Apatite as an Indicator for the Formation of PGE Mineralization as Exemplified by Anorthosites of the Kievey Deposit, Fedorova-Pana Layered Complex, Kola Peninsula, Russia
Abstract
:1. Introduction
2. Geological Settings
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Mineral Assemblages, Morphology, and Internal Structure of Apatite
4.3. Apatite Composition
5. Discussion
5.1. Nature of Apatite in the Mineralized Anorthosite
5.2. What Conclusions about the Indicator Role of Apatite for the Genesis of PGE Mineralization Can Be Drawn from the Example of Mineralized Anorthosites of the Kievey Deposit?
5.3. The Role of Post-Magmatic Processes for PGE Mineralization in the Fedorova-Pana Complex
5.4. Model of the Formation of PGE Mineralization in Anorthosites of the Kievey Deposit
5.5. Critique of the Sulfide Percolation Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boudreau, A.E.; Mathez, E.A.; McCallum, I.S. Halogen Geochemistry of the Stillwater and Bushveld Complexes: Evidence for Transport of the Platinum-Group Elements by Cl-Rich Fluids. J. Petrol. 1986, 27, 967–986. [Google Scholar] [CrossRef]
- Boudreau, A.E. Chlorine as an Exploration Guide for the Platinum-Group Elements in Layered Intrusions. J. Geochem. Explor. 1993, 48, 21–37. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Sharkov, E.V.; Nikiforov, A.A.; Korolyuk, V.N.; Sil’yanov, S.A.; Lobastov, B.M. Compositional Variations of Apatite and REE-Bearing Minerals in Relation to Crystallization Trends in the Monchepluton Layered Complex (Kola Peninsula). Russ. Geol. Geophys. 2021, 62, 427–444. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Nikiforov, A.A. Compositional Variations of Apatite, Fractionation Trends, and a Pge-Bearing Zone in the Kivakka Layered Intrusion, Northern Karelia, Russia. Can. Mineral. 2016, 54, 475–490. [Google Scholar] [CrossRef]
- Sadove, G.; Konecke, B.A.; Fiege, A.; Simon, A.C. Structurally Bound S2−, S1−, S4+, S6+ in Terrestrial Apatite: The Redox Evolution of Hydrothermal Fluids at the Phillips Mine, New York, USA. Ore Geol. Rev. 2019, 107, 1084–1096. [Google Scholar] [CrossRef]
- Raič, S.; Mogessie, A.; Krenn, K.; Hauzenberger, C.A.; Tropper, P. Deciphering Magmatic and Metasomatic Processes Recorded by Fluid Inclusions and Apatite within the Cu-Ni-PGE-Sulfide Mineralized Bathtub Intrusion of the Duluth Complex, NE Minnesota, USA. J. Petrol. 2018, 59, 1167–1192. [Google Scholar] [CrossRef]
- Pan, L.-C.; Hu, R.-Z.; Wang, X.-S.; Bi, X.-W.; Zhu, J.-J.; Li, C. Apatite Trace Element and Halogen Compositions as Petrogenetic-Metallogenic Indicators: Examples from Four Granite Plutons in the Sanjiang Region, SW China. Lithos 2016, 254, 118–130. [Google Scholar] [CrossRef]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The Trace Element Composition of Apatite and Its Application to Detrital Provenance Studies. Earth-Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration. Econ. Geol. 2016, 111, 1187–1222. [Google Scholar] [CrossRef]
