The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Methods
4. Results
4.1. Petrography
4.1.1. Nepheline Syenite, Fenitised Nepheline Syenite, and Olivine Foidolites
4.1.2. Calciocarbonatites and Silicocarbonatites
4.1.3. Electron Microprobe Analysis (EPMA) of Carbonate, Fluorite, and Fenite Mica Minerals
4.2. Geochemistry
4.3. Isotopic Compositions of Özvatan Carbonatites
4.4. Fluid Inclusion Studies
4.4.1. Composition of Solution Systems
4.4.2. Ore-Bearing Fluid Source
5. Discussion
5.1. Evolution of Calciocarbonatites and Silicocarbonatites
5.2. Fenitization
- (1)
- Sodic fenites in the area are characterized by feldspar and Na-rich aegirine mineralization around carbonatite veins. The sodic fenites in the study area have a mineral assemblage of aegirine-augite, nepheline, and garnet (See Figure 3i–l);
- (2)
- The potassic fenites have abundant K-feldspar (orthoclase) minerals (see Figure 3m–p) and have higher grades of LREE, Th, U, and Nb. The potassic fenites show higher degrees of alteration than sodic fenites and are cut by numerous carbonatite veinlets. Some of the K-fenites are brecciated (See Figure 2h) and have the highest grade of REE (up to 0.36%).
5.3. Fluid Evolution and REE Enrichments
5.4. Fluorite Deposition
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2015, 72, 838–856. [Google Scholar] [CrossRef]
- Elliott, H.A.L.; Wall, F.; Chakhmouradian, A.R.; Siegfried, P.R.; Dahlgren, S.; Weatherley, S.; Finch, A.A.; Marks, M.A.W.; Dowman, E.; Deady, E. Fenites associated with carbonatite complexes: A review. Ore Geol. Rev. 2018, 93, 38–59. [Google Scholar] [CrossRef]
- Le Bas, M. Carbonatite Magmas. Mineral. Mag. 1981, 44, 133–140. [Google Scholar] [CrossRef]
- Le Bas, M.J. Nephelinites and carbonatites. Geol. Soc. Lond. Spéc. Publ. 1987, 30, 53–83. [Google Scholar] [CrossRef]
- Wolley, A. The Spatial and Temporal Distribution of Carbonatites. Carbonatites, Genesis and Evolution. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 15–37. [Google Scholar]
- Millonig, L.J.; Gerdes, A.; Groat, L.A. U–Th–Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: A geodynamic perspective. Lithos 2012, 152, 202–217. [Google Scholar] [CrossRef]
- Poletti, J.E.; Cottle, J.M.; Hagen-Peter, G.A.; Lackey, J.S. Petrochronological Constraints on the Origin of the Mountain Pass Ultrapotassic and Carbonatite Intrusive Suite, California. J. Pet. 2016, 57, 1555–1598. [Google Scholar] [CrossRef]
- Mitchell, R.; Chudy, T.; McFarlane, C.R.; Wu, F.-Y. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos 2017, 286–287, 75–91. [Google Scholar] [CrossRef]
- Cimen, O.; Corcoran, L.; Kuebler, C.; SIMONETTI, S.; Simonetti, A. Geochemical, Stable (O, C, and B) and Radiogenic (Sr, Nd, Pb) Isotopic Data from TheEskişehir-Kızılcaören (NW-Anatolia) and the Malatya-Kuluncak (E-Central Anatolia) F-REE-Th Deposits, Turkey: Implications for Nature of Carbonate-Hosted Mineralization. Turk. J. Earth Sci. 2020, 29, 798–814. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Deady, E.A.; Beard, C.D.; Broom-Fendley, S.; Elliott, H.A.L.; Berg, F.v.D.; Öztürk, H. Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements. J. Earth Sci. 2021, 32, 1332–1358. [Google Scholar] [CrossRef]
- Kjarsgaard, B.A.; Hamilton, D.L. Liquid immiscibility and the origin of alkali-poor carbonatites. Miner. Mag. 1988, 52, 43–55. [Google Scholar] [CrossRef]
