Multi-Analytical Techniques to Define the Mineralogical and Petrophysical Characteristics and Provenance of Siliceous Lithic Findings: The Case Study of La Calvera Rock Shelter (Cantabria, Spain)
Abstract
:1. Introduction and Aims
2. Geological Setting and Natural Chert Occurrences
3. Materials and Methods
4. Results
4.1. Compositional Characteristics
4.1.1. SEM-EDS Analysis
4.1.2. XRD Analysis
4.2. Petrophysical Properties
4.3. Preliminary Results of Multielement Analysis
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fullagar, R.L.K.; Price, D.M.; Head, L.M. Early Human Occupation of Northern Australia: Archaeology and Thermoluminescence Dating of Jinmium Rock-Shelter, Northern Territory. Antiquity 1996, 70, 751–773. [Google Scholar] [CrossRef]
- Robbins, L.H.; Murphy, M.L.; Brook, G.A.; Ivester, A.H.; Campbell, A.C.; Klein, R.G.; Milo, R.G.; Stewart, K.M.; Downey, W.S.; Stevens, N.J. Archaeology, Palaeoenvironment, and Chronology of the Tsodilo Hills White Paintings Rock Shelter, Northwest Kalahari Desert, Botswana. J. Archaeol. Sci. 2000, 27, 1085–1113. [Google Scholar] [CrossRef]
- Lavachery, P. The Holocene Archaeological Sequence of Shum Laka Rock Shelter (Grassfields, Western Cameroon). Afr. Archaeol. Rev. 2001, 18, 213–247. [Google Scholar] [CrossRef]
- Angelucci, D.E.; Boschian, G.; Fontanals, M.; Pedrotti, A.; Vergés, J.M. Shepherds and Karst: The Use of Caves and Rock-Shelters in the Mediterranean Region during the Neolithic. World Archaeol. 2009, 41, 191–214. [Google Scholar] [CrossRef]
- MacDonald, D.H. The Role of Lithic Raw Material Availability and Quality in Determining Tool Kit Size, Tool Function, and Degree of Retouch: A Case Study from Skink Rockshelter (46NI445), West Virginia. In Lithic Technology; Cambridge University Press: Cambridge, UK, 2008; pp. 216–232. [Google Scholar]
- Högberg, A.; Larsson, L. Lithic Technology and Behavioural Modernity: New Results from the Still Bay Site, Hollow Rock Shelter, Western Cape Province, South Africa. J. Hum. Evol. 2011, 61, 133–155. [Google Scholar] [CrossRef] [PubMed]
- Marciani, G.; Arrighi, S.; Aureli, D.; Spagnolo, V.; Boscato, P.; Ronchitelli, A. Middle Palaeolithic Lithic Tools: Techno-Functional and Use-Wear Analysis of Target Objects from SU 13 at the Oscurusciuto Rock Shelter, Southern Italy. J. Lithic Stud. 2018, 5. [Google Scholar] [CrossRef]
- Abrunhosa, A.; Pereira, T.; Márquez, B.; Baquedano, E.; Arsuaga, J.L.; Pérez-González, A. Understanding Neanderthal Technological Adaptation at Navalmaíllo Rock Shelter (Spain) by Measuring Lithic Raw Materials Performance Variability. Archaeol. Anthr. Sci. 2019, 11, 5949–5962. [Google Scholar] [CrossRef]
- Diez Castillo, A. Utilización de Los Recursos en la Marina y Montaña Cantábricas: Una Prehistoria Ecológica de los Valles del Deva y Nansa; AGIRI Arkeologi Kultur Elkartea: Guernica, Spain, 1997. [Google Scholar]
- Murray, R.W. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sediment. Geol. 1994, 90, 213–232. [Google Scholar] [CrossRef]
