Monitoring of Suspended Sediment Mineralogy in Puerto-Rican Rivers: Effects of Flowrate and Lithology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Area
2.2. Stream Discharge Measurments
2.3. Suspended Sediments Collection
2.4. Sediment Grab Collection
2.5. Sediment Size Analysis
2.6. Filters Physical Characterization
2.7. Mineralogical Characterization
2.8. Elemental Characterization
2.9. Physico-Chemical Characterization of Selected Suspended Matter
3. Results
3.1. River Discharge and Sediment Loadings
3.2. Texture and Mineralogy of Streambed Sediments
3.2.1. Texture
3.2.2. Mineralogy
3.3. Mineralogy of Suspended Sediments
3.4. Fe and Al Composition of Suspended Sediments
3.5. Physical and Chemical Nature of Suspended Sediments
4. Discussion
4.1. Mineralogy and Sourcing of Suspended Matter across Sites
4.2. Effect of Flow on Suspended Matter
4.3. Link to Stream Water Chemistry
4.4. Geology and Hydrological Event Co-Dependencies on Tropical Stream Dynamics as Reflected by Suspended Matter
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyons, W.B.; Nezat, C.A.; Carey, A.E.; Hicks, D.M. Organic Carbon Fluxes to the Ocean from High-Standing Islands. Geology 2002, 30, 443–446. [Google Scholar] [CrossRef]
- Buss, H.L.; White, A.F. Weathering Processes in the Icacos and Mameyes Watersheds in Eastern Puerto Rico. In Water Quality and Landscape Processes of Four Watersheds in Eastern Puerto Rico; Murphy, S.F., Stallard, R.F., Eds.; Professional Paper 1789-A; U.S. Geological Survey: Reston, VA, USA, 2012; Volume 14. [Google Scholar]
- Vichot-Llano, A.; Martinez-Castro, D.; Bezanilla-Morlot, A.; Centella-Artola, A.; Giorgi, F. Projected Changes in Precipitation and Temperature Regimes and Extremes over the Caribbean and Central America Using a Multiparameter Ensemble OfRegCM4. Int. J. Climatol. 2021, 41, 1328–1350. [Google Scholar] [CrossRef]
- Clark, K.E.; Shanley, J.B.; Scholl, M.A.; Perdrial, N.; Perdrial, J.N.; Plante, A.F.; McDowell, W.H. Tropical River Suspended Sediment and Solute Dynamics in Storms during an Extreme Drought. WATER Resour. Res. 2017, 53, 3695–3712. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Jahandideh-Tehrani, M.; Zhang, H.; Helfer, F.; Yu, Y. Review of Climate Change Impacts on Predicted River Streamflow in Tropical Rivers. Environ. Monit. Assess. 2019, 191, 752. [Google Scholar] [CrossRef]
- Siddha, S.; Sahu, P. Chapter 5—Impact of Climate Change on the River Ecosystem. In Ecological Significance of River Ecosystems; Madhav, S., Kanhaiya, S., Srivastav, A., Singh, V., Singh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 79–104. ISBN 978-0-323-85045-2. [Google Scholar]
- Hauer, C.; Leitner, P.; Unfer, G.; Pulg, U.; Habersack, H.; Graf, W. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management; Schmutz, S., Sendzimir, J., Eds.; Aquatic Ecology Series; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Chakrapani, G.J. Factors Controlling Variations in River Sediment Loads. Curr. Sci. 2005, 88, 569–575. [Google Scholar]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical Composition of Suspended Sediments in World Rivers: New Insights from a New Database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Garzanti, E.; Andó, S.; France-Lanord, C.; Censi, P.; Vignola, P.; Galy, V.; Lupker, M. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planet. Sci. Lett. 2011, 302, 107–120. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Meybeck, M. Global Analysis of River Systems: From Earth System Controls to Anthropocene Syndromes. Philos. Trans. R. Soc. B-Biol. Sci. 2003, 358, 1935–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, J.-M.; Meybeck, M. Elemental Mass-Balance of Material Carried by Major World Rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Meybeck, M. Global Chemical-Weathering of Surficial Rocks Estimated from River Dissolved Loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C.J. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- White, A.; Blum, A. Effects of Climate on Chemical-Weathering in Watersheds. Geochim. Cosmochim. Acta 1995, 59, 1729–1747. [Google Scholar] [CrossRef]
- Goldsmith, S.T.; Moyer, R.P.; Harmon, R.J. Hydrochemistry and Biogeochemistry of Tropical Small Mountain Rivers. Appl. Geochem. 2015, 63, 453–455. [Google Scholar] [CrossRef]
- Dinis, P.A.; Garzanti, E.; Hahn, A.; Vermeesch, P.; Cabral-Pinto, M. Weathering Indices as Climate Proxies. A Step Forward Based on Congo and SW African River Muds. Earth-Sci. Rev. 2020, 201, 103039. [Google Scholar] [CrossRef]