- Brooker, R. The Effect of CO2 Saturation on Immiscibility between Silicate and Carbonate Liquids: An Experimental Study. J. Petrol. 1998, 39, 1905–1915. [Google Scholar] [CrossRef]
- Halama, R.; Vennemann, T.; Siebel, W.; Markl, G. The Gronnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility. J. Petrol. 2004, 46, 191–217. [Google Scholar] [CrossRef]
- Fischer, T.P.; Burnard, P.; Marty, B.; Hilton, D.R.; Füri, E.; Palhol, F.; Sharp, Z.D.; Mangasini, F. Upper-mantle volatile chemistry at Oldoinyo Lengai volcano and the origin of carbonatites. Nature 2009, 459, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Fanelli, M.; Cava, N.; Wyllie, P. Calciocarbonatite and Magnesiocarbonatite Rocks and Magmas Represented in the System CaO-MgO-CO2-H2O at 0.2 GPa. Mineral. Petrol. 2000, 68, 225–256. [Google Scholar] [CrossRef]
- Lee, W.-J.; Wyllie, P.J. Experimental Data Bearing on Liquid Immiscibility, Crystal Fractionation, and the Origin of Calciocarbonatites and Natrocarbonatites. Int. Geol. Rev. 1994, 36, 797–819. [Google Scholar] [CrossRef]
- Veksler, I.; Nielsen, T.; Sokolov, S. Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis. J. Petrol. 1998, 39, 2015–2031. [Google Scholar] [CrossRef]
- Bell, K.; Rukhlov, A. Carbonatites from the Kola Alkaline Province: Origin, Evolution and Source Characteristics. In Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province; Mineralogical Society Series 10; Mineralogical Society: London, UK, 2004; pp. 421–455. [Google Scholar]
- Le Bas, M.J. Fenites associated with carbonatites. Can. Miner. 2008, 46, 915–932. [Google Scholar] [CrossRef]
- Mariano, A. Nature of Economic Mineralization in Carbonatites and Related Rocks. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 149–176. [Google Scholar]
- Castor, S.B. The Mountain Pass Rare-Earth Carbonatite and Associated Ultrapotassic Rocks, California. Can. Miner. 2008, 46, 779–806. [Google Scholar] [CrossRef]
- Fan, H.-R.; Yang, K.-F.; Hu, F.-F.; Liu, S.; Wang, K.-Y. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci. Front. 2016, 7, 335–344. [Google Scholar] [CrossRef]
- Jaireth, S.; Hoatson, D.M.; Miezitis, Y. Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol. Rev. 2014, 62, 72–128. [Google Scholar] [CrossRef]
- Stumpfl, E.; Kirikoglu, M. Fluorite-Barite-Rare Earths Deposits at Kizilcaören, Turkey. Mitt. Osterr. Geol. Ges. 1985, 78, 193–200. [Google Scholar]
- Morteani, G.; Satir, M. The Bastnaesite-Fluorite-Barite Deposit of the Kizilcaören District, Eskisehir, Turkey. In Lanthanides, Tantalum and Niobium; Springer: Berlin/Heidelberg, Germany, 1989; pp. 189–194. [Google Scholar]
- Nikiforov, A.; Öztürk, H.; Altuncu, S.; Lebedev, V. Kizilcaören Ore-Bearing Complex with Carbonatites (Northwestern Anatolia, Turkey): Formation Time and Mineralogy of Rocks. Geol. Ore Depos. 2014, 56, 35–60. [Google Scholar] [CrossRef]
- Öztürk, H.; Altuncu, S.; Hanilçi, N.; Kasapçı, C.; Goodenough, K.M. Rare Earth Element-Bearing Fluorite Deposits of Turkey: An Overview. Ore Geol. Rev. 2019, 105, 423–444. [Google Scholar] [CrossRef]
- Ozgenc, I.; Kibici, Y. The Geology and Chemical–Mineralogical Properties of Britholite Veins of Basören Village (Kuluncak, Malatya). Geol. Bull. Turk. 1994, 37, 77–85. [Google Scholar]
