Study on Synergistic Strengthening of Gold Extraction with Copper Ethylenediamine Thiosulfate Using Pyrite and Nickel Ions
Abstract
:1. Introduction
2. Experimental Setup
2.1. Minerals, Reagents, and Characterisation
2.2. Experimental, Analytical, and Electrochemical Procedures
3. Results and Discussion
3.1. Mineral Characterisation
3.2. Effects of Pyrite on Gold Leaching in the Cu2+-en-S2O32− System
3.2.1. Effects of Pyrite on Gold Dissolution and Thiosulphate Decomposition
3.2.2. Effects of Ni2+ on Gold Dissolution and Thiosulphate Decomposition
3.3. Effects of Ni2+ and Pyrite on Thiosulphate Decomposition and Gold Dissolution
3.4. Scanning Electron Microscopy (SEM) Imaging
3.4.1. SEM Imaging of Leached Gold Foil
3.4.2. SEM Imaging of Leached Pyrite Surface
3.5. XPS Analysis
3.5.1. XPS Analysis of Gold Surface after Leaching
3.5.2. XPS Analysis of the Pyrite Surface after Leaching
3.6. Tafel Curves
4. Conclusions
- The addition of Ni2+ or pyrite to the Cu2+-en-S2O32− gold-leaching system could significantly inhibit the dissolution of gold and promote the decomposition of thiosulfate.
- When both pyrite and Ni2+ were simultaneously present in the leaching system, they synergistically promoted gold dissolution. The synergistic action of these two substances could increase the concentration of gold to 22.5 mg/L·cm2.
- In the pyrite-only Cu2+-en-S2O32− gold-leaching system, the surface of the gold foil was found to contain a large amount of copper-containing sulphide layers after leaching. However, hardly any Cu was detected on the surface of the gold foil that was leached in the co-presence of pyrite and Ni2+. Thus, Ni2+ ions effectively weakened the promotional effect of pyrite on the formation of the Cu-containing passivation layer on the gold surface.
- Tafel polarisation curves showed that the addition of Ni2+ or pyrite only increased the corrosion potential of Au; thus, gold dissolution was inhibited. However, in the presence of both Ni2+ and pyrite, the corrosion potential of Au decreased, resulting in an acceleration of the amount of gold dissolution.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Lu, Y.; Xu, Z. Identifying Extraction Technology of Gold from Solid Waste in Terms of Environmental Friendliness. Acs Sustain. Chem. Eng. 2019, 7, 7260–7267. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Muir, D.M. Thiosulfate leaching of gold—A review. Miner. Eng. 2001, 14, 135–174. [Google Scholar] [CrossRef]
- Xu, B.; Kong, W.; Li, Q.; Yang, Y.; Jiang, T.; Liu, X. A Review of Thiosulfate Leaching of Gold: Focus on Thiosulfate Consumption and Gold Recovery from Pregnant Solution. Metals 2017, 7, 222. [Google Scholar] [CrossRef]
- Kakumazaki, J.; Kato, T.; Sugawara, K. Recovery of Gold from Incinerated Sewage Sludge Ash by Chlorination. ACS Sustain. Chem. Eng. 2014, 2, 2297–2300. [Google Scholar] [CrossRef]
- Xu, B.; Yang, Y.; Li, Q.; Jiang, T.; Zhang, X.; Li, G. Effect of common associated sulfide minerals on thiosulfate leaching of gold and the role of humic acid additive. Hydrometallurgy 2017, 171, 44–52. [Google Scholar] [CrossRef]
- Tao, J.; Shi, X.; Jin, C.; Tang, Y. Anodic oxidation of thiosulfate ions in gold leaching. J. Cent. South Univ. Technol. 1997, 4, 89–91. [Google Scholar]
- Feng, D.; van Deventer, J.S.J. Ammoniacal thiosulphate leaching of gold in the presence of pyrite. Hydrometallurgy 2006, 82, 126–132. [Google Scholar] [CrossRef]
- Liu, X.; Xu, B.; Min, X.; Li, Q.; Yang, Y.; Jiang, T.; He, Y.; Zhang, X. Effect of Pyrite on Thiosulfate Leaching of Gold and the Role of Ammonium Alcohol Polyvinyl Phosphate (AAPP). Metals 2017, 7, 278. [Google Scholar] [CrossRef]