- He, J.; Garzanti, E.; Dinis, P.; Yang, S.; Wang, H. Provenance versus Weathering Control on Sediment Composition in Tropical Monsoonal Climate (South China)-1. Geochemistry and Clay Mineralogy. Chem. Geol. 2020, 558, 119860. [Google Scholar] [CrossRef]
- Solano-Rivera, V.; Geris, J.; Granados-Bolaños, S.; Brenes-Cambronero, L.; Artavia-Rodríguez, G.; Sánchez-Murillo, R.; Birkel, C. Exploring Extreme Rainfall Impacts on Flow and Turbidity Dynamics in a Steep, Pristine and Tropical Volcanic Catchment. Catena 2019, 182, 104118. [Google Scholar] [CrossRef]
- Kimeli, A.; Ocholla, O.; Okello, J.; Koedam, N.; Westphal, H.; Kairo, J. Geochemical and Petrographic Characteristics of Sediments along the Transboundary (Kenya–Tanzania) Umba River as Indicators of Provenance and Weathering. Open Geosci. 2021, 13, 1064–1083. [Google Scholar] [CrossRef]
- Li, L.; Ni, J.; Chang, F.; Yue, Y.; Frolova, N.; Magritsky, D.; Borthwick, A.G.L.; Ciais, P.; Wang, Y.; Zheng, C.; et al. Global Trends in Water and Sediment Fluxes of the World’s Large Rivers. Sci. Bull. 2020, 65, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Cohen, S.; Kettner, A.J.; Brakenridge, G.R. How Important and Different Are Tropical Rivers?—An Overview. Geomorphology 2014, 227, 5–17. [Google Scholar] [CrossRef]
- Keellings, D.; Hernández Ayala, J.J. Extreme Rainfall Associated with Hurricane Maria over Puerto Rico and Its Connections to Climate Variability and Change. Geophys. Res. Lett. 2019, 46, 2964–2973. [Google Scholar] [CrossRef]
- Dang, T.D.; Cochrane, T.A.; Arias, M.E.; Van, P.D.T.; de Vries, T.T. Hydrological Alterations from Water Infrastructure Development in the Mekong Floodplains. Hydrol. Process. 2016, 30, 3824–3838. [Google Scholar] [CrossRef]
- Ramos-Scharron, C.E.; Garnett, C.T.; Arima, E.Y. A Catalogue of Tropical Cyclone Induced Instantaneous Peak Flows Recorded in Puerto Rico and a Comparison with the World’s Maxima. Hydrology 2021, 8, 84. [Google Scholar] [CrossRef]
- Hynek, S.A.; McDowell, W.H.; Bhatt, M.P.; Orlando, J.J.; Brantley, S.L. Lithological Control of Stream Chemistry in the Luquillo Mountains, Puerto Rico. Front. Earth Sci. 2022, 10, 414. [Google Scholar] [CrossRef]
- Murphy, S.F.; Stallard, R.F. Hydrology and Climate of Four Watersheds in Eastern Puerto Rico. In Water Quality and Landscape Processes of Four Watersheds in Eastern Puerto Rico; Murphy, S.F., Stallard, R.F., Eds.; Professional Paper 1789-A; U.S. Geological Survey: Reston, VA, USA, 2012; Volume 42. [Google Scholar]
- McDowell, W.H.; Scatena, F.N.; Waide, R.B.; Brokaw, N.; Camilo, G.R.; Covich, A.P.; Crowl, T.A.; González, G.; Greathouse, E.A.; Klawinski, P.; et al. Geographic and Ecological Setting of the Luquillo Mountains. In A Caribbean Forest Tapestry; Oxford University Press: New York, NY, USA, 2012; ISBN 978-0-19-533469-2. [Google Scholar]
- Murphy, S.F.; Stallard, R.F.; Larsen, M.C.; Gould, W.A. Physiography, Geology, and Land Cover of Four Watersheds in Eastern Puerto Rico. In Water Quality and Landscape Processes of Four Watersheds in Eastern Puerto Rico; Murphy, S.F., Stallard, R.F., Eds.; Professional Paper 1789-A; U.S. Geological Survey: Reston, VA, USA, 2012; Volume 24. [Google Scholar]
- Lidiak, E.G.; Larue, D.K. Tectonics and Geochemistry of the Northeastern Caribbean; Geological Society of America: Boulder, CO, USA, 1998; ISBN 978-0-8137-2322-8. [Google Scholar]
- Seiders, V.M. Geologic Map of the El Yunque Quadrangle, Puerto Rico. IMAP 1971, 658. [Google Scholar] [CrossRef]
- Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, and Fracturing. Geochim. Cosmochim. Acta 2008, 72, 4488–4507. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R.C.; Buss, H.L.; Brantley, S.L. A Spheroidal Weathering Model Coupling Porewater Chemistry to Soil Thicknesses during Steady-State Denudation. Earth Planet. Sci. Lett. 2006, 244, 444–457. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Larsen, M.C.; Hupp, C.R. The Role of Soil Processes in Determining Mechanisms of Slope Failure and Hillslope Development in a Humid-Tropical Forest Eastern Puerto Rico. Geomorphology 1990, 3, 263–286. [Google Scholar] [CrossRef]
- Briggs, R.P. The Lower Cretaceous Figuera Lava and Fajardo Formation in the Stratigraphy of Northeastern Puerto Rico; Geological Survey Bulletin; For Sale by the Superintendent of Documents, US Government Printing Office: Washington, DC, USA, 1973.