- Ladenburger, S.; Marks, M.A.W.; Upton, B.; Hill, P.; Wenzel, T.; Markl, G. Compositional Variation of Apatite from Rift-Related Alkaline Igneous Rocks of the Gardar Province, South Greenland. Am. Mineral. 2016, 101, 612–626. [Google Scholar] [CrossRef]
- Krneta, S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Kontonikas-Charos, A. The Wirrda Well and Acropolis Prospects, Gawler Craton, South Australia: Insights into Evolving Fluid Conditions through Apatite Chemistry. J. Geochem. Explor. 2017, 181, 276–291. [Google Scholar] [CrossRef]
- Cawthorn, R.G. Formation of Chlor-and Fluor-Apatite in Layered Intrusions. Mineral. Mag. 1994, 58, 299–306. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an Indicator Mineral for Mineral Exploration: Trace-Element Compositions and Their Relationship to Host Rock Type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Holodnov, V.V.; Salihov, D.N.; Shagalov, E.S.; Konovalova, E.V.; Rahimov, I.R. The Role of Halogens and Sulfur in Apatite for Evaluation of Cu-Ni, Fe-Ti and Au Ores in Late Paleozoic Gabbroids of the West Magnitogorsk Zone (South Urals). Mineralogia 2015, 3, 45–61. [Google Scholar]
- Barkov, A.Y.; Nikulin, I.I.; Nikiforov, A.A.; Lobastov, B.M.; Silyanov, S.A.; Martin, R.F. Atypical Mineralization Involving Pd-Pt, Au-Ag, REE, Y, Zr, Th, U, and Cl-F in the Oktyabrsky Deposit, Norilsk Complex, Russia. Minerals 2021, 11, 1193. [Google Scholar] [CrossRef]
- Liu, M.-Y.; Zhou, M.-F.; Su, S.-G.; Chen, X.-G. Contrasting Geochemistry of Apatite from Peridotites and Sulfide Ores of the Jinchuan Ni-Cu Sulfide Deposit, NW China. Econ. Geol. 2021, 116, 1073–1092. [Google Scholar] [CrossRef]
- Sluzhenikin, S.F.; Yudovskaya, M.A.; Barnes, S.J.; Abramova, V.D.; Le Vaillant, M.; Petrenko, D.B.; Grigor’eva, A.V.; Brovchenko, V.D. Low-Sulfide Platinum Group Element Ores of the Norilsk-Talnakh Camp. Econ. Geol. 2020, 115, 1267–1303. [Google Scholar] [CrossRef]
- Ryabov, V.V.; Simonov, O.N.; Snisar, S.G. Fluorine and Chlorine in Apatites, Micas, and Amphiboles of Layered Trap Intrusions of the Siberian Platform. Russ. Geol. Geophys. 2018, 59, 363–373. [Google Scholar] [CrossRef]
- Rakhimov, I.R.; Gottman, I.A.; Kholodnov, V.V.; Chervyakovskiy, V.S. Geochemistry of Accessory Apatite from the Cu–Ni–Sulfide-Bearing Ultramafic–Mafic Rocks of the Khudolaz Complex (South Urals) as a Monitor of Magmatic and Metasomatic Processes. Russ. Geol. Geophys. 2022, 63, 1388–1406. [Google Scholar] [CrossRef]
- Webster, J.D.; Sintoni, M.F.; De Vivo, B. The Partitioning Behavior of Cl, S, and H2O in Aqueous Vapor- ±saline-Liquid Saturated Phonolitic and Trachytic Melts at 200 MPa. Chem. Geol. 2009, 263, 19–36. [Google Scholar] [CrossRef]
- Serova, A.A.; Spiridonov, E.M. Three Types of Apatite in Norilsk Sulfide Ores. Geochem. Int. 2018, 56, 474–483. [Google Scholar] [CrossRef]
- Claiborne, L.L.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F. Tracking Magmatic Processes through Zr/Hf Ratios in Rocks and Hf and Ti Zoning in Zircons: An Example from the Spirit Mountain Batholith, Nevada. Mineral. Mag. 2006, 70, 517–543. [Google Scholar] [CrossRef]
