Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Deposit Geology
3. Samples and Analytical Techniques
3.1. Sample Selection
3.2. Analytical Techniques
4. Results
4.1. Raman Analysis of TiO2 Minerals in Different Stages of Hydrothermal Alteration
4.2. Major and Trace Elements of Rutile
5. Discussion
5.1. The Genesis of Rutile
5.2. Characteristics and Evolution of Hydrothermal Alteration Fluids
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deng, J.; Wang, Q.F.; Zhang, L.; Xue, S.C.; Liu, X.F.; Yang, L.; Yang, L.Q.; Qiu, K.F.; Liang, Y.Y. Metallogenetic Model of Jiaodong-Type Gold Deposits, Eastern China. Sci. China Earth Sci. 2023, 66, 2287–2310. [Google Scholar] [CrossRef]
- Liu, X.D.; Deng, J.; Zhang, L.; Lin, S.Y.; Zhou, M.L.; Song, Y.Z.; Xu, X.L.; Lian, C.Q. Hydrothermal alteration of the Sizhuang gold deposit, northwestern Jiaodong Peninsula, eastern China. Acta Petrol. Sin. 2019, 35, 1551–1565. [Google Scholar] [CrossRef]
- Guo, L.N.; Zhang, C.; Song, Y.Z.; Chen, B.H.; Zhou, Z.; Zhang, B.L.; Xu, X.L.; Wang, Y.W. Hydrogen and oxygen isotopes geochemistry of the Wang’ershan gold deposit, Jiaodong. Acta Petrol. Sin. 2014, 30, 2481–2494. [Google Scholar]
- Zhang, C.; Huang, T.; Liu, X.D.; Liu, Y.; Zhao, H.; Wang, X.D. Hydrothermal alteration of the Xincheng gold deposit, northwestern Jiaodong, China. Acta Petrol. Sin. 2016, 32, 2433–2450. [Google Scholar]
- Zhang, B.L.; Shan, W.; Li, D.P.; Xiao, B.J.; Wang, Z.L.; Zhang, R.Z. Hydrothermal alteration in the Dayingezhuang gold deposit, Jiaodong, China. Acta Petrol Sin. 2017, 33, 2256–2272. [Google Scholar]
- Wang, Z.L.; Yang, L.Q.; Guo, L.N.; Marsh, E.; Wang, J.P.; Liu, Y.; Zhang, C.; Li, R.-H.; Zhang, L.; Zheng, X.-L.; et al. Fluid Immiscibility and Gold Deposition in the Xincheng Deposit, Jiaodong Peninsula, China: A Fluid Inclusion Study. Ore Geol. Rev. 2015, 65, 701–717. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Liu, X.F.; Zhang, L.; Yang, L.Q.; Yang, L.; Qiu, K.F.; Guo, L.N.; Liang, Y.Y.; Ma, Y. The Formation of the Jiaodong Gold Province. Acta Geol. Sin. 2022, 96, 1801–1820. [Google Scholar] [CrossRef]
- Wilson, A.J.; Cooke, D.R.; Harper, B.J.; Deyell, C.L. Sulfur Isotopic Zonation in the Cadia District, Southeastern Australia: Exploration Significance and Implications for the Genesis of Alkalic Porphyry Gold–Copper Deposits. Miner. Deposita 2007, 42, 465–487. [Google Scholar] [CrossRef]
- Rusk, B.G.; Lowers, H.A.; Reed, M.H. Trace Elements in Hydrothermal Quartz: Relationships to Cathodoluminescent Textures and Insights into Vein Formation. Geology 2008, 36, 547–550. [Google Scholar] [CrossRef]
- Reed, M.; Rusk, B.; Palandri, J. The Butte Magmatic-Hydrothermal System: One Fluid Yields All Alteration and Veins. Econ. Geol. 2013, 108, 1379–1396. [Google Scholar] [CrossRef]
- Evans, K.A.; Tomkins, A.G.; Cliff, J.; Fiorentini, M.L. Insights into Subduction Zone Sulfur Recycling from Isotopic Analysis of Eclogite-Hosted Sulfides. Chem. Geol. 2014, 365, 1–19. [Google Scholar] [CrossRef]
- Peterson, E.C.; Mavrogenes, J.A. Linking High-Grade Gold Mineralization to Earthquake-Induced Fault-Valve Processes in the Porgera Gold Deposit, Papua New Guinea. Geology 2014, 42, 383–386. [Google Scholar] [CrossRef]
- Xing, Y.L.; Brugger, J.; Tomkins, A.; Shvarov, Y. Arsenic Evolution as a Tool for Understanding Formation of Pyritic Gold Ores. Geology 2019, 47, 335–338. [Google Scholar] [CrossRef]
