Recovery of Rare Earth Elements from the Leaching Solutions of Spent NdFeB Permanent Magnets by Selective Precipitation of Rare Earth Oxalates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background of the Methodology
2.2. Precipitation of Rare Earth Oxalates
2.3. Chemical Analysis
3. Results and Discussion
3.1. Precipitation of Neodymium Oxalate from Model Solutions
3.2. Precipitation of Lanthanide Oxalates from Real Solutions after Leaching of Magnets with Hydrochloric and Sulfuric Acid Solutions
3.3. Precipitation of Rare Earth Oxalates after Iron Oxidation
3.4. Further Considerations
4. Conclusions
- It is possible to selectively precipitate rare earth oxalates from leaching solutions without the co-precipitation of iron or other elements present in the solution.
- The amount of oxalic acid added to the solution had an influence on the rare earth and iron concentrations in the solution.
- The use of oxalic acid in stoichiometric amounts allowed for the selective precipitation of rare earth oxalates; however, the recovery rate of rare earths was not very high.
- The use of oxalic acid in a 1.2 ratio compared to its stoichiometric amount allowed the achievement of higher precipitation rates of rare earths. The addition 40% or more excess oxalic acid resulted in the co-precipitation of iron.
- Higher precipitation/recovery rates of rare earths can be achieved by adding an iron oxidation stage before the oxalate precipitation. However, in this scenario, much more oxalic acid must be used to first form the iron(III) oxalate complexes. Additionally, the oxidation of iron requires the use of a high amount of hydrogen peroxide.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Gu, F.; Su, Z.; Liu, S.; Anderson, C.; Jiang, T. Hydrometallurgical Recovery of Rare Earth Elements from NdFeB Permanent Magnet Scrap: A Review. Metals 2020, 10, 841. [Google Scholar] [CrossRef]
- Liu, C.; Yan, Q.; Zhang, X.; Lei, L.; Xiao, C. Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents. Environ. Sci. Technol. 2020, 54, 10370–10379. [Google Scholar] [CrossRef]
- Papagianni, S.; Moschovi, A.M.; Sakkas, K.M.; Chalaris, M.; Yakoumis, I. Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review. Appl. Chem. 2022, 2, 199–212. [Google Scholar] [CrossRef]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and Committee of Regions Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability, European Commission, Brussel, 3rd of September 2020, COM(2020) 474 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474 (accessed on 25 April 2023).
- Bahfie, F.; Kaban, N.O.B.; Suprihatin, S.; Nurjaman, F.; Prasetyo, E.; Susanti, D. Properties of Rare-Earth Element in Magnetic Material and Its Processing. Prog. Phys. Met. 2023, 24, 157–172. [Google Scholar] [CrossRef]
- Kumari, A.; Sahu, S.K. A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Sep. Purif. Technol. 2023, 317, 123527. [Google Scholar] [CrossRef]
- Yang, Y.; Walton, A.; Sheridan, R.; Güth, K.; Gauß, R.; Gutfleisch, O.; Buchert, M.; Steenari, B.M.; Van Gerven, T.; Jones, P.T.; et al. REE Recovery from End-of-Life NdFeB Permanent Magnet Scrap: A Critical Review. J. Sustain. Metall. 2017, 3, 122–149. [Google Scholar] [CrossRef]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Van Gerven, T.; Yang, Y.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Anderson, C.D.; Anderson, C.G.; Taylor, P.R. Survey of Recycled Rare Earths Metallurgical Processing. Can. Metall. Q. 2013, 52, 249–256. [Google Scholar] [CrossRef]