- Ozgenc, I.; Ilbeyli, N. Geochemical Constraints on Petrogenesis of Late Cretaceous Alkaline Magmatism in East-Central Anatolia (Hasancelebi–Basören, Malatya), Turkey. Mineral. Petrol. 2009, 95, 71–85. [Google Scholar] [CrossRef]
- Dilek, Y.; Altunkaynak, Ş. Geochemistry of Neogene–Quaternary Alkaline Volcanism in Western Anatolia, Turkey, and Implications for the Aegean Mantle. Int. Geol. Rev. 2010, 52, 631–655. [Google Scholar] [CrossRef]
- Budakoglu, M.; Unluer, A.T.; Doner, Z.; Kocaturk, H.; Kaya, M.; Kumral, M.; Kirikoglu, M.S. Constraints on Unconsolidated Pyroclastic Flow Sediments Related REE Enrichments Originated from Potassic-Alkaline Gölcük Stratovolcano: Darıdere-Direkli-Yakaören (DDY) table 4deposits, Southwestern Anatolia of Turkey. Acta Geochim. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Boztuğ, D. Post-Collisional Central Anatolian Alkaline Plutonism, Turkey. Turk. J. Earth Sci. 1998, 7, 145–166. [Google Scholar]
- Boztuğ, D.; Türksever, E.; Heizler, M.; Jonckheer, R.J.; Tichomirowa, M. 207Pb-206Pb,40Ar-39Ar and Apatite Fission-Track Geothermochronology Revealing the Emplacement, Cooling and Exhumation History of the Karaçayır Syenite (N Sivas), East-Central Anatolia, Turkey. Turk. J. Earth Sci. 2009, 18, 109–125. [Google Scholar]
- Boztuğ, D. SIA-Type Intrusive Associations: Geodynamic Significance of Synchronism between Metamorphism and Magmatism in Central Anatolia, Turkey; Geological Society, Special Publications: London, UK, 2000; Volume 173, pp. 441–458. [Google Scholar]
- Ilbeyli, N.; Pearce, J.; Thirlwall, M.; Mitchell, J. Petrogenesis of collision-related plutonics in Central Anatolia, Turkey. Lithos 2004, 72, 163–182. [Google Scholar] [CrossRef]
- Kadıoğlu, Y.K.; Dilek, Y.; Foland, K.A. Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex, Turkey. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia; Geological Society of America: Boulder, CO, USA, 2006; Volume 409, p. 381. [Google Scholar] [CrossRef]
- Cimen, O.; Ağrılı, H.; Kuebler, C.; Simonetti, A.; Corcoran, L.; Simonetti, S.; Colak, T.; Inal, S.; Dönmez, C. Geochemical, Isotopic and U-Pb Geochronological Investigation of the Late Cretaceous Karaçayır Carbonatite (Sivas, Turkey): Insights into Mantle Sources within a Post-Collisional Tectonic Setting. Ore Geol. Rev. 2022, 141, 104650. [Google Scholar] [CrossRef]
- Ozkan, H.; Erkan, Y. A Petrological Study on a Foid Syenite Intrusion in Central Anatolia (Kayseri-Turkey). Turk. J. Earth Sci. 1994, 3, 45–55. [Google Scholar]
- Deniz, K. Mica Types as Indication of Magma Nature, Central Anatolia, Turkey. Acta Geol. Sin.-Engl. Ed. 2022, 96, 844–857. [Google Scholar] [CrossRef]
- Fayon, A.K.; Whitney, D.L.; Teyssier, C.; Garver, J.I.; Dilek, Y. Effects of plate convergence obliquity on timing and mechanisms of exhumation of a mid-crustal terrain, the Central Anatolian Crystalline Complex. Earth Planet. Sci. Lett. 2001, 192, 191–205. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Dilek, Y.; Fayon, A.K. Metamorphism of the Central Anatolian Crystalline Complex, Turkey: Influence of orogen-normal collision vs. wrench-dominated tectonics on P-T-t paths. J. Metamorph. Geol. 2001, 19, 411–432. [Google Scholar] [CrossRef]
- Şengör, A.; Burke, K.; Dewey, J.F. Tectonics of the North Anatolian Transform Fault. In Multidisciplinary Approach to Earthquake Prediction; Springer: Berlin/Heidelberg, Germany, 1982; pp. 3–22. [Google Scholar]
