Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Heat Treatment Experiments
2.3. Analytical Methods
3. Results
3.1. Microscopic Examination
3.2. Electron Microprobe Analysis
3.3. LA-ICP-MS Analysis
3.4. Infrared Spectra
3.5. Raman Spectra
3.6. UV-Visible Spectra
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Zhu, Z.; Hui, L.; Zhang, Z.; Zhang, Y.; Li, G. Al2O3: Cr3+ microfibers by hydrothermal route: Luminescence properties. Mater. Res. Bull. 2012, 47, 2332–2335. [Google Scholar] [CrossRef]
- Achiwawanich, S.; Brack, N.; James, B.D.; Liesegang, J. Surface analysis of heat-treated Mong Hsu rubies. Appl. Surf. Sci. 2006, 252, 8646–8650. [Google Scholar] [CrossRef]
- McClure, S.F.; Smith, C.P.; Wang, W.; Hall, M. Identification and durability of lead glass-filled rubies. Gems Gemol. 2006, 42, 22–34. [Google Scholar] [CrossRef]
- Tengchaisri, T.; Bootkul, D.; Intarasiri, S.; Tippawan, U.; Kuznetsov, A.Y. Coloration changes in natural ruby induced by oxygen ion implants correlated with cathodoluminescence data. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2021, 502, 29–36. [Google Scholar] [CrossRef]
- Achiwawanich, S.; James, B.D.; Liesegang, J. XPS and ToF-SIMS analysis of natural rubies and sapphires heated in an inert (N2) atmosphere. Appl. Surf. Sci. 2007, 253, 6883–6891. [Google Scholar] [CrossRef]
- Swain, S.; Pradhan, S.K.; Jeevitha, M.; Acharya, P.; Debata, M.; Dash, T.; Nayak, B.B.; Mishra, B.K. Microwave heat treatment of natural ruby and its characterization. Appl. Phys. A 2016, 122, 224. [Google Scholar] [CrossRef]
- Wanthanachaisaeng, B.; Sripoonjan, T.; Lhuaamporn, T.; Nilhud, N.; Toaree, S.; Leelawatanasuk, T. Alteration of inclusion in heated Mozambique ruby. In Proceedings of the 5th GIT International Gem and Jewelry Conference (GIT 2016), Pattaya, Thailand, 9–13 November 2016. [Google Scholar]
- Pardieu, V.; Saeseaw, S.; Detroyat, S.; Raynaud, V.; Sangsawong, S.; Bhusrisom, T.; Engniwat, S.; Muyal, J. “Low Temperature” Heat Treatment of Mozambique Ruby—Results Report; GIA: Carlsbad, CA, USA, 16 April 2015; pp. 1–34. [Google Scholar]
- Peretti, A.; Schmetzer, K.; Bernhardt, H.J.; Mouawad, F. Rubies from Mong Hsu. Gems Gemol. 1995, 31, 2–26. [Google Scholar] [CrossRef]
- Emmett, J.L.; Scarratt, K.; McClure, S.F.; Moses, T.; Douthit, T.R.; Hughes, R.; Novak, S.; Shigley, J.E.; Wang, W.; Bordelon, O.; et al. Beryllium Diffusion of ruby and sapphire. Gems Gemol. 2003, 39, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S. Identification of deposit types of natural corundum by PIXE. Nucl. Instrum. Methods Phys. Res. B 2014, 331, 108–112. [Google Scholar] [CrossRef]
- Palke, A.C.; Saeseaw, S.; Renfro, N.D.; Sun, Z.; McClure, S.F. Geographic Origin Determination of Ruby. Gems Gemol. 2019, 55, 580–612. [Google Scholar] [CrossRef]
- Sripoonjan, T.; Wanthanachaisaeng, B.; Leelawatanasuk, T. Phase transformation of epigenetic iron staining: Indication of low-temperature heat treatment in Mozambique ruby. J. Gemol. 2016, 35, 156–161. [Google Scholar] [CrossRef]