- Clark, J.R.; Williams-Jones, A.E. Rutile as a Potential Indicator Mineral for Metamorphosed Metallic Ore Deposits; Rapport Final de DIVEX, Sous-Projet SC2; DIVEX: Montreal, QC, Canada, 2004; 17p. [Google Scholar]
- Zack, T.; von Eynatten, H.; Kronz, A. Rutile Geochemistry and Its Potential Use in Quantitative Provenance Studies. Sediment. Geol. 2004, 171, 37–58. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and Its Applications in Earth Sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Plavsa, D.; Reddy, S.M.; Agangi, A.; Clark, C.; Kylander-Clark, A.; Tiddy, C.J. Microstructural, Trace Element and Geochronological Characterization of TiO2 Polymorphs and Implications for Mineral Exploration. Chem. Geol. 2018, 476, 130–149. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Nagle, J.; Piper, D.J.W.; McFarlane, C.R.M. Geochronology and Trace Element Mobility in Rutile from a Carboniferous Syenite Pegmatite and the Role of Halogens. Am. Mineral. 2019, 104, 501–513. [Google Scholar] [CrossRef]
- Zaccarini, F.; Garuti, G.; Luvizotto, G.L.; de Melo Portella, Y.; Singh, A.K. Testing Trace-Element Distribution and the Zr-Based Thermometry of Accessory Rutile from Chromitite. Minerals 2021, 11, 661. [Google Scholar] [CrossRef]
- Yang, B.; Xiang, Y.H.; Gu, X.P. Tungsten-Bearing Rutile from the Jiaodong Gold Province, Shandong, China and Its Implication for Gold Mineralization. Eur. J. Mineral. 2018, 30, 975–980. [Google Scholar] [CrossRef]
- Agangi, A.; Reddy, S.M.; Plavsa, D.; Fougerouse, D.; Clark, C.; Roberts, M.; Johnson, T.E. Antimony in Rutile as a Pathfinder for Orogenic Gold Deposits. Ore Geol. Rev. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Feng, H.X.; Shen, P.; Zhu, R.X.; Ma, G.; Li, C.H.; Li, J.P. SIMS U-Pb Dating of Vein-Hosted Hydrothermal Rutile and Carbon Isotope of Fluids in the Wulong Lode Gold Deposit, NE China: Linking Gold Mineralization with Craton Destruction. Ore Geol. Rev. 2020, 127, 103838. [Google Scholar] [CrossRef]
- Porter, J.K.; McNaughton, N.J.; Evans, N.J.; McDonald, B.J. Rutile as a Pathfinder for Metals Exploration. Ore Geol. Rev. 2020, 120, 103406. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G. Texture and Trace Element Composition of Rutile in Orogenic Gold Deposits. Econ. Geol. 2021, 116, 1865–1892. [Google Scholar] [CrossRef]
- Wu, S.H.; Mao, J.W.; Yu, H.; Tan, D.R.; Geng, X.X. Upper Temperature Limits of Orogenic Gold Deposit Formation: Constraints from TiO2 Polymorphs in the Dongyuan Au Deposit, Jiangnan Orogen, China. Am. Mineral. 2021, 106, 1809–1817. [Google Scholar] [CrossRef]
- Zheng, J.H.; Chen, B.; Liu, S.J.; Bao, C. A Triassic Orogenic Gold Mineralization Event In The Paleoproterozoic Metamorphic Rocks: Evidence From Two Types Of Rutile In The Baiyun Gold Deposit, Liaodong Peninsula, North China Craton. Econ. Geol. 2022, 117, 1657–1673. [Google Scholar] [CrossRef]
- Shi, K.T.; Duan, X.Z.; Wang, R.; Xiao, W.Z.; Tang, Z.P.; Zhao, C.F.; Li, N. In Situ U-Pb Dating of Rutile and Titanite from the Chaihulanzi Lode Gold Deposit, Northern North China Craton and Its Geological Significance. Ore Geol. Rev. 2023, 163, 105737. [Google Scholar] [CrossRef]
- Zack, T.; Kronz, A.; Foley, S.F.; Rivers, T. Trace Element Abundances in Rutiles from Eclogites and Associated Garnet Mica Schists. Chem. Geol. 2002, 184, 97–122. [Google Scholar] [CrossRef]
- Baur, W.H. The Rutile Type and Its Derivatives†. Crystallogr. Rev. 2007, 13, 65–113. [Google Scholar] [CrossRef]