- Watson, E.B.; Green, T.H. Apatite/Liquid Partition Coefficients for the Rare Earth Elements and Strontium. Earth Planet. Sci. Lett. 1981, 56, 405–421. [Google Scholar] [CrossRef]
- Warner, S.; Martin, R.F.; Abdel-Rahman, A.-F.M.; Doig, R. Apatite as a Monitor of Fractionation, Degassing, and Metamorphism in the Sudbury Igneous Complex, Ontario. Can. Mineral. 1998, 36, 981–999. [Google Scholar]
- Järvinen, V.; Halkoaho, T.; Konnunaho, J.; Heinonen, J.S.; Rämö, O.T. Parental Magma, Magmatic Stratigraphy, and Reef-Type PGE Enrichment of the 2.44-Ga Mafic-Ultramafic Näränkävaara Layered Intrusion, Northern Finland. Miner. Depos. 2020, 55, 1535–1560. [Google Scholar] [CrossRef]
- Halkoaho, T.A.A.; Alapieti, T.T.; Lahtinen, J.J.; Lerssi, J.M. The Ala-Penikka PGE Reefs in the Penikat Layered Intrusion, Northern Finland. Mineral. Petrol. 1990, 42, 23–38. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Rundkvist, T.V.; Karykowski, B.T.; Maier, W.D.; Korchagin, A.U.; Ivanov, A.N.; Junge, M. Low-Sulfide Platinum-Palladium Deposits of the Paleoproterozoic Fedorova-Pana Layered Complex, Kola Region, Russia. Minerals 2019, 9, 764. [Google Scholar] [CrossRef]
- Mitrofanov, F.P.; Bayanova, T.B.; Korchagin, A.U.; Groshev, N.Y.; Malitch, K.N.; Zhirov, D.V.; Mitrofanov, A.F. East Scandinavian and Noril’sk Plume Mafic Large Igneous Provinces of Pd-Pt Ores: Geological and Metallogenic Comparison. Geol. Ore Depos. 2013, 55, 305–319. [Google Scholar] [CrossRef]
- Alapieti, T.T.; Filén, B.A.; Lahtinen, J.J.; Lavrov, M.M.; Smolkin, V.F.; Voitsekhovsky, S.N. Early Proterozoic Layered Intrusions in the Northeastern Part of the Fennoscandian Shield. Mineral. Petrol. 1990, 42, 1–22. [Google Scholar] [CrossRef]
- Maier, W.D.; Halkoaho, T.; Huhma, H.; Hanski, E.; Barnes, S.-J. The Penikat Intrusion, Finland: Geochemistry, Geochronology, and Origin of Platinum–Palladium Reefs. J. Petrol. 2018, 59, 967–1006. [Google Scholar] [CrossRef]
- Iljina, M. The Portimo Layered Igneous Complex: With Emphasis on Diverse Sulphide and Platinum-Group Element Deposits. Ph.D. Thesis, University of Oulu, Oulu, Finland, 1994; 158p. [Google Scholar]
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.J.; Pripachkin, P.V.; McDonald, I.; Savard, D. Critical Controls on the Formation of Contact-Style PGE-Ni-Cu Mineralization: Evidence from the Paleoproterozoic Monchegorsk Complex, Kola Region, Russia. Econ. Geol. 2018, 113, 911–935. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Mitrofanov, F.P. The Paleoproterozoic Imandra-Varzuga Rifting Structure (Kola Peninsula): Intrusive Magmatism and Minerageny. Geodin. Tektonofiz. 2015, 5, 231–256. [Google Scholar] [CrossRef]
- Fedorova Tundra Is Europe’s Largest Deposit of Platinum Group Metals. Available online: https://fedorovoresources.ru/en/#field (accessed on 31 October 2023).
- What—Suhanko—Arctic Platinum Oy. Available online: https://www.suhanko.com/what (accessed on 31 October 2023).