- Poisson, A.; Guezou, J.C.; Ozturk, A.; Inan, S.; Temiz, H.; Gürsöy, H.; Kavak, K.S.; Özden, S. Tectonic Setting and Evolution of the Sivas Basin, Central Anatolia, Turkey. Int. Geol. Rev. 1996, 38, 838–853. [Google Scholar] [CrossRef]
- Görür, N.; Tuysuz, O. Cretaceous to Miocene Palaeogeographic Evolution of Turkey: Implications for Hydrocarbon Potential. J. Pet. Geol. 2001, 24, 119–146. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Fayon, A.K.; Hamilton, M.A.; Heizler, M. Tectonic Controls on Metamorphism, Partial Melting, and Intrusion: Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif, Turkey. Tectonophysics 2003, 376, 37–60. [Google Scholar] [CrossRef]
- Whitney, D.L.; Teyssier, C.; Heizler, M.T. Gneiss Domes, Metamorphic Core Complexes, and Wrench Zones: Thermal and Structural Evolution of the Niğde Massif, Central Anatolia. Tectonics 2007, 26, 2040. [Google Scholar] [CrossRef]
- Akiman, O.; Erler, A.; Göncüoǧlu, M.C.; Güleç, N.; Geven, A.; Türeli, T.K.; Kadioǧlu, Y.K. Geochemical Characteristics of Granitoids along the Western Margin of the Central Anatolian Crystalline Complex and Their Tectonic Implications. Geol. J. 1993, 28, 371–382. [Google Scholar] [CrossRef]
- Aydın, N.S.; Göncüoğlu, M.C.; Erler, A. Latest Cretaceous Magmatism in the Central Anatolian Crystalline Complex: Review of Field, Petrographic and Geochemical Features. Turk. J. Earth Sci. 1998, 7, 259–268. [Google Scholar]
- Erler, A.; Akıman, O.; Unan, C.; Dalkılıc, F.; Dalkılıc, B.; Geven, A.; Önen, P. Petrology and Geochemistry of the Magmatic Rocks of the Kırşehir Massif at Kaman (Kırşehir) and Yozgat. Doğa Turk. J. Eng. Environ. Sci. 1991, 15, 76–100. [Google Scholar]
- Koeksal, S.; Göncüoğlu, M.C. Sr and Nd Isotopic Characteristics of Some S-, I-and A-Type Granitoids from Central Anatolia. Turk. J. Earth Sci. 2008, 17, 111–127. [Google Scholar]
- Kraeff, A.; Pasquare, G. Igneous Nepheline-Bearing Rocks of Çukurköy (Northern Part of Province of Kayseri, Turkey). Bull. Miner. Res. Explor. 1966, 66, 124–128. [Google Scholar]
- Erler, A.; Göncüoglu, M.C. Geologic and Tectonic Setting of the Yozgat Batholith, Northern Central Anatolian Crystalline Complex, Turkey. Int. Geol. Rev. 1996, 38, 714–726. [Google Scholar] [CrossRef]
- Aydın, N. Temrezli (Sorgun-Yozgat) Uranyum Yatağının Jeolojisi, Jeokimyası ve Işletilebilirliğinin Incelenmesi. Master’s Thesis, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, Turkey, 2016. [Google Scholar]
- Göncüoğlu, M.C. Geochronological Data from the Southern Part (Niğde Area) of the Central Anatolian Massif. Miner. Res. Explor. Inst. Turk. (MTA) Bull. 1986, 105, 111–124. [Google Scholar]
- Boztuğ, D.; Jonckheere, R.C. Apatite fission track data from central Anatolian granitoids (Turkey): Constraints on Neo-Tethyan closure. Tectonics 2007, 26, 1988. [Google Scholar] [CrossRef]
- Cooper, A.F.; Boztuğ, D.; Palin, J.M.; Martin, C.E.; Numata, M. Petrology and petrogenesis of carbonatitic rocks in syenites from central Anatolia, Turkey. Contrib. Miner. Pet. 2010, 161, 811–828. [Google Scholar] [CrossRef]
- Özaksoy, V.; Gökten, E. The Stratigraphy and the Tectonics of Özvatan–Felahiye (Kayseri) Region. Bull. Geol. Soc Turk. 1996, 39, 31–42. [Google Scholar]