- Abrajevitch, A. Diagenetic Formation of Bedded Chert: Implications from a Rock Magnetic Study of Siliceous Precursor Sediments. Earth Planet. Sci. Lett. 2020, 533, 116039. [Google Scholar] [CrossRef]
- Adachi, M.; Yamamoto, K.; Sugisaki, R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific Their Geological Significance as Indication Od Ocean Ridge Activity. Sediment. Geol. 1986, 47, 125–148. [Google Scholar] [CrossRef]
- Chen, D.; Qing, H.; Yan, X.; Li, H. Hydrothermal Venting and Basin Evolution (Devonian, South China): Constraints from Rare Earth Element Geochemistry of Chert. Sediment. Geol. 2006, 183, 203–216. [Google Scholar] [CrossRef]
- Howard, J.L. The Quartzite Problem Revisited. J. Geol. 2005, 113, 707–713. [Google Scholar] [CrossRef]
- Prieto, A.; Yusta, I.; Arrizabalaga, A. Defining and Characterizing Archaeological Quartzite: Sedimentary and Metamorphic Processes in the Lithic Assemblages of El Habario and El Arteu (Cantabrian Mountains, Northern Spain). Archaeometry 2019, 61, 14–30. [Google Scholar] [CrossRef]
- Bertorino, G.; Franceschelli, M.; Luglie, C.; Marchi, M.; Columbu, S. Petrographic Characterisation of Polished Stone Axes from Neolithic Sardinia: Archaeological Implications. Period. Mineral. 2002, 71, 87–100. [Google Scholar]
- Columbu, S.; Garau, A.M.; Lugliè, C. Geochemical Characterisation of Pozzolanic Obsidian Glasses Used in the Ancient Mortars of Nora Roman Theatre (Sardinia, Italy): Provenance of Raw Materials and Historical–Archaeological Implications. Archaeol. Anthr. Sci. 2019, 11, 2121–2150. [Google Scholar] [CrossRef]
- Columbu, S. Petrographic and Geochemical Investigations on the Volcanic Rocks Used in the Punic-Roman Archaeological Site of Nora (Sardinia, Italy). Environ. Earth Sci. 2018, 77, 577. [Google Scholar] [CrossRef]
- Columbu, S.; Antonelli, F.; Sitzia, F. Origin of Roman Worked Stones from St. Saturno Christian Basilica (South Sardinia, Italy). Mediterr. Archaeol. Archaeom. 2018, 18, 17–36. [Google Scholar] [CrossRef]
- Columbu, S.; Palomba, M.; Sitzia, F.; Murgia, M.R. Geochemical, Mineral-Petrographic and Physical-Mechanical Characterization of Stones and Mortars from the Romanesque Saccargia Basilica (Sardinia, Italy) to Define Their Origin and Alteration. Ital. J. Geosci. 2018, 137, 369–395. [Google Scholar] [CrossRef]
- Columbu, S.; Piras, G.; Sitzia, F.; Pagnotta, S.; Raneri, S.; Legnaioli, S.; Palleschi, V.; Lezzerini, M.; Giamello, M. Petrographic and Mineralogical Characterization of Volcanic Rocks and Surface-Depositions on Romanesque Monuments. Mediterr. Archaeol. Archaeom. 2018, 18, 37–64. [Google Scholar] [CrossRef]
- Raneri, S.; Pagnotta, S.; Lezzerini, M.; Legnaioli, S.; Palleschi, V.; S., C.; Neri, N.; Mazzoleni, P.; Raneri, S. Examining the Reactivity of Volcanic Ash in Ancient Mortars by Using a Micro-Chemical Approach. Mediterr. Archaeol. Archaeom. 2018, 18, 147–157. [Google Scholar] [CrossRef]
