Enhanced Chalcopyrite Dissolution in Acidic Culture Medium: The Impact of Arsenopyrite Presence
Abstract
:1. Introduction
2. Experimental
2.1. Minerals
2.2. Leaching Experiments
2.3. Electrochemical Studies
2.3.1. Working Electrodes Preparation
2.3.2. Electrochemical Measurements
2.4. Analytical Methods
3. Results
3.1. Minerals Analysis
3.2. Leaching Results
3.3. Leached Residues Analysis
3.4. Galvanic Potential and Tafel Polarization Plots
3.5. Cyclic Voltammograms
3.6. XPS Characterization
3.7. Morphology Analysis
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Kawashima, N.; Li, J.; Chandra, A.P.; Gerson, A.R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv. Colloid Interface Sci. 2013, 197, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Gu, G.; Ji, J.; Xu, B. Bioleaching of two different genetic types of chalcopyrite and their comparative mineralogical assessment. Anal. Bioanal. Chem. 2018, 410, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Huang, X.; Wang, J.; Li, Y.; Liao, R.; Wang, X.; Qiu, X.; Xiong, Y.; Qin, W.; Qiu, G. Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite. Miner. Eng. 2017, 109, 153–161. [Google Scholar] [CrossRef]
- Deng, S.; Yang, J.; Wang, Y.; Long, T.; Yang, W. Influence of magnetite on the leaching of chalcopyrite in sulfuric acid. Arab. J. Chem. 2023, 16, 104905. [Google Scholar] [CrossRef]
- Zhao, C.-x.; Yang, B.-j.; Wang, X.-x.; Zhao, H.-b.; Gan, M.; Qiu, G.-z.; Wang, J. Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching. Trans. Nonferrous Met. Soc. China 2020, 30, 1078–1090. [Google Scholar] [CrossRef]
- Wang, J.; Tao, L.; Zhao, H.; Hu, M.; Zheng, X.; Peng, H.; Gan, X.; Xiao, W.; Cao, P.; Qin, W.; et al. Cooperative effect of chalcopyrite and bornite interactions during bioleaching by mixed moderately thermophilic culture. Miner. Eng. 2016, 95, 116–123. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Arai, M.; Miki, H.; Tsunekawa, M.; Hirajima, T. A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 2002, 63, 257–267. [Google Scholar] [CrossRef]
- Liang, C.-L.; Xia, J.-L.; Yang, Y.; Nie, Z.-Y.; Zhao, X.-J.; Zheng, L.; Ma, C.-Y.; Zhao, Y.-D. Characterization of the thermo-reduction process of chalcopyrite at 65 °C by cyclic voltammetry and XANES spectroscopy. Hydrometallurgy 2011, 107, 13–21. [Google Scholar] [CrossRef]
- Liao, R.; Wang, X.-x.; Yang, B.-j.; Hong, M.-x.; Zhao, H.-b.; Wang, J.; Qiu, G.-z. Catalytic effect of silver-bearing solid waste on chalcopyrite bioleaching: A kinetic study. J. Cent. South Univ. 2020, 27, 1395–1403. [Google Scholar] [CrossRef]
- Khoshkhoo, M.; Dopson, M.; Shchukarev, A.; Sandstrom, A. Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution. Hydrometallurgy 2014, 149, 220–227. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, M.; Li, Y.; Zhu, S.; Qin, W.; Qiu, G.; Wang, J. Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium. Trans. Nonferrous Met. Soc. China 2015, 25, 303–313. [Google Scholar] [CrossRef]
- Wang, J.; Gan, X.; Zhao, H.; Hu, M.; Li, K.; Qin, W.; Qiu, G. Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis. Miner. Eng. 2016, 98, 264–278. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Gan, X.; Zheng, X.; Tao, L.; Hu, M.; Li, Y.; Qin, W.; Qiu, G. Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum. Bioresour. Technol. 2015, 194, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Khoshkhoo, M.; Dopson, M.; Engstrom, F.; Sandstrom, A. New insights into the influence of redox potential on chalcopyrite leaching behaviour. Miner. Eng. 2017, 100, 9–16. [Google Scholar] [CrossRef]