- Whitney, D.; Dilek, Y. Core complex development in central Anatolia, Turkey. Geology 1997, 25, 1023–1026. [Google Scholar] [CrossRef]
- Roedder, E. Volume 12: Fluid Inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Shepherd, T.; Rankin, A.; Alderton, D. A Practical Guide to Fluid Inclusion Studies; Blackie and Son Ltd.: Glasgow, UK, 1985; 239p. [Google Scholar]
- Tindle, A.G.; Webb, P.C. Estimation of Lithium Contents in Trioctahedral Micas Using Microprobe Data: Application to Micas from Granitic Rocks. Eur. J. Mineral. 1990, 595–610. [Google Scholar] [CrossRef]
- Boomeri, M.; Nakashima, K.; Lentz, D.R. The Miduk Porphyry Cu Deposit, Kerman, Iran: A Geochemical Analysis of the Potassic Zone Including Halogen Element Systematics Related to Cu Mineralization Processes. J. Geochem. Explor. 2009, 103, 17–29. [Google Scholar] [CrossRef]
- Brod, J.; Gaspar, J.; de Araújo, D.; Gibson, S.; Thompson, R.; Junqueira-Brod, T. Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: Petrogenetic constraints and implications for mineral-chemistry systematics. J. Asian Earth Sci. 2001, 19, 265–296. [Google Scholar] [CrossRef]
- Nachit, H. Composition Chemique Des Biotites et Typologie Magmatique Des Granitoids. Comtes Rendus Hebd. De L’academie Des Sci. 1985, 301, 813–818. [Google Scholar]
- Nachit, H.; Ibhi, A.; Ohoud, M.B. Discrimination between Primary Magmatic Biotites, Reequilibrated Biotites and Neoformed Biotites. Comptes Rendus Geosci. 2005, 337, 1415–1420. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth-Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Abramov, S.S.; Rass, I.T.; Kononkova, N.N. Fenites of the Miaskite–Carbonatite Complex in the Vishnevye Mountains, Southern Urals, Russia: Origin of the Metasomatic Zoning and Thermodynamic Simulations of the Processes. Petrology 2020, 28, 263–286. [Google Scholar] [CrossRef]
- Höy, T. Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks in the Mount Grace Area, Frenchman Cap Dome, Southeastern British Columbia; Geological Survey Branch: The District of Vanderhoof, BC, Canada, 1988; Volume 80, ISBN 0-7718-8618-7. [Google Scholar]
- Rosatelli, G.; Humphreys-Williams, E.; Wall, F.; Castorina, F.; Perna, M.; Stoppa, F. The Calatrava paradox to decipher the origin of carbonatites: A petrological insight on Finca La Nava, Calatrava Province (central Spain). Lithos 2022, 416–417, 106649. [Google Scholar] [CrossRef]
- Bas, M.L.; Maitre, R.L.; Streckeisen, A.; Zanettin, B.; IUGS Subcommission on the Systematics of Igneous Rocks. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. ISBN 0921-3198. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basin; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Deines, P. Stable Isotpe Variations in Carbonatites. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 301–357. [Google Scholar]
- Çimen, O.; Kuebler, C.; Monaco, B.; Simonetti, S.; Corcoran, L.; Chen, W.; Simonetti, A. Boron, carbon, oxygen and radiogenic isotope investigation of carbonatite from the Miaoya complex, central China: Evidences for late-stage REE hydrothermal event and mantle source heterogeneity. Lithos 2018, 322, 225–237. [Google Scholar] [CrossRef]
- Çimen, O.; Kuebler, C.; Simonetti, S.S.; Corcoran, L.; Mitchell, R.; Simonetti, A. Combined boron, radiogenic (Nd, Pb, Sr), stable (C, O) isotopic and geochemical investigations of carbonatites from the Blue River Region, British Columbia (Canada): Implications for mantle sources and recycling of crustal carbon. Chem. Geol. 2019, 529, 119240. [Google Scholar] [CrossRef]