- Subbotin, V.V.; Vymazalová, A.; Laufek, F.; Savchenko, Y.E.; Stanley, C.J.; Gabov, D.A.; Plášil, J. Mitrofanovite, Pt3Te4, a New Mineral from the East Chuarvy Deposit, Fedorovo-Pana Intrusion, Kola Peninsula, Russia. Mineral. Mag. 2019, 83, 523–530. [Google Scholar] [CrossRef]
- Vymazalová, A.; Subbotin, V.V.; Laufek, F.; Savchenko, Y.E.; Stanley, C.J.; Gabov, D.A.; Plášil, J. Panskyite, Pd9Ag2Pb2S4, a New Platinum Group Mineral from the Southern Kievey Ore Occurrence of the Fedorova–Pana Layered Intrusion, Kola Peninsula, Russia. Mineral. Mag. 2020, 85, 1–11. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Rundqvist, T.V.; Mansur, E.T.; Barnes, S.-J.; Ivanov, A.N.; Sushchenko, A.M. Geochemical and Geochronological Evidence of an Unusual Sequence of Formation of the West Pana Layered Intrusion. In Proceedings of the Ultramafic-Mafic Complexes: Geology, Structure, Ore Potential, Apatity, Russia, 29 August–3 September 2022; pp. 34–37. [Google Scholar]
- Pripachkin, P.; Rundkvist, T.; Groshev, N. Paleoproterozoic East Pana Layered Intrusion (Kola Peninsula, Russia): Geological Structure, Petrography, Geochemistry and Cu-Ni-PGE Mineralization. Minerals 2023, 13, 681. [Google Scholar] [CrossRef]
- Schissel, D.; Tsvetkov, A.A.; Mitrofanov, F.P.; Korchagin, A.U. Basal Platinum-Group Element Mineralization in the Federov Pansky Layered Mafic Intrusion, Kola Peninsula, Russia. Econ. Geol. 2002, 97, 1657–1677. [Google Scholar] [CrossRef]
- Korchagin, A.U.; Goncharov, Y.V.; Subbotin, V.V.; Groshev, N.Y.; Gabov, D.A.; Ivanov, A.N.; Savchenko, Y.E. Geology and Composition of the Ores of the Low-Sulfide North Kamennik PGE Deposit in the West-Pana Intrusion. Ores Met. 2016, 1, 42–51. [Google Scholar]
- Korchagin, A.U.; Subbotin, V.V.; Mitrofanov, F.P.; Mineev, S.D. Kievey PGE-Bearing Deposit in the West-Pana Layered Intrusion. In Strategic Mineral Resources of Lapland; Mitrofanov, F., Iljina, M., Zhirov, D., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2009; pp. 12–32. [Google Scholar]
- Kalinin, A.A. Precious Metal Mineralization in the East Pansky Layered Massif. In The Fennoscandian School of Ore Genesis in Layered Intrusions; Groshev, N.Y., Ed.; Geological Institute KSC RAS: Apatity, Russia, 2021; pp. 20–23. [Google Scholar] [CrossRef]
- Groshev, N.; Karykowski, B. The Main Anorthosite Layer of the West-Pana Intrusion, Kola Region: Geology and U-Pb Age Dating. Minerals 2019, 9, 71. [Google Scholar] [CrossRef]
- Latypov, R.M.; Mitrofanov, F.P.; Alapieti, T.T.; Halkoaho, T.A.A. Petrology of the Lower Layered Horizon of the Western Pansky Tundra Intrusion, Kola Peninsula. Petrology 1999, 7, 482–508. [Google Scholar]
- Latypov, R.M.; Mitrofanov, F.P.; Skiba, V.I.; Alapieti, T.T. The Western Pansky Tundra Layered Intrusion, Kola Peninsula: Differentiation Mechanism and Solidification Sequence. Petrology 2001, 9, 214–251. [Google Scholar]
- Groshev, N.Y.; Rundkvist, T.V.; Korchagin, A.U.; Ivanov, A.N. Concentrations of Trace Elements in Rocks of the Lower Layered Horizon of the West-Pana Intrusion. In Proceedings of the 12th International Platinum Symposium, Yekaterinburg, Russia, 11–14 August 2014; pp. 65–66. [Google Scholar]