- Sciuba, M.; Beaudoin, G.; Makvandi, S. Chemical Composition of Tourmaline in Orogenic Gold Deposits. Miner. Deposita 2021, 56, 537–560. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.M.; Bagas, L.; Du, B.; Shi, K.X.; Zhu, J.X. Hydrothermal Fluid Signatures of the Yulong Porphyry Cu-Mo Deposit: Clues from the Composition and U-Pb Dating of W-Bearing Rutile. Am. Mineral. 2023, 108, 1092–1108. [Google Scholar] [CrossRef]
- Bromiley, G.; Hilaret, N.; McCammon, C. Solubility of Hydrogen and Ferric Iron in Rutile and TiO2 (II): Implications for Phase Assemblages during Ultrahigh-Pressure Metamorphism and for the Stability of Silica Polymorphs in the Lower Mantle. Geophys. Res. Lett. 2004, 31, L04610. [Google Scholar] [CrossRef]
- Carruzzo, S.; Clarke, D.B.; Pelrine, K.M.; MacDonald, M.A. Texture, Composition, And Origin Of Rutile In The South Mountain Batholith, Nova Scotia. Can. Mineral. 2006, 44, 715–729. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Pereira, I.; Storey, C.; Darling, J.; Lana, C.; Alkmim, A.R. Two Billion Years of Evolution Enclosed in Hydrothermal Rutile: Recycling of the São Francisco Craton Crust and Constraints on Gold Remobilisation Processes. Gondwana Res. 2019, 68, 69–92. [Google Scholar] [CrossRef]
- Verberne, R.; Reddy, S.M.; Saxey, D.W.; Fougerouse, D.; Rickard, W.D.A.; Plavsa, D.; Agangi, A.; Kylander-Clark, A.R.C. The Geochemical and Geochronological Implications of Nanoscale Trace-Element Clusters in Rutile. Geology 2020, 48, 1126–1130. [Google Scholar] [CrossRef]
- Scott, K.M. Rutile Geochemistry as a Guide to Porphyry Cu–Au Mineralization, Northparkes, New South Wales, Australia. Geochem. Explor. Environ. Anal. 2005, 5, 247–253. [Google Scholar] [CrossRef]
- Smythe, D.; Schulze, D.; Brenan, J. Rutile as a Kimberlite Indicator Mineral: Minor and Trace Element Geochemistry. In International Kimberlite Conference Extended Abstracts; University of Alberta Library: Edmonton, AB, Canada, 2008; Volume 9. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Triebold, S.; von Eynatten, H. Rutile Occurrence and Trace Element Behavior in Medium-Grade Metasedimentary Rocks: Example from the Erzgebirge, Germany. Mineral. Petrol. 2009, 97, 233. [Google Scholar] [CrossRef]
- Agangi, A.; Plavsa, D.; Reddy, S.M.; Olierook, H.; Kylander-Clark, A. Compositional Modification and Trace Element Decoupling in Rutile: Insight from the Capricorn Orogen, Western Australia. Precambrian Res. 2020, 345, 105772. [Google Scholar] [CrossRef]
- Verberne, R.; van Schrojenstein Lantman, H.W.; Reddy, S.M.; Alvaro, M.; Wallis, D.; Fougerouse, D.; Langone, A.; Saxey, D.W.; Rickard, W.D.A. Trace-Element Heterogeneity in Rutile Linked to Dislocation Structures: Implications for Zr-in-Rutile Geothermometry. J. Metamorph. Geol. 2023, 41, 3–24. [Google Scholar] [CrossRef]
- Zack, T.; Kooijman, E. Petrology and Geochronology of Rutile. Rev. Mineral. Geochem. 2017, 83, 443–467. [Google Scholar] [CrossRef]
- Carocci, E.; Marignac, C.; Cathelineau, M.; Truche, L.; Poujol, M.; Boiron, M.-C.; Pinto, F. Incipient Wolframite Deposition at Panasqueira (Portugal): W-Rich Rutile and Tourmaline Compositions as Proxies for the Early Fluid Composition. Econ. Geol. 2020, 116, 123–146. [Google Scholar] [CrossRef]
- Liu, J.C.; Wang, Y.T.; Mao, J.W.; Jian, W.; Huang, S.K.; Hu, Q.Q.; Wei, R.; Hao, J.L. Precise Ages for Lode Gold Mineralization in the Xiaoqinling Gold Field, Southern Margin of the North China Craton: New Constraints from In Situ U-Pb Dating of Hydrothermal Monazite and Rutile. Econ. Geol. 2021, 116, 773–786. [Google Scholar] [CrossRef]
