinez-Fernandez, D.; Bernal, M.P. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions. J. Hazard. Mater. 2012, 223, 63–71. [Google Scholar] [CrossRef]
- Padmavathiamma, P.K.; Li, L.Y. Rhizosphere Influence and Seasonal Impact on Phytostabilisation of Metals-A Field Study. Water Air Soil Pollut. 2012, 223, 107–124. [Google Scholar] [CrossRef]
- Zhang, J.W.; Cao, X.R.; Yao, Z.Y.; Lin, Q.; Yan, B.B.; Cui, X.Q.; He, Z.L.; Yang, X.E.; Wang, C.W.; Chen, G.Y. Phytoremediation of Cd-contaminated farmland soil via various Sedum alfredii-oilseed rape cropping systems: Efficiency comparison and cost-benefit analysis. J. Hazard. Mater. 2021, 419, 126489. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of soil heavy metal pollution in China: Spatial distribution, primary sources, and remediation alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Xiao, W.D.; Ye, X.Z.; Zhu, Z.Q.; Zhang, Q.; Zhao, S.P.; Chen, D.; Gao, N.; Hu, J. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Ecotox. Environ. Safe 2021, 208, 111506. [Google Scholar] [CrossRef]
- Liu, M.H.; Che, Y.Y.; Wang, L.Q.; Zhao, Z.J.; Zhang, Y.C.; Wei, L.L.; Xiao, Y. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of Lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils. Chemosphere 2019, 235, 32–39. [Google Scholar] [CrossRef]
- Islam, M.S.; Magid, A.S.I.A.; Chen, Y.L.; Weng, L.P.; Arafat, M.Y.; Khan, Z.H.; Ma, J.; Li, Y.T. Arsenic and cadmium load in rice tissues cultivated in calcium enriched biochar amended paddy soil. Chemosphere 2021, 283, 131102. [Google Scholar] [CrossRef]
- Wen, E.G.; Yang, X.; Chen, H.B.; Shaheen, S.M.; Sarkar, B.; Xu, S.; Song, H.; Liang, Y.; Rinklebe, J.; Hou, D.Y.; et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. J. Hazard. Mater. 2021, 407, 124344. [Google Scholar] [CrossRef]
- Xiao, F.F.; Cheng, J.H.; Cao, W.; Yang, C.; Chen, J.F.; Luo, Z.F. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars. J. Colloid Interface Sci. 2019, 540, 579–584. [Google Scholar] [CrossRef]
- Chen, H.Y.; Yang, X.J.; Liu, Y.L.; Lin, X.M.; Wang, J.J.; Zhang, Z.; Li, N.; Li, Y.T.; Zhang, Y.L. KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers. Waste Manag. 2021, 130, 82–92. [Google Scholar] [CrossRef]
- Yadaei, H.; Beyki, M.H.; Shemirani, F.; Nouroozi, S. Ferrofluid mediated chitosan@mesoporous carbon nanohybrid for green adsorption/preconcentration of toxic Cd(II): Modeling, kinetic and isotherm study. React. Funct. Polym. 2018, 122, 85–97. [Google Scholar] [CrossRef]
- Khan, S.; Chao, C.; Waqas, M.; Arp, H.P.H.; Zhu, Y.G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L.) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013, 47, 8624–8632. [Google Scholar] [CrossRef]
- Galvez, A.; Sinicco, T.; Cayuela, M.L.; Mingorance, M.D.; Fornasier, F.; Mondini, C. Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric. Ecosyst. Environ. 2012, 160, 3–14. [Google Scholar] [CrossRef]
- Lehmann, J. A handful of carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Rees, F.; Germain, C.; Sterckeman, T.; Morel, J.L. Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 2015, 395, 57–73. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhang, Z.Q.; Guo, Z.Y.; Li, R.H.; Mahar, A.; Awasthi, M.K.; Wang, P.; Shen, F.; Kumbhar, F.; Sial, T.A.; et al. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotox. Environ. Saf. 2017, 145, 528–538. [Google Scholar] [CrossRef]
