A Research of Emeralds from Panjshir Valley, Afghanistan
Abstract
:1. Introduction
2. History
3. Geological Setting
4. Materials and Methods
5. Results
5.1. Gemological Properties
5.2. Gemological Properties
5.3. Chemical Composition Analysis
5.4. Ultraviolet Visible Near-Infrared Spectroscopy
5.5. Infrared Spectrometry
5.6. Raman Spectroscopy
6. Discussion
6.1. Chromogenic Cause of Panjshir Emerald
6.2. The Relationship between the Type of Water and Its Related Alkali Metal Content
6.3. Origin Traceability Analysis
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bariand, P.; Poullen, J.F. The pegmatites of Laghman, Nuristan, Afghanistan. Mineral. Rec. 1978, 9, 301–308. [Google Scholar]
- Neilson, J.B.; Cannon, P.J. Mineral Evaluation Project Afghanistan: Volume 2, Significant Mineral Occurrences; United Nations Development Programme: Toronto, ON, Canada, 1977. [Google Scholar]
- Bowersox, G.; Snee, L.W.; Foord, E.E.; Seal, R.R. Emeralds of the Panjshir Valley, Afghanistan. Gems Gemol. 1991, 27, 26–39. [Google Scholar] [CrossRef]
- Bowersox, G. The emerald mines of the Panjshir valley, Afghanistan. InColor 2015, 80–87. [Google Scholar]
- Bowersox, G.W. A Status Report on Gemstones from Afghanistan. Gems Gemol. 1985, 21, 192–204. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; France-Lanord, C.; Zimmermann, J.L.; Cheilletz, A.; Arboleda, C.; Charoy, B.; Coget, P.; Fontan, F.; Giard, D. Fluid Composition, δD of Channel H2O, and δ18O of Lattice Oxygen in Beryls: Genetic Implications for Brazilian, Colombian, and Afghanistani Emerald Deposits. Int. Geol. Rev. 2010, 39, 400–424. [Google Scholar] [CrossRef]
- Sinkankas, J. Emerald and Other Beryls; Chilton Book, Co.: Radnor, PA, USA, 1981. [Google Scholar]
- Forestier, F.H.; Piat, D.H. Emeraudes de Bactriane: Mythe ou réalité, La vallée du Panjshir (Afghanistan). In L’émeraude Connaissances Actuelles et Prospectives; Giard, D., Giuliani, G., Cheilletz, A., Fritsch, E., Gonthier, E., Eds.; Association Française de Gemmologie: Paris, French, 1998. [Google Scholar]
- Giuliani, G.; Chaussidon, M.; Schubnel, H.J.; Piat, D.H.; Rollion-Bard, C.; France-Lanord, C.; Giard, D.; de Narvaez, D.; Rondeau, B. Oxygen isotopes and emerald trade routes since antiquity. Science 2000, 287, 631–633. [Google Scholar] [CrossRef] [Green Version]
- Krzemnicki, M.S.; Wang, H.A.O.; Buche, S. A New Type of Emerald from Afghanistan’s Panjshir Valley. J. Gemmol. 2021, 37, 474–495. [Google Scholar] [CrossRef]
- Hayden, H.H. Notes on the Geology of Chitral, Gilgit, and the Pamirs. Rec. Geol. Surv. India 1916, 45, 271–335. [Google Scholar]
- Bordet, P.; Boutiere, A. Reconnaissance geologique dans I’Hindou Kouch oriental (Badakhchan, Afghanistan). Bull. De La Soc. De Geol. 1968, 10, 486–496. [Google Scholar] [CrossRef]
- Rossovskiy, L.N.; Chmyrev, V.M.; Salakh, A.S. New fields and belts of rare-metal pegmatites in the Hindu Kush (Eastern Afghanistan). Int. Geol. Rev. 2009, 18, 1339–1342. [Google Scholar] [CrossRef]
- Rossovskiy, L.N. Rare-metal pegmatites with precious stones and conditions of their formation (Hindu Kush). Int. Geol. Rev. 2010, 23, 1312–1320. [Google Scholar] [CrossRef]
- Krzemnicki, M.S. New Emerald from Afghanistan. SSEF Facet. 2018, 24, 12–13. [Google Scholar]
- Hsu, T.; Lucas, A. Tucson 2016. Gems Gemol. 2016, 52, 82–102. [Google Scholar]
- Rossovskiy, L.N.; Konovalenko, S.I. South Asian pegmatite belt. Akad. Nauk SSSR Dokl. Earth Sci. Sect. 1976, 229, 89–91. [Google Scholar]