- McDowell, W.; Brereton, R.; Scatena, F.; Shanley, J.; Brokaw, N.; Lugo, A. Interactions between Lithology and Biology Drive the Long-Term Response of Stream Chemistry to Major Hurricanes in a Tropical Landscape. Biogeochemistry 2013, 116, 175–186. [Google Scholar] [CrossRef]
- Perdrial, N.; Thompson, A.; O’Day, P.A.; Steefel, C.I.; Chorover, J. Mineral Transformation Controls Speciation and Pore-Fluid Transmission of Contaminants in Waste-Weathered Hanford Sediments. Geochim. Cosmochim. ACTA 2014, 141, 487–507. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC Approved Mineral Symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Velbel, M.A. Bond Strength and the Relative Weathering Rates of Simple Orthosilicates. Am. J. Sci. 1999, 299, 679–696. [Google Scholar] [CrossRef]
- Gordeev, V.V.; Dara, O.M.; Filippov, A.S.; Belorukov, S.K.; Lokhov, A.S.; Kotova, E.I.; Kochenkova, A.I. Mineralogy of Particulate Suspended Matter of the Severnaya Dvina River (White Sea, Russia). Minerals 2022, 12, 1600. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; von Freyberg, J.; Studer, B.; Kiewiet, L.; Kirchner, J.W. Concentration–Discharge Relationships Vary among Hydrological Events, Reflecting Differences in Event Characteristics. Hydrol. Earth Syst. Sci. 2020, 24, 2561–2576. [Google Scholar] [CrossRef]
- Neubauer, E.; Köhler, S.J.; von der Kammer, F.; Laudon, H.; Hofmann, T. Effect of PH and Stream Order on Iron and Arsenic Speciation in Boreal Catchments. Environ. Sci. Technol. 2013, 47, 7120–7128. [Google Scholar] [CrossRef]
- Le Meur, M.; Montargès-Pelletier, E.; Bauer, A.; Gley, R.; Migot, S.; Barres, O.; Delus, C.; Villiéras, F. Characterization of Suspended Particulate Matter in the Moselle River (Lorraine, France): Evolution along the Course of the River and in Different Hydrologic Regimes. J. Soils Sediments 2016, 16, 1625–1642. [Google Scholar] [CrossRef]
- Van Put, A.; Van Grieken, R.; Wilken, R.-D.; Hudec, B. Geochemical Characterization of Suspended Matter and Sediment Samples from the Elbe River by EPXMA. Water Res. 1994, 28, 643–655. [Google Scholar] [CrossRef]
- Matsunaga, T.; Tsuduki, K.; Yanase, N.; Kritsananuwat, R.; Ueno, T.; Hanzawa, Y.; Naganawa, H. Temporal Variations in Metal Enrichment in Suspended Particulate Matter during Rainfall Events in a Rural Stream. Limnology 2014, 15, 13–25. [Google Scholar] [CrossRef]
- Nagano, T.; Yanase, N.; Tsuduki, K.; Nagao, S. Particulate and Dissolved Elemental Loads in the Kuji River Related to Discharge Rate. Environ. Int. 2003, 28, 649–658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mackowiak, T.J.; Perdrial, N. Monitoring of Suspended Sediment Mineralogy in Puerto-Rican Rivers: Effects of Flowrate and Lithology. Minerals 2023, 13, 208. https://doi.org/10.3390/min13020208
Mackowiak TJ, Perdrial N. Monitoring of Suspended Sediment Mineralogy in Puerto-Rican Rivers: Effects of Flowrate and Lithology. Minerals. 2023; 13(2):208. https://doi.org/10.3390/min13020208
Chicago/Turabian StyleMackowiak, Trevor J., and Nicolas Perdrial. 2023. "Monitoring of Suspended Sediment Mineralogy in Puerto-Rican Rivers: Effects of Flowrate and Lithology" Minerals 13, no. 2: 208. https://doi.org/10.3390/min13020208
APA StyleMackowiak, T. J., & Perdrial, N. (2023). Monitoring of Suspended Sediment Mineralogy in Puerto-Rican Rivers: Effects of Flowrate and Lithology. Minerals, 13(2), 208. https://doi.org/10.3390/min13020208