- Ramacciotti, M.; Gallello, G.; Pastor, A.; Diez Castillo, A.; García Puchol, O. Chert Nucleus and Cortex Characterization for Archaeological Provenance Study Tested in the Prebaetic System Region (Valencian Community, Spain). Lithic Technol. 2019, 44, 166–180. [Google Scholar] [CrossRef]
- Ramacciotti, M.; Rubio, S.; Gallello, G.; Lezzerini, M.; Raneri, S.; Hernandez, E.; Calvo, M.; Columbu, S.; Morales, A.; Pastor, A.; et al. Chemical and Mineralogical Analyses on Stones from Sagunto Castle (Spain). J. Archaeol. Sci. Rep. 2019, 24, 931–938. [Google Scholar] [CrossRef]
- Ramacciotti, M.; Rubio, S.; Gallello, G.; Lezzerini, M.; Columbu, S.; Hernandez, E.; Morales-Rubio, A.; Pastor, A.; de la Guardia, M. Chronological Classification of Ancient Mortars Employing Spectroscopy and Spectrometry Techniques: Sagunto (Valencia, Spain) Case. J. Spectrosc. 2018, 2018, 9736547. [Google Scholar] [CrossRef]
- Ramacciotti, M.; Gallello, G.; Columbu, S.; Fancello, D.; Diez-Castillo, A.; Pastor, A.; Cervera, M.L. Smartphone as an Analytical Tool for Siliceous Artefacts Non-Destructive Characterisation. STAR Sci. Technol. Archaeol. Res. 2023, in press. [Google Scholar]
- Marquínez, J.; Adrados, L. Geología y Relieve de Los Picos de Europa. Nat. Cantab. 2000, 1, 3–19. [Google Scholar]
- López-Gómez, J.; Martín-González, F.; Heredia, N.; de la Horra, R.; Barrenechea, J.F.; Cadenas, P.; Juncal, M.; Diez, J.B.; Borruel-Abadía, V.; Pedreira, D.; et al. New Lithostratigraphy for the Cantabrian Mountains: A Common Tectono-Stratigraphic Evolution for the Onset of the Alpine Cycle in the W Pyrenean Realm, N Spain. Earth Sci. Rev. 2019, 188, 249–271. [Google Scholar] [CrossRef]
- Herrero-Alonso, D.; Tarriño-Vinagre, A.; Fernández-Martínez, E.; Fuertes-Prieto, N.; Neira-Campos, A. Black Chert and Radiolarite: Knappable Lithic Raw Materials in the Prehistory of the Cantabrian Mountains (North Spain). Archaeol. Anthr. Sci. 2021, 13, 113. [Google Scholar] [CrossRef]
- Bahamonde, J.R.; Vera, C.; Colmenero, J.R. Geometría y Facies Del Márgen Progradante de Una Plataforma Carbonatada Carbonífera (Unidad de Picos de Europa, Zona Cantábrica). Rev. Soc. Geol. España 1997, 10, 163–181. [Google Scholar]
- Rodríguez Fernández, L.R.; Heredia, N. La Estratigrafía Del Carbonífero y La Estructura de La Unidad de Pisuerga-Carrión. NO de España. Cad. Lab. Xeolóxico Laxe 1988, 12, 207–229. [Google Scholar]
- Alonso, J.L.; Marcos, A.; Villa, E.; Súarez, A.; Merino-Tomé, O.A.; Fernández, L.P. Mélanges and Other Types of Block-in-Matrix Formations in the Cantabrian Zone (Variscan Orogen, Northwest Spain): Origin and Significance. Int. Geol. Rev. 2014, 57, 563–580. [Google Scholar] [CrossRef]
- Alonso, V.; González Suárez, J.J. Presencia de Hielo Glaciar En Los Picos de Europa (Cordillera Cantábrica). El Helero de Jou Negro. Cuatern. Geomorfol. 1998, 12, 35–44. [Google Scholar]