- Giuliani, G.; Groat, L.A.; Marshall, D.; Fallick, A.E.; Branquet, Y. Emerald Deposits: A Review and Enhanced Classification. Minerals 2019, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Schwarz, D.T. Emerald Deposits- A Review. Aust. Gemmol. 2001, 21, 17–23. [Google Scholar]
- Zong, K.; Klemd, R.; Yuan, Y.; He, Z.; Guo, J.; Shi, X.; Liu, Y.; Hu, Z.; Zhang, Z. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Bosshart, G. Emeralds from Colombia (Part 2). J. Gemmol. 1991, 22, 409–426. [Google Scholar] [CrossRef]
- Cui, D.; Liao, Z.; Qi, L.; Zhong, Q.; Zhou, Z. A Study of Emeralds from Davdar, North-Western China. J. Gemmol. 2020, 37, 374–392. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, R. Unique Vanadium-Rich Emerald from Malipo, China. Gems Gemol. 2019, 55, 338–352. [Google Scholar] [CrossRef]
- Wood, D.L.; Nassau, K. Infrared Spectra of Foreign Molecules in Beryl. J. Chem. Phys. 1967, 47, 2220–2228. [Google Scholar] [CrossRef]
- Guo, H.; Yu, X.; Zheng, Y.; Sun, Z.; Ng, M.F.-Y. Inclusion and Trace Element Characteristics of Emeralds from Swat Valley, Pakistan. Gems Gemol. 2020, 56, 336–355. [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Z.; Schwarz, D.T.; Qi, L.; Gao, J.; Nong, P.; Lai, M.; Guo, K.; Li, Y. Study of the Differences in Infrared Spectra of Emerald from Different Mining Areas and the Controlling Factors. Can. Mineral. 2019, 57, 65–79. [Google Scholar] [CrossRef]
- Mashkovtsev, R.I.; Thomas, V.G.; Fursenko, D.A.; Zhukova, E.S.; Uskov, V.V.; Gorshunov, B.P. FTIR spectroscopy of D2O and HDO molecules in thec-axis channels of synthetic beryl. Am. Mineral. 2016, 101, 175–180. [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Z.; Nong, P.; Lai, M. Study on the Infrared Spectral Characteristics of H2O I-type Emerald and the Chontrolling Factors. Rock Miner. Anal. 2019, 38, 169–178. [Google Scholar]
- Huong, L.T.-T.; Häger, T.; Hofmeister, W. Confocal Micro-Raman Spectroscopy: A Powerful Tool to Identify Natural and Synthetic Emeralds. Gems Gemol. 2010, 46, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Bersani, D.; Azzi, G.; Lambruschi, E.; Barone, G.; Mazzoleni, P.; Raneri, S.; Longobardo, U.; Lottici, P.P. Characterization of emeralds by micro-Raman spectroscopy. J. Raman Spectrosc. 2014, 45, 1293–1300. [Google Scholar] [CrossRef]
- Moroz, I.; Roth, M.; Boudeulle, M.; Panczer, G. Raman microspectroscopy and fluorescence of emeralds from various deposits. J. Raman Spectrosc. 2000, 31, 485–490. [Google Scholar] [CrossRef]
- Alonso-Perez, R.; Day, J.M.D. Rare Earth Element and Incompatible Trace Element Abundances in Emeralds Reveal Their Formation Environments. Minerals 2021, 11, 513. [Google Scholar] [CrossRef]
- Saeseaw, S.; Pardieu, V.; Sangsawong, S. Three-Phase Inclusions in Emerald and Their Impact on Origin Determination. Gems Gemol. 2014, 50, 114–132. [Google Scholar] [CrossRef] [Green Version]
- Saeseaw, S.; Renfro, N.D.; Palke, A.C.; Sun, Z.; McClure, S.F. Geographic Origin Determination of Emerald. Gems Gemol. 2019, 55, 614–646. [Google Scholar] [CrossRef] [Green Version]
- Aurisicchio, C.; Conte, A.M.; Medeghini, L.; Ottolini, L.; Vito, C.D. Major and trace element geochemistry of emerald from several deposits: Implications for genetic models and classification schemes. Ore Geol. Rev. 2018, 94, 351–366. [Google Scholar] [CrossRef]