- Melashvili, M.; Fleming, C.; Dymov, I.; Matthews, D.; Dreisinger, D. Dissolution of gold during pyrite oxidation reaction. Miner. Eng. 2016, 87, 2–9. [Google Scholar] [CrossRef]
- Feng, D.; van Deventer, J.S.J. The effect of sulphur species on thiosulphate leaching of gold. Miner. Eng. 2007, 20, 273–281. [Google Scholar] [CrossRef]
- Senanayake, G.; Zhang, X.M. Gold leaching by copper(II) in ammoniacal thiosulphate solutions in the presence of additives. Part II: Effect of residual Cu(II), pH and redox potentials on reactivity of colloidal gold. Hydrometallurgy 2012, 115–116, 21–29. [Google Scholar] [CrossRef]
- Feng, D.; Deventer, J.S.J.V. The role of heavy metal ions in gold dissolution in the ammoniacal thiosulphate system. Hydrometallurgy 2002, 64, 231–246. [Google Scholar] [CrossRef]
- Fotoohi, B.; Mercier, L. Recovery of precious metals from ammoniacal thiosulfate solutions by hybrid mesoporous silica: 1-Factors affecting gold adsorption. Sep. Purif. Technol. 2014, 127, 84–96. [Google Scholar] [CrossRef]
- Dangi, Y.R.; Lin, X.Y.; Choi, J.W.; Lim, C.R.; Song, M.H.; Han, M.; Bediako, J.K.; Cho, C.W.; Yun, Y.S. Polyethyleneimine functionalized alginate composite fiber for fast recovery of gold from acidic aqueous solutions. Environ. Technol. Innov. 2022, 28, 102605. [Google Scholar] [CrossRef]
- Arima, H.; Fujita, T.; Yen, W.T. Using Nickel as a Catalyst in Ammonium Thiosulfate Leaching for Gold Extraction. Mater. Trans. 2004, 45, 516–526. [Google Scholar] [CrossRef]
- Xu, B.; Li, K.; Li, Q.; Yang, Y.; Liu, X.; Jiang, T. Kinetic studies of gold leaching from a gold concentrate calcine by thiosulfate with cobalt-ammonia catalysis and gold recovery by resin adsorption from its pregnant solution. Sep. Purif. Technol. 2019, 213, 368–377. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, X.; Zi, F.; Yang, P.; Chen, Y.; Chen, S. Environmentally friendly extraction of gold from refractory concentrate using a copper—Ethylenediamine—Thiosulfate solution. J. Clean. Prod. 2019, 214, 860–872. [Google Scholar] [CrossRef]
- Chen, S.; Zi, F.; Hu, X.; Chen, Y.; Yang, P.; Wang, Q.; Qin, X.; Cheng, H.; Liu, Y.; He, Y.; et al. Interfacial properties of mercaptopropyl-functionalised silica gel and its adsorption performance in the recovery of gold(I) thiosulfate complex. Chem. Eng. J. 2020, 393, 124547. [Google Scholar] [CrossRef]
- Yang, Y.-B.; Zhang, X.; Xu, B.; Li, Q.; Jiang, T.; Wang, Y.-X. Effect of arsenopyrite on thiosulfate leaching of gold—ScienceDirect. Trans. Nonferrous Met. Soc. China 2015, 25, 3454–3460. [Google Scholar] [CrossRef]
- Dang, X.-E.; Ke, W.-S.; Tang, C.; Lv, J.; Zhou, X.; Liu, C.-P. Increasing leaching rate of gold cyanide of two-stage calcination generated from refractory ore containing arsenopyrite and pyrrhotite. Rare Met. 2015, 35, 804–810. [Google Scholar] [CrossRef]
- Feng, D.; van Deventer, J.S.J. Effect of hematite on thiosulphate leaching of gold. Int. J. Miner. Process. 2007, 82, 138–147. [Google Scholar] [CrossRef]
- Feng, D.; van Deventer, J.S.J. Effect of Sulfides on Gold Dissolution in Ammoniacal Thiosulfate Medium. Metall. Mater. Trans. B 2005, 34B, 5–13. [Google Scholar] [CrossRef]
- Xu, Y.; Schoonen, M.A. The stability of thiosulfate in the presence of pyrite in low-temperature aqueous solutions. Geochim. Cosmochim. Acta 1995, 59, 4605–4622. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanismsvia thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Byerley, J.; Fouda, S.; Rempel, G. Kinetics and mechanism of the oxidation of thiosulphate ions by copper(II) ions in aqueous ammonia solution. J. Chem. Soc.-Dalton Trans. 1973, 8, 889–893. [Google Scholar] [CrossRef]