- Li, A.; Huang, S. Comparison of the electrochemical mechanism of chalcopyrite dissolution in the absence or presence of Sulfolobus metallicus at 70 °C. Miner. Eng. 2011, 24, 1520–1522. [Google Scholar] [CrossRef]
- Zhu, W.; Xia, J.-l.; Yang, Y.; Nie, Z.-y.; Zheng, L.; Ma, C.-y.; Zhang, R.-y.; Peng, A.-a.; Tang, L.; Qiu, G.-z. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Bioresour. Technol. 2011, 102, 3877–3882. [Google Scholar] [CrossRef]
- Nazari, G.; Dixon, D.G.; Dreisinger, D.B. The mechanism of chalcopyrite leaching in the presence of silver-enhanced pyrite in the Galvanox™ process. Hydrometallurgy 2012, 113, 122–130. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Miki, H.; Hirajima, T.; Tsunekawa, M. A model for ferrous-promoted chalcopyrite leaching. Hydrometallurgy 2000, 57, 31–38. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Miki, H.; Hirajima, T.; Tsunekawa, M. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy 2001, 60, 185–197. [Google Scholar] [CrossRef]
- Tanne, C.; Schippers, A. Electrochemical investigation of microbially and galvanically leached chalcopyrite. Hydrometallurgy 2021, 202, 105603. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Montes, K.S.; Padilla, R. Galvanic Effect of Pyrite on Chalcopyrite Leaching in Sulfate-Chloride Media. Miner. Process. Extr. Metall. Rev. 2015, 36, 65–70. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, W.; Bhargava, S.K.; Zeng, W.; Chen, M. A XANES and XRD study of chalcopyrite bioleaching with pyrite. Miner. Eng. 2016, 89, 157–162. [Google Scholar] [CrossRef]
- Majuste, D.; Ciminelli, V.S.T.; Osseo-Asare, K.; Dantas, M.S.S. Quantitative assessment of the effect of pyrite inclusions on chalcopyrite electrochemistry under oxidizing conditions. Hydrometallurgy 2012, 113, 167–176. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Chen, M.; Yang, Y. Effect of pyrite on the electrochemical behavior of chalcopyrite at different potentials in pH 1.8 H2SO4. J. Chem. Res. 2019, 43, 493–502. [Google Scholar] [CrossRef]
- Hong, M.; Huang, X.; Gan, X.; Qiu, G.; Wang, J. The use of pyrite to control redox potential to enhance chalcopyrite bioleaching in the presence of Leptospirillum ferriphilum. Miner. Eng. 2021, 172, 107145. [Google Scholar] [CrossRef]
- Pearce, C.I.; Pattrick, R.A.D.; Vaughan, D.J. Electrical and magnetic properties of sulfides. Rev. Mineral. Geochem. 2006, 61, 127–180. [Google Scholar] [CrossRef]
- Silva, J.C.M.; De Abreu, H.A.; Duarte, H.A. Electronic and structural properties of bulk arsenopyrite and its cleavage surfaces—A DFT study. RSC Adv. 2015, 5, 2013–2023. [Google Scholar] [CrossRef]
- Li, Y.-Q.; He, Q.; Chen, J.-H.; Zhao, C.-H. Electronic and chemical structures of pyrite and arsenopyrite. Mineral. Mag. 2015, 79, 1779–1789. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Z.; Hu, X.; Zi, F.; Zhang, Y.; Zeng, M.; Chen, Y.; Chen, S.; Bai, R.; Xie, Z. Effect of peracetic acid as a depressant on the flotation separation of chalcopyrite from arsenopyrite. Miner. Eng. 2022, 178, 107426. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Zhang, Y.; Jiang, T.; Yang, Y.; Xu, B.; He, Y. Electrochemical behaviour of the dissolution and passivation of arsenopyrite in 9K culture medium. Appl. Surf. Sci. 2020, 508, 145269. [Google Scholar] [CrossRef]