- Groshev, N.Y.; Ivanov, A.N.; Huber, M. PGE Reefs of the West-Pana Layered Intrusion, Kola Region, Russia: Plagioclase Composition as an Indicator of the Economic Potential. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Saint Petersburg, Russia, 17–18 April 2019; Volume 302, p. 12041. [Google Scholar] [CrossRef]
- Bayanova, T.B. Age of Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes; Nauka: St. Petersburg, Russia, 2004; p. 174. [Google Scholar]
- Korchagin, A.U. Report on the Results of Geological Exploration at the Kievey PGE Deposit, Feasibility Study of Temporary Exploration Conditions and Calculation of Platinum Group Metals, Copper and Nickel Reserves; TFGI: Apatity, Russia, 2007. [Google Scholar]
- Nikulin, I.I.; Mikhailova, Y.A.; Kalashnikov, A.O.; Groshev, N.Y.; Stepenshchikov, D.G.; Pakhomovskiy, Y.A.; Kadyrov, R.I. Structural, Textural and Material Properties of Sulfide Copper-Nickel Ores; Kola Science Centre of the Russian Academy of Sciences: Apatity, Russia, 2022; p. 82. [Google Scholar]
- Votyakov, S.L. (Ed.) Minerals-Concentrators of d- and f-Elements: Local Spectroscopic and LA-ICP-MS Studies of Composition, Structure and Properties, Geochronological Applications; Publishing House SB RAS: Novosibirsk, Russia, 2020; p. 424. [Google Scholar]
- Dudkin, K.O.; Rundkvist, T.V. Brown Plagioclases as a Source of Magnetic Anomalies of the Pana Massif. Russ. Geophys. J. 2002, 27, 25–35. [Google Scholar]
- Warr, L.N. IMA–CNMNC Approved Mineral Symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Latypov, R.M. Lower Layered Horizon of the Pana Tundra Intrusion: Structure, Ore Potential, Petrogenesis. Ph.D. Thesis, Institute of Precambrian geology and geochronology, Russian Academy of Sciences, St.-Petersburg, Russia, 1995; 123p. [Google Scholar]
- O’Shea, D.C.; Bartlett, M.L.; Young, R.A. Compositional Analysis of Apatites with Laser-Raman Spectroscopy: (OH,F,Cl)Apatites. Arch. Oral Biol. 1974, 19, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Penel, G.; Leroy, G.; Rey, C.; Bres, E. MicroRaman Spectral Study of the PO4 and CO3 Vibrational Modes in Synthetic and Biological Apatites. Calcif. Tissue Int. 1998, 63, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and FTIR Studies of Synthetic and Natural Apatites. Biomaterials 2007, 28, 3043–3054. [Google Scholar] [CrossRef] [PubMed]
- Awonusi, A.; Morris, M.D.; Tecklenburg, M.M.J. Carbonate Assignment and Calibration in the Raman Spectrum of Apatite. Calcif. Tissue Int. 2007, 81, 46–52. [Google Scholar] [CrossRef]
- Rey, C.; Marsan, O.; Combes, C.; Drouet, C.; Grossin, D.; Sarda, S. Characterization of Calcium Phosphates Using Vibrational Spectroscopies. In Advances in Calcium Phosphate Biomaterials; Ben-Nissan, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 229–266. [Google Scholar]
- Fau, A.; Beyssac, O.; Gauthier, M.; Panczer, G.; Gasnault, O.; Meslin, P.-Y.; Bernard, S.; Maurice, S.; Forni, O.; Boulliard, J.-C.; et al. Time-Resolved Raman and Luminescence Spectroscopy of Synthetic REE-Doped Hydroxylapatites and Natural Apatites. Am. Mineral. 2022, 107, 1341–1352. [Google Scholar] [CrossRef]