- Monarumit, N.; Lhuaamporn, T.; Satitkune, S.; Wongkokua, W. Effect of Beryllium Heat Treatment in Synthetic Ruby. J. Appl. Spectrosc. 2019, 86, 486–492. [Google Scholar] [CrossRef]
- Stone-Sundberg, J.; Thomas, T.; Sun, Z.; Guan, Y.; Cole, Z.; Equall, R.; Emmett, J.L. Accurate Reporting of Key Trace Elements in Ruby and Sapphire Using Matrix-Matched Standards. Gems Gemol. 2017, 53, 438–451. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A.; Fallick, A.E.; Pignatelli, I.; Pardieu, V. Ruby Deposits: A review and geological classification. Minerals 2020, 10, 597. [Google Scholar] [CrossRef]
- Wu, G.H.; Zhou, H.Y.; Zhang, H.S.; Ling, H.F.; Ma, W.; Zhao, H.Q.; Chen, J.L.; Liu, J.H. New index of ferromanganese crusts reflecting oceanic environmental oxidation. Sci. China Ser. D Earth Sci. 2007, 50, 371–384. [Google Scholar] [CrossRef]
- Calligaro, T.; Poirot, J.P.; Querre, P. Trace element finger printing of jewelry rubies by external beam PIXE. Beam Interact. Mater. At. 1999, 150, 628–634. [Google Scholar]
- Yang, T.; Sun, X.; Shi, G.; Li, D.; Zhou, H. The genetic linkage between the Yuanjiang marble-hosted ruby deposit and Cenozoic tectonic evolution of the Ailao Shan-Red River shear zone (Southwest China). J. Asian Earth Sci. 2019, 177, 38–47. [Google Scholar] [CrossRef]
- Giuliani, G.; Groat, L.A. Geology of corundum and emerald gem deposits: A review. Gems Gemol. 2019, 55, 464–489. [Google Scholar] [CrossRef] [Green Version]
- Cartier, L.E. Ruby and sapphire from Marosely Madagascar. J. Gemol. 2009, 31, 171–179. [Google Scholar] [CrossRef]
- Saeseaw, S.; Kongsomart, B.; Atikarnsakul, U.; Khowpong, C.; Vertriest, W.; Soonthorntantikul, W. Update on “Low-Temperature” Heat Treatment of Mozambican Ruby: A Focus on Inclusions and FTIR Spectroscopy; GIA: Carlsbad, CA, USA, 30 April 2018; pp. 1–47. [Google Scholar]
- Pardiu, V.; Thanachakaphad, J. Rubies reportedly from Mozambique. Gems Gemol. 2012, 48, 149–150. [Google Scholar]
- Beran, A.; Rossman, G.R. OH in naturally occurring corundum. Eur. J. Miner. 2006, 18, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Sinha, J.K.; Mishra, P.K. Spectroscopic and microstructural studies of ruby gemstones of Sinapalli, Odisha. J. Geol. Soc. India 2015, 86, 657–662. [Google Scholar] [CrossRef]
- Hara, Y.; Nicol, M. Raman spectra and the structure of rutile at high pressures. Phys. Status Solidi 2010, 94, 317–322. [Google Scholar] [CrossRef]
- Yang, T.; Sun, X.; Shi, G.; Liu, Y. LA-ICP-MS U–Pb Dating of Cenozoic Rutile Inclusions in the Yuanjiang Marble-Hosted Ruby Deposit, Ailao Shan Complex, Southwest China. Minerals 2021, 11, 433. [Google Scholar] [CrossRef]
- Ruan, H.D.; Frost, R.L.; Kloprogge, J.T. Comparison of Raman spectra in characterizing gibbsite, bayerite, diaspore and boehmite. J. Raman Spectrosc. 2001, 32, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Mernagh, T.P. Use of the laser Raman microprobe for discrimination amongst feldspar minerals. J. Raman Spectrosc. 2010, 22, 453–457. [Google Scholar] [CrossRef]
- Chopelas, A. Single crystal Raman spectra of forsterite, fayalite, and monticellite. Am. Mineral. 1991, 76, 1101–1109. [Google Scholar]