- Andersen, T. Mantle and crustal components in a carbonatite complex, and the evolution of carbonatite magma: Ree and isotopic evidence from the fen complex, southeast Norway. Chem. Geol. Isot. Geosci. Sect. 1987, 65, 147–166. [Google Scholar] [CrossRef]
- Roopnarain, S. Petrogenesis of Carbonatites in the Alnö Complex, Central Sweden. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2013. [Google Scholar]
- Van den Kerkhof, A.M.; Hein, U.F. Fluid inclusion petrography. Lithos 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Darling, R.S. An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for P-T isochore location. Geochim. Cosmochim. Acta 1991, 55, 3869–3871. [Google Scholar] [CrossRef]
- Archer, D.G. Thermodynamic Properties of the NaBr+ H2O System. J. Phys. Chem. Ref. Data 1991, 20, 509–555. [Google Scholar] [CrossRef]
- Bodnar, R. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Steele-MacInnis, H.-N. A Microsoft Excel Spreadsheet for Interpreting Microthermometric Data from Fluid Inclusions Based on the PVTX Properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334. [Google Scholar] [CrossRef]
- Bakker, R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Zhang, Y.-G.; Frantz, J.D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions. Chem. Geol. 1987, 64, 335–350. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Wall, F. Rare Earth Elements: Minerals, Mines, Magnets (and More). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Wall, F. Rare Earth Elements. In Critical Metals Handbook; Gunn, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Stoppa, F.; Schiazza, M.; Rosatelli, G.; Castorina, F.; Sharygin, V.V.; Ambrosio, F.A.; Vicentini, N. Italian carbonatite system: From mantle to ore-deposit. Ore Geol. Rev. 2019, 114, 103041. [Google Scholar] [CrossRef]
- Beane, R. The Magmatic-Meteoric Transition. Geotherm. Resour. Counc. Spec. Rep. 1983, 13, 245–253. [Google Scholar]
- Jones, A.P.; Genge, M.; Carmody, L. Carbonate Melts and Carbonatites. Rev. Mineral. Geochem. 2013, 75, 289–322. [Google Scholar] [CrossRef]
- Bell, K.; Simonetti, A. Source of parental melts to carbonatites–critical isotopic constraints. Miner. Pet. 2009, 98, 77–89. [Google Scholar] [CrossRef]
- Sutherland, D.S. Nomenclature of the Potassic-Feldspathic Rocks Associated with Carbonatites. GSA Bull. 1965, 76, 1409. [Google Scholar] [CrossRef]
- Rankin, A.; Linnen, R.; Samson, I. Carbonatite-Associated Rare Metal Deposits: Composition and Evolution of Ore-Forming Fluids—The Fluid Inclusion Evidence. Rare-Elem. Geochem. Miner. Depos. 2005, 17, 299–314. [Google Scholar]
- Broom-Fendley, S.; Heaton, T.; Wall, F.; Gunn, G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi. Chem. Geol. 2016, 440, 275–287. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic Pressure Determinations from Fluid Inclusion Studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Sirbescu, M.-L.C.; Nabelek, P.I. Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—Evidence from fluid inclusions. Geochim. Cosmochim. Acta 2003, 67, 2443–2465. [Google Scholar] [CrossRef]