- Groshev, N.Y.; Nikulin, I.I.; Sushchenko, A.M.; Mikhailova, Y.A.; Kalashnikov, A.O.; Pakhomovsky, Y.A.; Kadyrov, R.I. Composition of Apatite from Picritic Gabbro-Dolerites of the Kharaelakh Intrusion: First Systematic Data along the Section. Tr. FNS 2023, 20, 68–76. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Boudreau, A.E.; Kruger, F.J. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Econ. Geol. 1990, 85, 737–745. [Google Scholar] [CrossRef]
- Barnes, S.J.; Malitch, K.N.; Yudovskaya, M.A. Introduction to a Special Issue on the Norilsk-Talnakh Ni-Cu-Platinum Group Element Deposits. Econ. Geol. 2020, 115, 1157–1172. [Google Scholar] [CrossRef]
- Voloshina, Z.M.; Petrov, V.P.; Popova, L.I.; Rezhenova, S.A. Metamorphic Parageneses in Rocks of the Lower Layered Horizon of the Pana Tundra Intrusion (Kola Peninsula). Zap. RMO 1998, 3, 57–65. [Google Scholar]
- Karzhavin, V.K.; Voloshina, Z.M. Simulation of Metamorphism and Fluid Regime in the Mineralized Unit of the Pana Massif in Relation to Its PGE Ore Mineralization. Geochem. Int. 2006, 44, 475–484. [Google Scholar] [CrossRef]
- Voloshina, Z.M.; Karzhavin, V.K.; Petrov, V.P. Metamorphism and Ore Genesis in the Platinum-Bearing Pana Intrusive Massif (Kola Peninsula); Publishing House KSC RAS: Apatity, Russia, 2008; p. 140. [Google Scholar]
- Subbotin, V.V.; Korchagin, A.U.; Savchenko, E.E. Platinum Mineralization of the Fedorova-Pana Ore Node: Types of Ores, Mineral Compositions and Genetic Features. Vestn. Kola Sci. Cent. Russ. Acad. Sci. Apatity 2012, 1, 54–65. [Google Scholar]
- Nivin, V.A.; Rundqvist, T.V. Formation of Pt-Bearing Western Pana Pluton on the Kola Peninsula: Fluid Regime as Deduced from Helium and Argon Isotopic Compositions. Geol. Ore Depos. 2017, 59, 36–55. [Google Scholar] [CrossRef]
- Campbell, I.; Naldrett, A.; Barnes, S. A Model for the Origin of the Platinum-Rich Sulfide Horizons in the Bushveld and Stillwater Complexes. J. Petrol. 1983, 24, 133–165. [Google Scholar] [CrossRef]
- Naldrett, A.J.; Gasparrini, E.C.; Barnes, S.J.; Von Gruenewaldt, G.; Sharpe, M.R. The Upper Critical Zone of the Bushveld Complex and the Origin of Merensky-Type Ores. Econ. Geol. 1986, 81, 1105–1117. [Google Scholar] [CrossRef]
- Ivanov, A.N.; Chernyavsky, A.V.; Groshev, N.Y.; Savchenko, E.E. PGM Assemblages from the Lower Ore Bodies of the North Kamennik Palladium Deposit, Kola Region, Russia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Saint-Petersburg, Russia, 18–19 March 2020; Volume 539, p. 12151. [Google Scholar] [CrossRef]
- Barnes, S.J.; Fiorentini, M.L.; Austin, P.; Gessner, K.; Hough, R.M.; Squelch, A.P. Three-Dimensional Morphology of Magmatic Sulfides Sheds Light on Ore Formation and Sulfide Melt Migration. Geology 2008, 36, 655–658. [Google Scholar] [CrossRef]
Spots | 1b1 | 1c-2-3 | 3b | 3d | 4a2 | 4d1 | 4d2 | 5a1 | 5c2 | 6a1 |
---|---|---|---|---|---|---|---|---|---|---|
CaO | 54.35 | 54.49 | 55.09 | 55.06 | 55.00 | 54.83 | 55.23 | 54.62 | 55.26 | 54.54 |
FeO | 0.06 | 0.06 | 0.07 | 0.13 | 0.05 | 0.10 | 0.07 | 0.10 | 0.08 | 0.07 |