- Karampelas, S.; Wrle, M.; Hunger, K.; Lanz, H. Micro-Raman spectroscopy on two chalices from the Benedictine Abbey of Einsiedeln: Identification of gemstones. J. Raman Spectrosc. 2012, 43, 1833–1838. [Google Scholar] [CrossRef]
- Raghavan, S.; Imbrie, P.K.; Crossley, W.A. Spectral Analysis of R-lines and Vibronic Sidebands in the Emission Spectrum of Ruby Using Genetic Algorithms. Appl. Spectrosc. 2008, 62, 759. [Google Scholar] [CrossRef]
- Gaudry, E.; Cabaret, D.; Sainctavit, P.; Brouder, C.; Mauri, F.; Goulon, J.; Rogalev, A. Structural relaxations around Ti, Cr and Fe impurities in Al2O3; Probed by X-ray absorption near-edge structure combined with first-principles calculations. J. Phys. Condens. Matter 2005, 17, 5467–5480. [Google Scholar] [CrossRef] [Green Version]
- Sorokina, E.S.; Litvinenko, A.K.; Hofmeister, W.; Häger, T.; Jacob, D.E.; Nasriddinov, Z.Z. Rubies and Sapphires from Snezhnoe, Tajikistan. Gems Gemol. 2015, 51, 160–175. [Google Scholar] [CrossRef]
- Garnier, V.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Dubessy, J.; Banks, D.; Vinh, H.Q.; Lhomme, T.; Maluski, H.; Pêcher, A.; et al. Marble hosted ruby deposits from Central and Southeast Asia: Towards a new genetic model. Ore Geol. Rev. 2008, 34, 169–191. [Google Scholar] [CrossRef]
- Groat, L.A.; Giuliani, G.; Stone-Sundberg, J.; Renfro, N.D.; Sun, Z. A review of analytical methods used in geographic origin determination of gemstones. Gems Gemol. 2019, 55, 512–535. [Google Scholar] [CrossRef] [Green Version]
- Majumdar, A.S.; Mathew, G. Distinct Ruby Suite at Sardapur, Orissa: A spectroscopic investigation. J. Geol. Soc. India 2012, 80, 715–722. [Google Scholar] [CrossRef]
- Sorokina, E.S.; Hofmeister, W.; Häger, T.; Mertz-Kraus, R.; Buhre, S.; Saul, J.M. Morphological and chemical evolution of corundum (ruby and sapphire): Crystal ontogeny reconstructed by EPMA, LA-ICPMS, and Cr3+ Raman mapping. Am. Mineral. 2016, 101, 2716–2722. [Google Scholar] [CrossRef]
- Garnier, V.; Ohnenstetter, D.; Giuliani, G.; Blanc, P.; Schwarz, D. Trace-element contents and cathodoluminescence of “Trapiche” rubies from Mong Hsu (Myanmar): Geological significance. Miner. Petrol. 2002, 76, 179–193. [Google Scholar] [CrossRef]
Label | Color | Transparency | Weight (ct) | Specific Gravity (SG) | Appearance |
---|---|---|---|---|---|
MD-1 | pink | slightly transparent | 15.27 | 3.98 | crack |
MD-2 | pink | slightly transparent | 11.26 | 3.97 | cleavage, crack |
MD-3 | pink | slightly transparent | 11.26 | 3.98 | cleavage, crack |
MD-4 | pink | slightly transparent | 11.26 | 3.97 | cleavage, crack |
MD-5 | pink | slightly transparent | 11.26 | 3.98 | cleavage, crack |
MD-6 | pink | slightly transparent | 11.26 | 3.97 | cleavage, crack |
MS-1 | purple red | opaque | 18.54 | 3.97 | cleavage |
MS-2 | purple red | opaque | 14.35 | 3.98 | cleavage |
MS-3 | purple red | opaque | 10.02 | 3.96 | cleavage |
MS-4 | purple red | opaque | 8.14 | 3.97 | yellow |
MS-5 | purple red | opaque | 12.38 | 3.98 | cleavage |
MS-6 | purple red | opaque | 11.21 | 3.96 | cleavage |
MS-7 | purple red | opaque | 16.54 | 3.98 | crack |