- Jiménez-Sanchez, M.; Marquínez, J. Morfología Glaciar En La Cuenca Alta Del Río Nalón, Cordillera Cantábrica. In Actas I Reunión Nacional de Geomorfología; Gutierrez, M., Pena, J.L., Lozano, M.V., Eds.; Instituto de Estudios Turolense: Teruel, Spain, 1990; Volume 1, pp. 179–190. ISBN 84-86982-16-2. [Google Scholar]
- Flor, G.; Baylòn, J.I. Glaciarismo Cuaternario En Los Puertos de Aliva (Macizo Oriental de Los Picos de Europa, Occidente de Cantabria). Cuatern. Geomorfol. 1989, 3, 27–34. [Google Scholar]
- Farias, P.; Marquínez, J.; González, M. Geomorfología y Origen de La Depresión de Comeya, Picos de Europa, Asturias. In Actas de la I Reunión Nacional de Geomorfología; Gutierrez, M., Pena, J.L., Lozano, M.V., Eds.; Instituto de Estudios Turolense: Teruel, Spain, 1990; pp. 91–101. ISBN 84-86982-16-2. [Google Scholar]
- Jiménez-Sanchez, M. El Glaciarismo En La Cuenca Alta Del Río Nalón (NO de España): Una Propuesta de Evolución de Los Sistemas Glaciares Cuaternarios En La Cordillera Cantábrica. Rev. Soc. Geol. España 1996, 9, 157–168. [Google Scholar]
- Tarriño-Vinagre, A.; Elorrieta, I.; García-Rojas, M. Flint as Raw Material in Prehistoric Times: Cantabrian Mountain and Western Pyrenees Data. Quat. Int. 2015, 364, 94–108. [Google Scholar] [CrossRef]
- Herrero-Alonso, D.; Tarriño-Vinagre, A.; Neira-Campos, A.; Fuertes-Prieto, N. Chert from the Vegamián Formation: A New Raw-Material Supply Source in the Cantabrian Mountains (NW Spain) during Prehistory. J. Lithic Stud. 2016, 3, 389–410. [Google Scholar] [CrossRef]
- Prieto, A.; Yusta, I.; García-Rojas, M.; Arrizabalaga, A.; Baena Preysler, J. Quartzite Procurement in Conglomerates and Deposits: Geoarchaeological Characterization of Potential Catchment Areas in the Central Part of the Cantabrian Region, Spain. Geoarchaeology 2021, 36, 490–510. [Google Scholar] [CrossRef]
- Diez Castillo, A. El Abrigo de La Calvera (Camaleño, Cantabria). In Illunzar; AGIRI Arkeologi Kultur Elkartea: Guernica, Spain, 1997; Volume 3, pp. 81–89. [Google Scholar]
- Buosi, C.; Columbu, S.; Ennas, G.; Pittau, P.; Scanu, G.G. Mineralogical, Petrographic, and Physical Investigations on Fossiliferous Middle Jurassic Sandstones from Central Sardinia (Italy) to Define Their Alteration and Experimental Consolidation. Geoheritage 2019, 11, 729–749. [Google Scholar] [CrossRef]
- Columbu, S.; Cruciani, G.; Fancello, D.; Franceschelli, M.; Musumeci, G. Petrophysical Properties of a Granite-Protomylonite-Ultramylonite Sequence: Insight from the Monte Grighini Shear Zone, Central Sardinia, Italy. Eur. J. Mineral. 2015, 27, 471–486. [Google Scholar] [CrossRef]
- Columbu, S.; Mulas, M.; Mundula, F.; Cioni, R. Strategies for Helium Pycnometry Density Measurements of Welded Ignimbritic Rocks. Measurement 2021, 173, 108640. [Google Scholar] [CrossRef]
- Tarriño Vinagre, A.; Duarte Matías, E.; Santamaría Álvarez, D.; Martínez Fernández, L.; Fernández de la Vega Medina, J.; Suárez Ferruelo, P.; Rodríguez Otero, V.; Forcelledo Arena, E.; de la Rasilla Vives, M. El Sílex de Piloña: Caracterización de Una Nueva Fuente de Materia Prima Lítica En La Prehistoria de Asturias. In F. Javier Fortea Pérez: Universitatis Ovetensis Magister. Estudios en Homenaje; Ediciones de la Universidad de Oviedo: Oviedo, Spain, 2013; pp. 115–132. ISBN 978-84-8317-983-3. [Google Scholar]