- Groat, L.A.; Giuliani, G.; Marshall, D.D.; Turner, D. Emerald deposits and occurrences: A review. Ore Geol. Rev. 2008, 34, 87–112. [Google Scholar] [CrossRef]
- Groat, L.A.; Giuliani, G.; Stone-Sundberg, J.; Sun, Z.; Renfro, N.D.; Palke, A.C. A Review of Analytical Methods Used in Geographic Origin Determination of Gemstones. Gems Gemol. 2019, 55, 512–535. [Google Scholar] [CrossRef] [Green Version]
- Karampelas, S.; Al-Shaybani, B.; Mohamed, F.; Sangsawong, S.; Al-Alawi, A. Emeralds from the Most Important Occurrences: Chemical and Spectroscopic Data. Minerals 2019, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Lu, R. Color Characteristics of Blue to Yellow Beryl from Multiple Origins. Gems Gemol. 2020, 56, 54–65. [Google Scholar] [CrossRef]
- Krezemnicki, M.S. New Emeralds from Musakashi, Zambia, Appear on the Market. J. Gemmol. 2021, 37, 769–771. [Google Scholar] [CrossRef]
- Pardieu, V.; Detroyat, S.; Sangsawong, S.; Saeseau, S. Tracking emeralds from the Musakashi area of Zambia. InColor 2015, 29, 18–25. [Google Scholar]
- Henneebois, U.; Karampelas, S.; Delaunay, A. Caractéristiques des émraudes de Musakashi, Zambie. Revue De Gemmol. A. F. G. 2022, 216, 15–17. [Google Scholar]
Color | Medium bluish green to green |
Clarity | Slightly to heavily included |
Refractive indices | no = 1.580–1.584; ne = 1.575–1.580 |
Birefringence | 0.005–0.009 |
Specific gravity | 2.47–2.89 |
Pleochroism | Medium yellowish green (o-ray) and greenish blue (e-ray) |
Fluorescence | Inert to long-wave and short-wave UV radiation |
Chelsea filter | Slightly red or no reaction |
Internal features |
|
| |
| |
|
Samples | Element | Min–Max | Average (SD) | Median | LOD |
---|---|---|---|---|---|
Panjshir emeralds 20 samples 64 analyses | Li | 74.83~131.01 | 86.14 (8.84) | 85.24 | 1.32~2.67 |
Na | 5586.07~11,615.12 | 7313.58 (1072.42) | 7245.95 | 24.16~67.97 | |
Mg | 5154.67~11,610.89 | 7071.91 (1010.51) | 6991.72 | 0.70~7.17 | |
K | 194.96~1503.69 | 159.11 (208.65) | 316.78 | 23.16~37.41 | |
Sc | 71.34~804.98 | 381.50 (108.15) | 387.75 | 0.30~1.19 | |
Ti | 1.52~14.72 | 5.95 (1.30) | 5.73 | 2.81~3.90 | |
V | 275.03~1687.07 | 765.53 (157.13) | 764.50 | 0.17~0.82 | |
Cr | 136.02~3896.89 | 1838.44 (655.50) | 1866.08 | 7.06~21.71 | |
Mn | 2.91~69.76 | 13.78 (23.15) | 3.11 | 2.59~6.64 | |
Fe | 3173.22~15,030.29 | 4458.49 (1704.49) | 4337.50 | 38.05~80.04 | |
Ni | bdl | bdl | bdl | 4.20~12.75 | |
Zn | 1.31~3.82 | 3.22 (1.78) | 3.22 | 1.22~6.09 | |
Ga | 15.34~34.95 | 24.70 (2.82) | 24.58 | 0.31~2.05 | |
Rb | 19.93~50.07 | 25.72 (7.43) | 24.08 | 1.32~3.09 | |
Cs | 29.01~54.94 | 33.15 (4.70) | 32.26 | 0.74~2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Bao, P.; Li, Y.; Shen, A.H.; Gao, R.; Bai, Y.; Gong, X.; Liu, X. A Research of Emeralds from Panjshir Valley, Afghanistan. Minerals 2023, 13, 63. https://doi.org/10.3390/min13010063
Chen Q, Bao P, Li Y, Shen AH, Gao R, Bai Y, Gong X, Liu X. A Research of Emeralds from Panjshir Valley, Afghanistan. Minerals. 2023; 13(1):63. https://doi.org/10.3390/min13010063
Chicago/Turabian StyleChen, Quanli, Peijin Bao, Yan Li, Andy H. Shen, Ran Gao, Yulin Bai, Xue Gong, and Xianyu Liu. 2023. "A Research of Emeralds from Panjshir Valley, Afghanistan" Minerals 13, no. 1: 63. https://doi.org/10.3390/min13010063
APA StyleChen, Q., Bao, P., Li, Y., Shen, A. H., Gao, R., Bai, Y., Gong, X., & Liu, X. (2023). A Research of Emeralds from Panjshir Valley, Afghanistan. Minerals, 13(1), 63. https://doi.org/10.3390/min13010063