- Wilkinson, J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Ahmad, S.N.; Rose, A.W. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Econ. Geol. 1980, 75, 229–250. [Google Scholar] [CrossRef]
- Walter, B.; Giebel, R.J.; Steele-MacInnis, M.; Marks, M.A.; Kolb, J.; Markl, G. Fluid release in carbonatitic systems and its implication for carbonatite magma ascent, compositional evolution and REE-mineralization. In Proceedings of the Goldschmidt Conference 2021, Virtual, 4–9 July 2021. [Google Scholar] [CrossRef]
- Ying, Y.-C.; Chen, W.; Simonetti, A.; Jiang, S.-Y.; Zhao, K.-D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim. Cosmochim. Acta 2020, 280, 340–359. [Google Scholar] [CrossRef]
- Migdisov, A.; Williams-Jones, A.; Brugger, J.; Caporuscio, F. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. Chem. Geol. 2016, 439, 13–42. [Google Scholar] [CrossRef]
- Richardson, C.K.; Holland, H. Fluorite Deposition in Hydrothermal Systems. Geochim. Cosmochim. Acta 1979, 43, 1327–1335. [Google Scholar] [CrossRef]
Sample | δ13C (PDB) | δ18O (SMOW) |
---|---|---|
SD-1 | −2.07 | 11.7 |
SD-2 | −0.88 | 14.1 |
SD-3 | 0.37 | 13.3 |
SD-4 | 4.10 | 12.6 |
SD-5 | −6.03 | 19.1 |
Mineral | Calcite | Fluorite | |||||
---|---|---|---|---|---|---|---|
Inclusion Type | Primary—LV | Secondary—LV | Primary—LV | Secondary—LV | |||
Eutectic Temprature (°C) | Min | −23.5 | −62.3 | −31.1 | −17.4 | −12.5 | −23.3 |
Max | −19.9 | −61.9 | −8.2 | −11.8 | −1.3 | −22 | |
n | 6 | 4 | 9 | 2 | 5 | 2 | |
Avg | −21.2 | −62.1 | −16.7 | −14.6 | −6.9 | −22.7 | |
Tm-ice (°C) | Min | −6.7 | −3.2 | −13.1 | |||
Max | −0.2 | −0.8 | −0.8 | ||||
n | 6 | 9 | 2 | ||||
Avg | −4.5 | −1.7 | −7 | ||||
Tm-clathrate (°C) | Min | 2.7 | 0.9 | 0.7 | |||
Max | 3.1 | 1.9 | 5.1 | ||||
n | 4 | 2 | 5 | ||||
Avg | 2.9 | 1.4 | 2.3 | ||||
Th-tot (°C) | Min | 140 | 386 | 114 | 281 | 101 | 148 |
Max | 302 | 400 | 275 | 299 | 153 | 178 | |
n | 6 | 4 | 9 | 2 | 5 | 2 | |
Avg | 185 | 392 | 201 | 290 | 120 | 163 |
Mineral | Calcite | Fluorite | |||||
---|---|---|---|---|---|---|---|
Inclusion Type | Primary—LV | Secondary—LV | Primary—LV | Secondary—LV | |||
Salinity %NaCl eq. | Min | −0.40 | 11.8 | 1.40 | 13.4 | 8.9 | 1.40 |
Max | 10.1 | 12.1 | 5.30 | 14.6 | 14.8 | 17.0 | |
n | 6 | 4 | 9 | 2 | 5 | 2 | |
Avg | 6.90 | 12.1 | 2.80 | 14.0 | 12.7 | 9.20 | |
Density (g/cm−3) | Min | 0.82 | 0.77 | 0.90 | |||
Max | 0.99 | 0.98 | 1.03 | ||||
n | 5 | 9 | 2 | ||||
Avg | 0.93 | 0.87 | 0.97 | ||||
Ph (MPa) | Min | 0.46 | 0.45 | 0.48 | |||
Max | 8.40 | 5.53 | 0.77 | ||||
n | 5 | 9 | 2 | ||||
Avg | 2.12 | 2.23 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unluer, A.T.; Budakoglu, M.; Doner, Z.; Abdelnasser, A. The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches. Minerals 2023, 13, 667. https://doi.org/10.3390/min13050667
Unluer AT, Budakoglu M, Doner Z, Abdelnasser A. The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches. Minerals. 2023; 13(5):667. https://doi.org/10.3390/min13050667
Chicago/Turabian StyleUnluer, Ali Tugcan, Murat Budakoglu, Zeynep Doner, and Amr Abdelnasser. 2023. "The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches" Minerals 13, no. 5: 667. https://doi.org/10.3390/min13050667
APA StyleUnluer, A. T., Budakoglu, M., Doner, Z., & Abdelnasser, A. (2023). The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches. Minerals, 13(5), 667. https://doi.org/10.3390/min13050667