- Campos, A.N.; Prieto, N.F.; Alonso, D.H. The Mesolithic with Geometrics South of the ‘Picos de Europa’ (Northern Iberian Peninsula): The Main Characteristics of the Lithic Industry and Raw Material Procurement. Quat. Int. 2016, 402, 90–99. [Google Scholar] [CrossRef]
Sample | Rock type | Classification | Origin |
---|---|---|---|
AR10 | Rock crystal | Chunk | La Calvera rock shelter |
AR12.1 | Grey chert | Flake | La Calvera rock shelter |
AR18.2 | Grey chert | Flake | La Calvera rock shelter |
AR21 | Ochre chert | Flake | La Calvera rock shelter |
AR29 | Quartzite | Flake | La Calvera rock shelter |
AR34 | Quartzite | Flake | La Calvera rock shelter |
AR37 | Yellow chert | Chunk | La Calvera rock shelter |
RM03.4 | Grey chert | Chunk | La Calvera rock shelter |
AN1.2 | Domeño chert | Outcrop sample | Andilla (Valencia) |
AN5.1 | Domeño chert | Outcrop sample | Andilla (Valencia) |
Sample | Classification | Description |
---|---|---|
AR10 | Rock crystal | Colourless hyaline quartz with yellowish hues |
AR12.1 | Grey chert | Blackish surface with shiny appearance, compact but very rich in micro-grain alterations giving a porous appearance |
AR18.2 | Grey chert | Blackish with shiny appearance, compact with micro-grain alterations (similar to sample AR12.1) |
AR21 | Grey-ochre chert | Grey-beige, compact with conchoid-type fracturing and with porous appearance |
AR29 | Dark quartzite | Presence of dark-to-light colour gradient in thickness: dark side more porous and altered, light side shiny as formed by microcrystals (similar to sample AN5.1) |
AR34 | Dark quartzite | Dark in colour, porous and altered (similar to the dark side of sample ARCH29 but shinier) |
AR37 | Yellowish chert | Yellow-brown colour, with varied surface appearance: from smooth and firm in some places, to extremely porous in others |
RM03.4 | Grey chert | Black colour, shiny, almost obsidian-like appearance, with conchoid fractures, rich in alterations and also in diffuse patina (similar to sample 12.1) |
AN1.2 | Blackish chert | Blackish colour, compact with conchoid fracturing, low porosity, clean surface (no soil residue on the surface) |
AN5.1 | Grey-beige chert | Grey-beige surface with no soil residue on the surface, porous but compact appearance with conchoid-type fracturing |
Sample | Classif. | Textural/Structural Description | Qtz | Si-Al | Cal | Fe-ox | Ti-ox | Notes | Grain-Size Frequency Range (μm) | |
---|---|---|---|---|---|---|---|---|---|---|
AR10 | Rock crystal | Extremely compact, conchoid fractures, common Si-Al micro-grains, Fe oxide, gypsum, Zn oxide, Sn and P-REE, presence of NaCl surface patina | X | X | X | X | Zn oxide, Sn, Gyp, P-REE, NaCl | 25 | 120 | |
AR12.1 | Grey chert | Cribrous and rough appearance with microcavities filled by alteration phases, abundant metal oxides | X | X * | X | X | Zircons; Fe, Ni, Cr oxides | 8 | 50 | |