La2O3 | 0.12 | bdl | bdl | 0.12 | bdl | bdl | bdl | bdl | bdl | 0.08 |
Ce2O3 | 0.39 | 0.14 | 0.16 | 0.25 | 0.20 | 0.23 | 0.18 | 0.36 | 0.22 | 0.30 |
Nd2O3 | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | bdl | 0.13 |
P2O5 | 41.26 | 41.33 | 41.88 | 42.09 | 41.80 | 41.74 | 42.04 | 41.58 | 42.16 | 41.64 |
SiO2 | 0.38 | 0.21 | 0.21 | 0.25 | 0.26 | 0.26 | 0.22 | 0.39 | 0.25 | 0.29 |
F | 1.53 | 1.17 | 1.44 | 1.41 | 1.51 | 1.09 | 1.38 | 1.53 | 1.45 | 1.42 |
Cl | 0.03 | 0.14 | 0.11 | 0.17 | 0.10 | 0.46 | 0.34 | 0.29 | 0.25 | 0.15 |
O=F,Cl | 0.65 | 0.52 | 0.63 | 0.63 | 0.66 | 0.56 | 0.66 | 0.71 | 0.67 | 0.63 |
Total | 97.47 | 97.02 | 98.33 | 98.85 | 98.26 | 98.15 | 98.80 | 98.16 | 99.00 | 97.99 |
Formula coefficients | ||||||||||
Ca | 4,88 | 4.92 | 4.90 | 4.87 | 4.89 | 4.90 | 4.89 | 4.87 | 4.88 | 4.87 |
Fe | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 |
La | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ce | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Nd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
P | 2.93 | 2.95 | 2.94 | 2.94 | 2.94 | 2.95 | 2.94 | 2.93 | 2.94 | 2.94 |
Si | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 |
F | 0.41 | 0.31 | 0.38 | 0.37 | 0.40 | 0.29 | 0.36 | 0.40 | 0.38 | 0.37 |
Cl | 0.00 | 0.02 | 0.02 | 0.02 | 0.01 | 0.07 | 0.05 | 0.04 | 0.03 | 0.02 |
OH | 0.59 | 0.67 | 0.61 | 0.61 | 0.59 | 0.65 | 0.59 | 0.56 | 0.59 | 0.60 |
Raman Shift, cm−1 | Band Assignments |
---|---|
212 | Lattice mode |
432 | ν2 bending mode |
453 | |
593 | ν4 PO4 triply degenerate bending mode |
607 | |
963 | ν1 PO4 symmetric stretching mode |
1051 | ν3 PO4 triply degenerate asymmetric stretching mode |
1079 | ν1 CO3 (C-O in plane stretch)/ν3 PO4 asymmetric stretching |
3565 | OH vibration band |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sushchenko, A.; Groshev, N.; Rundkvist, T.; Kompanchenko, A.; Savchenko, Y. Apatite as an Indicator for the Formation of PGE Mineralization as Exemplified by Anorthosites of the Kievey Deposit, Fedorova-Pana Layered Complex, Kola Peninsula, Russia. Minerals 2023, 13, 1473. https://doi.org/10.3390/min13121473
Sushchenko A, Groshev N, Rundkvist T, Kompanchenko A, Savchenko Y. Apatite as an Indicator for the Formation of PGE Mineralization as Exemplified by Anorthosites of the Kievey Deposit, Fedorova-Pana Layered Complex, Kola Peninsula, Russia. Minerals. 2023; 13(12):1473. https://doi.org/10.3390/min13121473
Chicago/Turabian StyleSushchenko, Artyom, Nikolay Groshev, Tatyana Rundkvist, Alena Kompanchenko, and Yevgeny Savchenko. 2023. "Apatite as an Indicator for the Formation of PGE Mineralization as Exemplified by Anorthosites of the Kievey Deposit, Fedorova-Pana Layered Complex, Kola Peninsula, Russia" Minerals 13, no. 12: 1473. https://doi.org/10.3390/min13121473
APA StyleSushchenko, A., Groshev, N., Rundkvist, T., Kompanchenko, A., & Savchenko, Y. (2023). Apatite as an Indicator for the Formation of PGE Mineralization as Exemplified by Anorthosites of the Kievey Deposit, Fedorova-Pana Layered Complex, Kola Peninsula, Russia. Minerals, 13(12), 1473. https://doi.org/10.3390/min13121473