- Chu, C.K.; Breuer, P.L.; Jeffrey, M.I. The impact of thiosulfate oxidation products on the oxidation of gold in ammonia thiosulfate solutions. Miner. Eng. 2003, 16, 265–271. [Google Scholar] [CrossRef]
- Bagdasaryan, K.A.; Episkoposyan, M.L.; Ter-Arakelyan, K.A.; Babayan, G.G. Study of the Dissolution Kinetics of Gold and Silver in Sodium Thiosulfate Solutions, Izvestiya Vysshikh Uchebnykh Zavedenij. Tsvetnaya Metall. 1983, 5, 64–68. [Google Scholar]
- Pedraza, A.M.; Villegas, I.; Freund, P.L.; Chornik, B. Electro-oxidation of thiosulphate ion on gold: Study by means of cyclic voltammetry and auger electron spectroscopy. J. Electroanal. Chem. Interfacial Electrochem. 1988, 250, 443–449. [Google Scholar] [CrossRef]
- Sun, X.; Guan, Y.C.; Han, K.N. Electrochemical Behavior of the Dissolution of Gold-Silver Alloys in Cyanide Solutions. Metall. Mater. Trans. B 1996, 27B, 355–361. [Google Scholar] [CrossRef]
- Perry, D.L.; Taylor, J.A. X-ray photoelectron and Auger spectroscopic studies of Cu2S and CuS. J. Mater. Sci. Lett. 1986, 5, 384–386. [Google Scholar] [CrossRef]
- Deroubaix, G.; Marcus, P. X-ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides. Surf. Interface Anal. 1992, 18, 39–46. [Google Scholar] [CrossRef]
- Acres, R.G.; Harmer, S.L.; Beattie, D.A. Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite. Int. J. Miner. Process. 2010, 94, 43–51. [Google Scholar] [CrossRef]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Velásquez, P.; Leinen, D.; Pascual, J.; Ramos-Barrado, J.R.; Córdova, R. A chemical; morphological; electrochemical (XPS, SEM/EDX, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. J. Phys. Chem. B 2005, 109, 4977–4988. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.W.; Buckley, A.N.; Lamb, R.N.; Rosenberg, R.A.; Moran, D. The oxidation states of copper and iron in mineral sulfides, and the oxides formed on initial exposure of chalcopyrite and bornite to air. Geochim. Cosmochim. Acta 2006, 70, 2210–2228. [Google Scholar] [CrossRef]
- Laajalehto, K.; Kartio, I.; Nowak, P. XPS study of clean metal sulfide surfaces. Appl. Surf. Sci. 1994, 81, 11–15. [Google Scholar] [CrossRef]
- Nava, D.; González, I.; Leinen, D.; Ramos-Barrado, J.R. Surface characterization by X-ray photoelectron spectroscopy and cyclic voltammetry of products formed during the potentiostatic reduction of chalcopyrite. Electrochim. Acta 2008, 53, 4889–4899. [Google Scholar] [CrossRef]
- Daas, H.D.; Passacantando, M.; Lozzi, L.; Santucci, S.; Picozzi, P. The interaction of Cu(l00)-Fe surfaces with oxygen studied by X-ray photoelectron spectroscopy. Surf. Sci. 1994, 317, 295–302. [Google Scholar] [CrossRef]
- Oscarson, D.W.; Huang, P.M. Oxidative power of Mn (IV) and Fe (III) oxides with respect to As (III) in terrestrial and aquatic environments. Nature 1981, 291, 50–51. [Google Scholar] [CrossRef]
- Xu, B.; Li, K.; Dong, Z.; Yang, Y.; Li, Q.; Liu, X.; Jiang, T. Eco-friendly and economical gold extraction by nickel catalyzed ammoniacal thiosulfate leaching-resin adsorption recovery. J. Clean. Prod. 2019, 233, 1475–1485. [Google Scholar] [CrossRef]
Component | FeS2 | SiO2 | As2O3 |
---|---|---|---|
% (w/w) | 98.6 | 0.86 | 0.54 |
Element | O | S | Fe | Ni | Cu | Au |
---|---|---|---|---|---|---|
Concentration (%) | 22.9 | 17.4 | 3.00 | 0 | 0.50 | 56.2 |
Element | O | S | Fe | Cu | Au |
---|---|---|---|---|---|