AR18.2 | Grey chert | Cribrous, rough appearance with microcavities filled by alteration phases, with many diffuse oxides | X | X | X | X | X | Gypsum and abundant Ti | 5 | 30 |
AR21 | Grey-ochre chert | Compact homogeneous surface, with diffuse niches rich in Si-Al phases and few metal oxides | X | X | X | / | 1 | 12 | ||
AR29 | Dark quartzite | Partly compact and clean and partly covered with earthy sediment, with scattering of Si-Al phases and metal oxides | X | X | X | X | P-REE | 10 | 80 | |
AR34 | Dark quartzite | Partly compact and clean and partly covered with earthy sediment, with scattering of Si-Al phases, metal oxides and P-REE | X | X | X | X | P-REE, Zircon, phyllosilicate | 30 | 150 | |
AR37 | Yellowish chert | Cribrous or locally smooth surface with scantily scattered light spots (without the presence of oxides or Si-Al phases) | X | X | Traces | / | 8 | 20 | ||
RM03.4 | Grey chert | Cribrous, rough appearance resulting from the presence of oxide patinas, with portions of the surface clean and smooth, unaltered quartz | X | X | XX | X | / | 10 | 40 | |
AN1.2 | Blackish chert | Compact appearance but appearing earthy at medium magnifications, covered with microparticles, and scattered with oxides of Fe, Ti and framboids | X | X | X | X | X | Pyrite framboids | 3 | 15 |
AN5.1 | Grey-beige chert | Compact appearance but earthy at medium magnifications, covered with microparticles, scattered with oxides of Fe, Ti and Cr | X | X | X | X | X | Fe-Cr grains and Ni oxides | 2 | 10 |
Sample | Type | Classification | Main Minerals | Minor or Accessory Minerals | Crystallinity | |||||
---|---|---|---|---|---|---|---|---|---|---|
α-Qtz | Cal | Ant | Phyl | Py | Rt | Dol | % | |||
AR10 | Archaeological find (artefact) | Rock crystal | X | 100 | ||||||
AR12.1 | Archaeological find (artefact) | Grey chert | X | X | X | X | 84 | |||
AR18.2 | Archaeological find (artefact) | Grey chert | X | X | X | X | X | 88.5 | ||
AR21 | Archaeological find (artefact) | Grey-ochre chert | X | (X) | 61.6 | |||||
AR29 | Archaeological find (artefact) | Dark quartzite | X | 99 | ||||||
AR34 | Archaeological find (artefact) | Dark quartzite | X | X | (X) | 95 | ||||
AR37 | Archaeological find (artefact) | Yellowish chert | X | 80 | ||||||
RM03.4 | Raw material (chunk) | Grey chert | X | 86 | ||||||
AN1.2 | Geological sample | Blackish chert | X | X | 65.3 | |||||
AN5.1 | Geological sample | Grey-beige chert | X | (X) | X | 84 |
Sample | Origin | Type | ρR | ρB | ΦO He | ΦO H2O | ICW | SI | Is(50) | RC | RT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(g/cm3) | (g/cm3) | (%) | (%) | (%) | (%) | (MPa) | (MPa) | (MPa) | ||||
AR21 | Artefact | Grey-ochre chert | Group 1 | 2.56 | 2.41 | 5.9 | 5.3 | 2.2 | 89.8 | 9.8 | 195.2 | 7.8 |
AN1.2 | Geolog. samples from Domeño (Andilla) | Blackish chert | 2.54 | 2.41 | 5.1 | 2.5 | 1.0 | 49.2 | 15.2 | 303.1 | 12.1 | |