- Ferron, C.J.; Henry, P. A review of the recycling of rare earth metals. Can. Metall. Q. 2016, 54, 388–394. [Google Scholar] [CrossRef]
- Zakotnik, M.; Afiuny, P.; Dunn, S.; Tudor, C.O. Magnet Recycling to Create Nd–Fe–B Magnets with Improved or Restored Magnetic Performance. U.S. Patent Application Number 20140369881, 18 December 2014. [Google Scholar]
- Zakotnik, M.; Harris, I.R.; Williams, A.J. Possible methods of recycling NdFeB-type sintered magnets using the HD/degassing process. J. Alloys Compd. 2008, 450, 525–531. [Google Scholar] [CrossRef]
- Habibzadeh, A.; Kucuker, M.A.; Gökelma, M. Review on the Parameters of Recycling NdFeB Magnets via a Hydrogenation Process. ACS Omega 2023, 8, 17431–17445. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Hu, W.; Zhao, J.; Zhu, H. Technologies of Recycling REEs and Iron from NdFeB Scrap. Metals 2023, 13, 779. [Google Scholar] [CrossRef]
- Lee, C.H.; Chen, Y.J.; Liao, C.H.; Popuri, S.R.; Tsai, S.L.; Hung, C.E. Selective Leaching Process for Neodymium Recovery from Scrap Nd-Fe-B Magnet. Metall. Mater. Trans. A 2013, 44, 5825–5833. [Google Scholar] [CrossRef]
- Stein, R.T.; Kasper, A.C.; Veit, H.M. Recovery of Rare Earth Elements Present in Mobile Phone Magnets with the Use of Organic Acids. Minerals 2022, 12, 668. [Google Scholar] [CrossRef]
- Belfqueh, S.; Seron, A.; Chapron, S.; Arrachart, G.; Menad, N. Evaluating organic acids as alternative leaching reagents for rare earth elements recovery from NdFeB magnets. J. Rare Earths 2023, 41, 621–631. [Google Scholar] [CrossRef]
- Itakura, T.; Sasai, R.; Itoh, H. Resource recovery from Nd–Fe–B sintered magnet by hydrothermal treatment. J. Alloys Compd. 2006, 408–412, 1382–1385. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Blanpain, B.; Van Gerven, T.; Binnemans, K. From NdFeB magnets towards the rare-earth oxides: A recycling process consuming only oxalic acid. RSC Adv. 2014, 4, 64099–64111. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.L.; Liu, Z.W.; Zhang, G.Q. Recovering REEs from NdFeB wastes with high purity and efficiency by leaching and selective precipitation process with modified agents. J. Rare Earths 2019, 37, 205. [Google Scholar] [CrossRef]
- Liu, Q.; Tu, T.; Guo, H.; Cheng, H.; Wang, X. High-efficiency simultaneous extraction of rare earth elements and iron from NdFeB waste by oxalic acid leaching. J. Rare Earths 2021, 39, 323–330. [Google Scholar] [CrossRef]
- Makarava, I.; Kasach, A.; Kharytonau, D.; Kurilo, I.; Laatikainen, M.; Repo, E. Enhanced acid leaching of rare earths from NdCeFeB magnets. Miner. Eng. 2022, 179, 107446. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, H.; Li, W.; Luo, X.; Wang, J.; Liu, F. Separation and coextraction of REEs and Fe from NdFeB sludge by co-leaching and stepwise precipitation. Sep. Purif. Technol. 2022, 282, 119795. [Google Scholar] [CrossRef]
- Klemettinen, A.; Żak, A.; Chojnacka, I.; Matuska, S.; Lesniewicz, A.; Wełna, M.; Adamski, Z.; Klemettinen, L.; Rycerz, L. Leaching of Rare Earth Elements from NdFeB Magnets without Mechanical Pretreatment by Sulfuric (H2SO4) and Hydrochloric (HCl) Acids. Minerals 2021, 11, 1374. [Google Scholar] [CrossRef]
- Qi, D. Chapter 7 Chemical Separation Method in Hydrometallurgy of Rare Earths: Extraction and Separation, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 671–739. [Google Scholar] [CrossRef]