MS-8 | purple red | opaque | 13.75 | 3.98 | crack |
Label | Al2O3 | Na2O | Cr2O3 | SiO2 | TiO2 | MgO | FeO | MnO | NiO |
---|---|---|---|---|---|---|---|---|---|
MD-1 | 99.489 | 0.010 | 0.156 | 0.021 | 1.078 | 0.007 | 0.664 | 0.012 | 0.041 |
MD-2 | 99.424 | 0.033 | 0.174 | 0.032 | 0.559 | 0.011 | 0.567 | 0.019 | 0.010 |
MD-3 | 98.809 | 0.079 | 0.241 | 0.015 | 1.675 | 0.009 | 0.551 | 0.021 | 0.029 |
Average | 99.241 | 0.041 | 0.190 | 0.023 | 1.104 | 0.009 | 0.594 | 0.017 | 0.027 |
MD-H-1 | 98.308 | 0.019 | 0.271 | 0.005 | 0.559 | 0.012 | 0.616 | 0.016 | 0.062 |
MD-H-2 | 99.275 | 0.020 | 0.179 | 0.002 | 0.24 | 0.013 | 0.420 | 0.010 | 0.024 |
MD-H-3 | 98.632 | 0.016 | 0.376 | 0.010 | 1.397 | 0.014 | 0.481 | 0.019 | 0.029 |
Average | 98.738 | 0.018 | 0.275 | 0.006 | 0.732 | 0.013 | 0.506 | 0.015 | 0.038 |
MS-1 | 98.925 | 0.026 | 0.080 | 0.012 | 1.665 | 0.006 | 0.364 | 0.009 | 0.017 |
MS-2 | 98.782 | 0.012 | 0.102 | 0.031 | 1.678 | 0.012 | 0.392 | 0.022 | 0.019 |
MS-3 | 98.216 | 0.024 | 0.093 | 0.021 | 2.477 | 0.016 | 0.301 | 0.021 | 0.018 |
Average | 98.641 | 0.021 | 0.092 | 0.021 | 1.940 | 0.011 | 0.352 | 0.017 | 0.018 |
MS-H-1 | 99.201 | 0.031 | 0.117 | 0.017 | 1.397 | 0.021 | 0.349 | 0.019 | 0.021 |
MS-H-2 | 98.956 | 0.021 | 0.132 | 0.029 | 1.518 | 0.009 | 0.382 | 0.015 | 0.025 |
MS-H-3 | 99.251 | 0.012 | 0.121 | 0.004 | 1.199 | 0.017 | 0.247 | 0.019 | 0.140 |
Average | 99.136 | 0.021 | 0.123 | 0.017 | 1.371 | 0.016 | 0.326 | 0.018 | 0.062 |
Label | Cr (ppm) | Fe (ppm) | Ti (ppm) | Mg (ppm) | Ga (ppm) | V (ppm) |
---|---|---|---|---|---|---|
MD-1 | 842 | 3230 | 71.8 | 46.1 | 89.7 | 15.4 |
MD-2 | 880 | 3250 | 66.1 | 44.9 | 91.1 | 16.9 |
MD-3 | 838 | 3178 | 65.0 | 43.5 | 80.3 | 16.0 |
Average | 853 | 3219 | 67.6 | 44.8 | 87.0 | 16.1 |
MD-H-1 | 1083 | 3080 | 38.0 | 24.5 | 87.8 | 14.7 |
MD-H-2 | 1142 | 2894 | 36.0 | 23.5 | 80.3 | 14.0 |
MD-H-3 | 1047 | 2992 | 36.5 | 24.2 | 81.5 | 13.8 |
Average | 1090 | 2989 | 38.8 | 24.1 | 83.2 | 14.2 |
MS-1 | 650 | 1768 | 42.1 | 25.4 | 38.4 | 2.4 |
MS-2 | 640 | 1702 | 35.9 | 26.0 | 36.3 | 2.4 |
MS-3 | 703 | 1680 | 40.9 | 37.6 | 37.2 | 2.6 |
Average | 664 | 1717 | 39.6 | 29.7 | 37.3 | 2.5 |
MS-H-1 | 684 | 1455 | 34.2 | 34.4 | 35.9 | 2.5 |
MS-H-2 | 703 | 1500 | 30.5 | 38.8 | 33.5 | 2.4 |
MS-H-3 | 767 | 1740 | 38.0 | 24.5 | 36.0 | 2.3 |
Average | 718 | 1565 | 34.2 | 32.6 | 35.1 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Q.; Li, X.; Sun, L.; Qin, B. Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar. Minerals 2022, 12, 894. https://doi.org/10.3390/min12070894
Lu Q, Li X, Sun L, Qin B. Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar. Minerals. 2022; 12(7):894. https://doi.org/10.3390/min12070894
Chicago/Turabian StyleLu, Qi, Xinyi Li, Lihua Sun, and Binrong Qin. 2022. "Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar" Minerals 12, no. 7: 894. https://doi.org/10.3390/min12070894
APA StyleLu, Q., Li, X., Sun, L., & Qin, B. (2022). Chemical and Spectral Variations between Untreated and Heat-Treated Rubies from Mozambique and Madagascar. Minerals, 12(7), 894. https://doi.org/10.3390/min12070894