AN5.1 | Grey-beige chert | 2.52 | 2.38 | 5.8 | 5.6 | 2.3 | 96.6 | 8.0 | 160.1 | 6.4 | ||
AR12.1 | Artefact | Grey chert | Group 2 | 2.65 | 2.59 | 2.1 | 1.8 | 0.7 | 85.8 | 8.6 | 171.6 | 6.9 |
AR18.2 | Artefact | Grey chert | 2.63 | 2.56 | 2.9 | 2.8 | 1.1 | 97.2 | 11.5 | 230.3 | 9.2 | |
AR37 | Artefact | Yellowish Chert | 2.58 | 2.50 | 3.2 | 3.1 | 1.3 | 96.7 | 7.0 | 140.5 | 5.6 | |
AR10 | Artefact | Rock-crystal | 2.64 | 2.61 | 1.2 | 1.0 | 0.4 | 83.5 | 4.9 | 99.0 | 4.0 | |
AR29 | Artefact | Dark quartzite | 2.65 | 2.61 | 1.8 | 1.7 | 0.6 | 96.8 | 15.3 | 306.9 | 12.3 | |
AR34 | Artefact | Dark quartzite | 2.65 | 2.62 | 1.2 | 1.2 | 0.5 | 97.6 | 8.3 | 165.5 | 6.6 | |
RM03.4 | Raw material (chunk) | Grey chert | 2.65 | 2.58 | 2.7 | 1.4 | 0.6 | 52.7 | 7.5 | 149.6 | 6.0 |
Class | Al | K | Ca | Ti | Fe | Zr | |
---|---|---|---|---|---|---|---|
Raw material chunks | Mean | 0.88 | 0.21 | 0.05 | 0.066 | 0.33 | 59 |
(n = 10) | SD | 0.23 | 0.05 | 0.05 | 0.014 | 0.08 | 22 |
Grey chert | Mean | 1.15 | 0.26 | 0.035 | 0.06 | 0.30 | 55 |
(n = 24) | SD | 0.55 | 0.16 | 0.019 | 0.02 | 0.14 | 30 |
Other cherts | Mean | 0.38 | 0.045 | 0.03 | 0.008 | 0.07 | <LD |
(n = 6) | SD | 0.08 | 0.019 | 0.02 | 0.002 | 0.05 | |
Quartzite | Mean | 1.5 | 0.28 | 0.045 | 0.09 | 0.5 | 185 |
(n = 15) | SD | 0.7 | 0.14 | 0.019 | 0.04 | 0.6 | 115 |
Rock crystal | Mean | <LD | 0.022 | 0.023 | 0.020 | 0.053 | <LD |
(n = 6) | SD | 0.007 | 0.009 | 0.007 | 0.013 | ||
Domeño chert | Mean | 0.30 | 0.07 | 1.9 | 0.016 | 0.16 | 9 |
(n = 11) | SD | 0.05 | 0.02 | 1.1 | 0.004 | 0.02 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Columbu, S.; Fancello, D.; Gallello, G.; Ramacciotti, M.; Diez-Castillo, A. Multi-Analytical Techniques to Define the Mineralogical and Petrophysical Characteristics and Provenance of Siliceous Lithic Findings: The Case Study of La Calvera Rock Shelter (Cantabria, Spain). Minerals 2023, 13, 666. https://doi.org/10.3390/min13050666
Columbu S, Fancello D, Gallello G, Ramacciotti M, Diez-Castillo A. Multi-Analytical Techniques to Define the Mineralogical and Petrophysical Characteristics and Provenance of Siliceous Lithic Findings: The Case Study of La Calvera Rock Shelter (Cantabria, Spain). Minerals. 2023; 13(5):666. https://doi.org/10.3390/min13050666
Chicago/Turabian StyleColumbu, Stefano, Dario Fancello, Gianni Gallello, Mirco Ramacciotti, and Agustin Diez-Castillo. 2023. "Multi-Analytical Techniques to Define the Mineralogical and Petrophysical Characteristics and Provenance of Siliceous Lithic Findings: The Case Study of La Calvera Rock Shelter (Cantabria, Spain)" Minerals 13, no. 5: 666. https://doi.org/10.3390/min13050666
APA StyleColumbu, S., Fancello, D., Gallello, G., Ramacciotti, M., & Diez-Castillo, A. (2023). Multi-Analytical Techniques to Define the Mineralogical and Petrophysical Characteristics and Provenance of Siliceous Lithic Findings: The Case Study of La Calvera Rock Shelter (Cantabria, Spain). Minerals, 13(5), 666. https://doi.org/10.3390/min13050666