Concentration (%) | 19.8 | 12.1 | 2.97 | 8.48 | 56.7 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
932.93 | 50.0 | 75.0 | Cu2S |
952.83 | 25.0 | ||
935.02 | 16.7 | 25.0 | CuS/Cu(OH)2 |
954.92 | 8.3 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
932.70 | 14.8 | 22.2 | Cu2S |
952.60 | 7.42 | ||
935.06 | 34.2 | 51.3 | CuS/Cu(OH)2 |
954.96 | 17.1 | ||
940.59 | 7.28 | 26.5 | O2/Cu/Fe interface product |
960.49 | 3.64 | ||
943.78 | 10.4 | ||
963.68 | 5.2 |
Metal Ion | Complexation | LogK |
---|---|---|
Ni2+ | Ni(en)2+ | 7.52 |
Ni(en)22+ NiS2O3 | 13.84 2.06 | |
Cu+ | Cu(en)2+ Cu(S2O3)35− | 10.8 13.84 |
Cu2+ | Cu(en)22+ | 20 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
161.68 | 12.0 | 18.0 | CuS/Cu2S |
162.86 | 6.0 | ||
162.86 | 12.5 | 18.8 | FeS2 |
163.87 | 6.25 | ||
164.98 | 3.87 | 5.90 | Na2SO3 |
166.15 | 1.93 | ||
168.69 | 38.2 | 57.3 | SO42− |
169.87 | 19.1 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
161.63 | 27.0 | 40.5 | CuS/Cu2S |
162.81 | 13.5 | ||
163.97 | 11.2 | 16.8 | S |
165.15 | 5.60 | ||
165.13 | 3.47 | 5.20 | Na2SO3 |
166.31 | 1.73 | ||
168.75 | 25.0 | 37.5 | SO42− |
169.93 | 12.5 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
706.91 | 2.6 | 3.9 | FeS2 |
720.51 | 1.3 | ||
710.50 | 7.07 | 10.6 | Fe2O3/Fe3O4 |
724.10 | 3.53 | ||
711.90 | 35.6 | 53.4 | FeOOH |
725.50 | 17.8 | ||
720.03 | 21.4 | 32.1 | O2/Cu/Fe interface product |
733.63 | 10.7 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
706.94 | 3.44 | 5.16 | FeS2 |
720.54 | 1.69 | ||
710.87 | 49.0 | 73.5 | Fe2O3/Fe3O4 |
724.47 | 24.5 | ||
717.60 | 10.7 | 16.1 | O2/Cu/Fe interface product |
731.20 | 5.40 | ||
719.92 | 3.49 | 5.24 | |
733.52 | 1.75 |
Element | O | S | Fe | Ni | Cu | Au |
---|---|---|---|---|---|---|
Concentration (%) | 77.0 | 13.4 | 7.70 | 0.26 | 1.50 | 0.14 |
Element | O | S | Fe | Cu | Au |
---|---|---|---|---|---|
Concentration (%) | 60.4 | 27.8 | 11.8 | 0 | 0 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
706.51 | 4.26 | 6.4 | FeS2 |
720.11 | 2.14 | ||
711.50 | 62.4 | 93.6 | FeOOH |
725.10 | 31.2 |
Binding Energy (eV) | Content (%) | Total Content (%) | Species |
---|---|---|---|
706.36 | 17.6 | 26.4 | FeS2 |
719.96 | 8.8 | ||
710.87 | 28.4 | 42.6 | Fe3O4 |
724.47 | 14.2 | ||
711.80 | 14.3 | 21.45 | FeOOH |
725.40 | 7.15 | ||
719.56 | 5.19 | 7.79 | O2/Cu/Fe interface product |
733.16 | 2.60 | ||
721.93 | 1.17 | 1.76 | |
735.53 | 0.59 |
System | Ecorr (V) | Jcorr (A) |
---|---|---|
Cu2+-en-S2O32− | −0.29 | |
Cu2+-en-S2O32−-Ni2+ | −0.08 | |
Cu2+-en-S2O32−-pyrite | −0.12 | |
Cu2+-en-S2O32−-pyrite-Ni2+ | −0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, X.; Zhang, T.; Zi, F.; Zhang, H.; Li, G. Study on Synergistic Strengthening of Gold Extraction with Copper Ethylenediamine Thiosulfate Using Pyrite and Nickel Ions. Minerals 2024, 14, 2. https://doi.org/10.3390/min14010002
Qin X, Zhang T, Zi F, Zhang H, Li G. Study on Synergistic Strengthening of Gold Extraction with Copper Ethylenediamine Thiosulfate Using Pyrite and Nickel Ions. Minerals. 2024; 14(1):2. https://doi.org/10.3390/min14010002
Chicago/Turabian StyleQin, Xuecong, Tao Zhang, Futing Zi, Hongbo Zhang, and Guoping Li. 2024. "Study on Synergistic Strengthening of Gold Extraction with Copper Ethylenediamine Thiosulfate Using Pyrite and Nickel Ions" Minerals 14, no. 1: 2. https://doi.org/10.3390/min14010002
APA StyleQin, X., Zhang, T., Zi, F., Zhang, H., & Li, G. (2024). Study on Synergistic Strengthening of Gold Extraction with Copper Ethylenediamine Thiosulfate Using Pyrite and Nickel Ions. Minerals, 14(1), 2. https://doi.org/10.3390/min14010002