- Haynes, W.M. Basic constants, Units and Conversion Factors. In CRC Handbook of Chemistry and Physics, 95th ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2013; pp. 5–190. [Google Scholar] [CrossRef]
- Pliego, G.; Zazo, J.A.; Casas, J.A.; Rodriguez, J.J. Fate of iron oxalates in aqueous solution: The role of temperature, iron species and dissolved oxygen. J. Environ. Chem. Eng. 2014, 2, 2236–2241. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Moreno, J.A.; Garcia-Garcia, G.; Arjandas, S.; Calero, M. Life cycle assessment of mechanical recycling of post-consumer polyethylene flexible films based on a real case in Spain. J. Clean. Prod. 2022, 365, 132625. [Google Scholar] [CrossRef]
- Dubreuil, A.; Young, S.B.; Atherton, J.; Gloria, T.P. Metals recycling maps and allocation procedures in life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 621–634. [Google Scholar] [CrossRef]
- Aromaa, R.; Rinne, M.; Lundström, M. Comparative Life Cycle Assessment of Hardmetal Chemical Recycling Routes. ACS Sustain. Chem. Eng. 2022, 10, 10234–10242. [Google Scholar] [CrossRef]
Oxalate | Solubility Product |
---|---|
Nd2(C2O4)3 | 1.08 × 10−33 |
Dy2(C2O4)3 | 2.0 × 10−31 |
FeC2O4 | 3.2 × 10−7 |
Chemical | Formula | Purity/Concentration | Supplier |
---|---|---|---|
Sulfuric acid | H2SO4 | Min. 95% | POCH SA, Gliwice, Poland |
Hydrochloric acid | HCl | 35% | POCH SA, Gliwice, Poland |
Iron(II) chloride | FeCl2 | 98% | Sigma-Aldrich, Schnelldorf, Germany |
Iron(II) sulphate heptahydrate | FeSO4·7H2O | ≥99% | Merck, Darmstadt, Germany |
Neodymium(III) oxide | Nd2O3 | 99.99% | Sigma-Aldrich, Schnelldorf, Germany |
Oxalic acid dihydrate | H2C2O4·2H2O | Min. 99.5% | POCH SA, Gliwice, Poland |
Hydrogen peroxide | H2O2 | 30% | POCH SA, Gliwice, Poland |
Solution | After Leaching in HCl | After Precipitation of Rare Earth Oxalates | After Leaching in H2SO4 | After Precipitation of Rare Earth Oxalates | |
---|---|---|---|---|---|
Fe (g·L−1) | 45.000 | 42.000 | 45.400 | 45.200 | |
Nd (g·L−1) | 17.840 | 0.208 | 21.200 | 0.172 | |
Pr (g·L−1) | 7.600 | 0.000 | 3.600 | 0.000 | |
Dy (g·L−1) | 0.660 | 0.054 | 0.920 | 0.000 | |
Tb (g·L−1) | 0.034 | 0.000 | 0.118 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klemettinen, A.; Adamski, Z.; Chojnacka, I.; Leśniewicz, A.; Rycerz, L. Recovery of Rare Earth Elements from the Leaching Solutions of Spent NdFeB Permanent Magnets by Selective Precipitation of Rare Earth Oxalates. Minerals 2023, 13, 846. https://doi.org/10.3390/min13070846
Klemettinen A, Adamski Z, Chojnacka I, Leśniewicz A, Rycerz L. Recovery of Rare Earth Elements from the Leaching Solutions of Spent NdFeB Permanent Magnets by Selective Precipitation of Rare Earth Oxalates. Minerals. 2023; 13(7):846. https://doi.org/10.3390/min13070846
Chicago/Turabian StyleKlemettinen, Anna, Zbigniew Adamski, Ida Chojnacka, Anna Leśniewicz, and Leszek Rycerz. 2023. "Recovery of Rare Earth Elements from the Leaching Solutions of Spent NdFeB Permanent Magnets by Selective Precipitation of Rare Earth Oxalates" Minerals 13, no. 7: 846. https://doi.org/10.3390/min13070846
APA StyleKlemettinen, A., Adamski, Z., Chojnacka, I., Leśniewicz, A., & Rycerz, L. (2023). Recovery of Rare Earth Elements from the Leaching Solutions of Spent NdFeB Permanent Magnets by Selective Precipitation of Rare Earth Oxalates. Minerals, 13(7), 846. https://doi.org/10.3390/min13070846