- Ju, X.C.; Cheng, M.J.; Xia, Y.H.; Quo, F.Q.; Tian, Y.J. Support Vector Regression and Time Series Analysis for the Forecasting of Bayannur’s Total Water Requirement. Procedia Comput. Sci. 2014, 31, 523–531. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.G.; Zhang, H.Z.; Zeng, G.M.; Huang, B.R.; Li, X. Heavy metal accumulation in plants on Mn mine tailings. Pedosphere 2006, 16, 131–136. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Liu, Q.Z.; Chen, S.N.; Zhang, S.J.; Wang, M.; Munir, M.A.M.; Feng, Y.; He, Z.L.; Yang, X.E. Roles of exogenous plant growth regulators on phytoextraction of Cd/Pb/Zn by Sedum alfredii Hance in contaminated soils. Environ. Pollut. 2022, 293, 118510. [Google Scholar] [CrossRef]
- Lin, L.J.; Zhu, X.Y.; Jiang, C.; Luo, H.L.; Wang, H.; Zhang, Y.J.; Hong, F.Z. The potential use of n-alkanes, long-chain alcohols and long-chain fatty acids as diet composition markers: Indoor validation with sheep and herbage species from the rangeland of Inner Mongolia of China. Animal 2012, 6, 449–458. [Google Scholar] [CrossRef]
- Wang, P.; Shen, F.; Xu, Y.Q.; Wang, X.J.; Huang, H.; Li, R.H.; Liu, T.; Guo, D.; Du, J.; Guo, Z.Y.; et al. Sustainable biochar effects on the remediation of contaminated soil: A 2-crop season site practice near a lead-zinc smelter in Feng County, China. Environ. Pollut. 2022, 302, 119095. [Google Scholar] [CrossRef]
- Garau, M.; Sizmur, T.; Coole, S.; Castaldi, P.; Garau, G. Impact of Eisenia fetida earthworms and biochar on potentially toxic element mobility and health of a contaminated soil. Sci. Total Environ. 2022, 806, 151255. [Google Scholar] [CrossRef]
- Tang, B.; Xu, H.P.; Song, F.M.; Ge, H.G.; Chen, L.; Yue, S.Y.; Yang, W.S. Effect of biochar on immobilization remediation of Cd center dot contaminated soil and environmental quality. Environ. Res. 2022, 204, 111840. [Google Scholar] [CrossRef]
- Huang, C.Y.; Huang, H.L.; Qin, P.F. In-situ immobilization of copper and cadmium in contaminated soil using acetic acid-eggshell modified diatomite. J. Environ. Chem. Eng. 2020, 8, 103931. [Google Scholar] [CrossRef]
- Fathollahzadeh, H.; Kaczala, F.; Bhatnagar, A.; Hogland, W. Speciation of metals in contaminated sediments from Oskarshamn Harbor, Oskarshamn, Sweden. Environ. Sci. Pollut. Res. 2014, 21, 2455–2464. [Google Scholar] [CrossRef]
- Zhao, L.S.; Yan, Y.; Yu, R.L.; Hu, G.R.; Cheng, Y.F.; Huang, H.B. Source apportionment and health risks of the bioavailable and residual fractions of heavy metals in the park soils in a coastal city of China using a receptor model combined with Pb isotopes. Catena 2020, 194, 151255. [Google Scholar] [CrossRef]
- Lan, J.R.; Zhang, S.S.; Dong, Y.Q.; Li, J.H.; Li, S.Y.; Feng, L.; Hou, H.B. Stabilization and passivation of multiple heavy metals in soil facilitating by pinecone-based biochar: Mechanisms and microbial community evolution. J. Hazard. Mater. 2021, 420, 126588. [Google Scholar] [CrossRef]
- Capozzi, F.; Sorrentino, M.C.; Caporale, A.G.; Fiorentino, N.; Giordano, S.; Spagnuolo, V. Exploring the phytoremediation potential of Cynara cardunculus: A trial on an industrial soil highly contaminated by heavy metals. Environ. Sci. Pollut. Res. 2020, 27, 9075–9084. [Google Scholar] [CrossRef]