- Antonio Diaz, J.; Serrano, J.; Leiva, E. Bioleaching of Arsenic-Bearing Copper Ores. Minerals 2018, 8, 215. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, Y.; Zhou, H.; Yin, C.; Yang, H.; Chen, J.; Ou, L. Effect of calcium ions on surface properties of chalcopyrite and arsenopyrite and its response to flotation separation under low-alkalinity conditions. Appl. Surf. Sci. 2022, 602, 154191. [Google Scholar] [CrossRef]
- Deng, S.; Gu, G.-h.; Long, T.; Xiao, W.; Yang, W. Galvanic effect of magnetite on electrochemical oxidation of arsenopyrite in acidic culture medium. Trans. Nonferrous Met. Soc. China 2022, 32, 3744–3752. [Google Scholar] [CrossRef]
- Gu, G.; Hu, K.; Zhang, X.; Xiong, X.; Yang, H. The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum. Electrochim. Acta 2013, 103, 50–57. [Google Scholar] [CrossRef]
- Zeng, W.; Qiu, G.; Chen, M. Investigation of Cu-S intermediate species during electrochemical dissolution and bioleaching of chalcopyrite concentrate. Hydrometallurgy 2013, 134, 158–165. [Google Scholar] [CrossRef]
- Deng, S.; Gu, G.; He, G.; Li, L. Catalytic effect of pyrite on the leaching of arsenopyrite in sulfuric acid and acid culture medium. Electrochim. Acta 2018, 263, 8–16. [Google Scholar] [CrossRef]
- Hiroyoshi, N.; Kuroiwa, S.; Miki, H.; Tsunekawa, M.; Hirajima, T. Effects of coexisting metal ions on the redox potential dependence of chalcopyrite leaching in sulfuric acid solutions. Hydrometallurgy 2007, 87, 1–10. [Google Scholar] [CrossRef]
- Rafsanjani-Abbasi, A.; Davoodi, A. Electrochemical Characterization of Natural Chalcopyrite Dissolution in Sulfuric Acid Solution in Presence of Peroxydisulfate. Electrochim. Acta 2016, 212, 921–928. [Google Scholar] [CrossRef]
Electrode | φcorr/mV | Jcorr/ (μA·cm−2) | ba/ (V·Decade−1) | bc/ (V·Decade−1) | Rp/kΩ |
---|---|---|---|---|---|
Chalcopyrite | 175 | 0.46 | 15.462 | 6.298 | 43.06 |
Arsenopyrite | 260 | 3.25 | 6.835 | 5.150 | 11.17 |
Galvanic couple | 218 | 5.39 | 4.263 | 3.598 | 10.26 |
Cu (%) | Fe (%) | S (%) | |
---|---|---|---|
After self-corrosion | 18.05 | 29.48 | 52.47 |
After galvanic coupling | 27.13 | 0.44 | 72.43 |
Species | After Self-Corrosion | After Galvanic Coupling | |||
---|---|---|---|---|---|
Binding Energy/eV | Content/% | Binding Energy/eV | Content/% | ||
S 2p | S2− | 161.30 | 47.04 | 161.19 | 33.35 |
S22− | 162.75 | 19.82 | 162.66 | 23.2 | |
Sn2−/S0 | 163.57 | 22.23 | 163.59 | 5.84 | |
SO42− | 168.69 | 10.91 | 168.85 | 37.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shangguan, X.; Liu, Y.; Liu, R.; Wang, K.; Belqadi, W.; He, J.; Tong, Y.; Shen, L.; Zeng, W.; Wu, X.; et al. Enhanced Chalcopyrite Dissolution in Acidic Culture Medium: The Impact of Arsenopyrite Presence. Minerals 2024, 14, 50. https://doi.org/10.3390/min14010050
Shangguan X, Liu Y, Liu R, Wang K, Belqadi W, He J, Tong Y, Shen L, Zeng W, Wu X, et al. Enhanced Chalcopyrite Dissolution in Acidic Culture Medium: The Impact of Arsenopyrite Presence. Minerals. 2024; 14(1):50. https://doi.org/10.3390/min14010050
Chicago/Turabian StyleShangguan, Xiangdong, Yuandong Liu, Run Liu, Kan Wang, Wissal Belqadi, Jiayu He, Yan Tong, Li Shen, Weimin Zeng, Xueling Wu, and et al. 2024. "Enhanced Chalcopyrite Dissolution in Acidic Culture Medium: The Impact of Arsenopyrite Presence" Minerals 14, no. 1: 50. https://doi.org/10.3390/min14010050
APA StyleShangguan, X., Liu, Y., Liu, R., Wang, K., Belqadi, W., He, J., Tong, Y., Shen, L., Zeng, W., Wu, X., Yu, R., & Sun, X. (2024). Enhanced Chalcopyrite Dissolution in Acidic Culture Medium: The Impact of Arsenopyrite Presence. Minerals, 14(1), 50. https://doi.org/10.3390/min14010050