- Kozdroj, J.; van Elsas, J.D. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol. Biochem. 2000, 32, 1405–1417. [Google Scholar] [CrossRef]
- Swęd, M.; Potysz, A.; Duczmal-Czernikiewicz, A.; Siepak, M.; Bartz, W. Bioweathering of Zn–Pb-bearing rocks: Experimental exposure to water, microorganisms, and root exudates. Appl. Geochem. 2021, 130, 104966. [Google Scholar] [CrossRef]
- Gao, R.L.; Hu, H.Q.; Fu, Q.L.; Li, Z.H.; Xing, Z.Q.; Ali, U.; Zhu, J.; Liu, Y.H. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry. Sci. Total Environ. 2020, 730, 139119. [Google Scholar] [CrossRef]
- Luo, M.K.; Lin, H.; He, Y.H.; Zhang, Y. The influence of corncob-based biochar on remediation of arsenic and cadmium in yellow soil and cinnamon soil. Sci. Total Environ. 2020, 717, 137014. [Google Scholar] [CrossRef]
- Fan, J.J.; Cai, C.; Chi, H.F.; Reid, B.J.; Coulon, F.; Zhang, Y.C.; Hou, Y.W. Remediation of cadmium and lead polluted soil using thiol-modified biochar. J. Hazard. Mater. 2020, 388, 122037. [Google Scholar] [CrossRef]
- Wu, J.Z.; Li, Z.T.; Huang, D.; Liu, X.M.; Tang, C.X.; Parikh, S.J.; Xu, J.M. A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. J. Hazard. Mater. 2020, 387, 122010. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, S.H.; Jeon, E.K.; Kim, D.H.; Tsang, D.C.W.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef]
- Tak, H.I.; Ahmad, F.; Babalola, O.O. Advances in the Application of Plant Growth-Promoting Rhizobacteria in Phytoremediation of Heavy Metals. Rev. Environ. Contam. Toxicol. 2013, 223, 33–52. [Google Scholar]
Plant Species | As (ppm) | Cu (ppm) | Pb (ppm) | Zn (ppm) | |
---|---|---|---|---|---|
aerial part | Phragmites | 0 | 59.12 | 10.81 | 42.68 |
Achnatherum splendens | 0.70 | 218.53 | 22.65 | 72.82 | |
Chinese small iris | 2.66 | 85.22 | 31.37 | 39.61 | |
root | Phragmites | 2.90 | 110.70 | 45.59 | 34.46 |
Achnatherum splendens | 0.22 | 721.67 | 36.94 | 147.45 | |
Chinese small iris | 0 | 44.66 | 19.12 | 35.83 |
Sampling Date | Biochar-Stabilization | Coupled Stabilization | Phyto-Stabilization | ||||||
---|---|---|---|---|---|---|---|---|---|
Unit A-1 | Unit A-2 | Unit A-3 | Unit B-1 | Unit B-2 | Unit B-3 | Unit C-1 | Unit C-2 | Unit C-3 | |
0 days | 7.69 | 7.67 | 7.15 | 7.42 | 7.33 | 7.47 | 5.5 | 6.76 | 7.01 |
30 days | 7.4 | 7.45 | 7.44 | 7.4 | 6.34 | 7.19 | 7.3 | 7.45 | 7.64 |
60 days | 7.71 | 7.63 | 7.54 | 7.56 | 6.73 | 7.44 | 7.08 | 7.37 | 7.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Teng, Y.; Zheng, N.; Liu, L.; Yue, W.; Zhai, Y.; Yang, J. Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia. Minerals 2022, 12, 702. https://doi.org/10.3390/min12060702
Liu H, Teng Y, Zheng N, Liu L, Yue W, Zhai Y, Yang J. Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia. Minerals. 2022; 12(6):702. https://doi.org/10.3390/min12060702
Chicago/Turabian StyleLiu, Hong, Yanguo Teng, Nengzhan Zheng, Linmei Liu, Weifeng Yue, Yuanzheng Zhai, and Jie Yang. 2022. "Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia" Minerals 12, no. 6: 702. https://doi.org/10.3390/min12060702
APA StyleLiu, H., Teng, Y., Zheng, N., Liu, L., Yue, W., Zhai, Y., & Yang, J. (2022). Field Experiments of Phyto-Stabilization, Biochar-Stabilization, and Their Coupled Stabilization of Soil Heavy Metal Contamination around a Copper Mine Tailing Site, Inner Mongolia. Minerals, 12(6), 702. https://doi.org/10.3390/min12060702