- Yang, F.; Mao, J.W.; Ren, W.D.; Tu, J.R.; Jepson, G.; Meng, S.Y.; Wang, Z.M. In Situ U-Pb Dating and Trace Elements of Magmatic Rutile from Mujicun Cu-Mo Deposit, North China Craton: Insights into Porphyry Mineralization. China Geol. 2023, 6, 1–18. [Google Scholar] [CrossRef]
- Ma, X.D. Structural Alteration Mineralization Network Structure of the Xincheng Gold Deposit. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2011. (In Chinese). [Google Scholar]
- Wang, Z.L. Jiaojia Gold Orefield Metallogenic System. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. (In Chinese). [Google Scholar]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Zhang, L.; Guo, L.N.; Song, M.C.; Zheng, X.L. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrol. Sin. 2014, 30, 2447–2467. [Google Scholar]
- Yang, L.Q.; Deng, J.; Guo, R.P.; Guo, L.N.; Wang, Z.L.; Chen, B.H.; Wang, X.D. World-Class Xincheng Gold Deposit: An Example from the Giant Jiaodong Gold Province. Geosci. Front. 2016, 7, 419–430. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Santosh, M. The Dilemma of the Jiaodong Gold Deposits: Are They Unique? Geosci. Front. 2014, 5, 139–153. [Google Scholar] [CrossRef]
- Phillips, G.N.; Powell, R. A Practical Classification of Gold Deposits, with a Theoretical Basis. Ore Geol. Rev. 2015, 65, 568–573. [Google Scholar] [CrossRef]
- Deng, J.; Wang, C.M.; Bagas, L.; Santosh, M.; Yao, E.Y. Crustal Architecture and Metallogenesis in the South-Eastern North China Craton. Earth-Sci. Rev. 2018, 182, 251–272. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Groves, D.I.; Zhang, L.; Qiu, K.F.; Wang, Q.F. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Sci. Rev. 2020, 208, 103274. [Google Scholar] [CrossRef]
- Zhang, L.; Weinberg, R.F.; Yang, L.Q.; Groves, D.I.; Sai, S.X.; Matchan, E.; Phillips, D.; Kohn, B.P.; Miggins, D.P.; Liu, Y.; et al. Mesozoic Orogenic Gold Mineralization in the Jiaodong Peninsula, China: A Focused Event at 120 ± 2 Ma During Cooling of Pregold Granite Intrusions. Econ. Geol. 2020, 115, 415–441. [Google Scholar] [CrossRef]
- Qiu, K.F.; Deng, J.; Sai, S.X.; Yu, H.C.; Tamer, M.T.; Ding, Z.J.; Yu, X.F.; Goldfarb, R. Low-Temperature Thermochronology for Defining the Tectonic Controls on Heterogeneous Gold Endowment Across the Jiaodong Peninsula, Eastern China. Tectonics 2023, 42, e2022TC007669. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Zha, X.; Liu, X. Zircon U–Pb Age and Geochemical Constraints on the Tectonic Affinity of the Jiaodong Terrane in the Sulu Orogen, China. Precambrian Res. 2008, 161, 389–418. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Res. 2011, 20, 6–25. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Wang, Z.L.; Guo, L.N.; Li, R.H.; Groves, D.I.; Danyushevsky, L.V.; Zhang, C.; Zheng, X.-L.; Zhao, H. Relationships Between Gold and Pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for Gold Source and Deposition in a Brittle Epizonal Environment. Econ. Geol. 2016, 111, 105–126. [Google Scholar] [CrossRef]
- Tang, J.; Zheng, Y.F.; Wu, Y.B.; Gong, B.; Liu, X. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane: Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Res. 2007, 152, 48–82. [Google Scholar] [CrossRef]
- Jahn, B.M.; Liu, D.; Wan, Y.; Song, B.; Wu, J. Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. Am. J. Sci. 2008, 308, 232–269. [Google Scholar] [CrossRef]
- Feng, Y.C.; Qiu, K.F.; Wang, D.Z.; Sha, W.J.; Li, S. Forming conditions of tellurides and their constraints on gold enrichment in Linglong gold district, Jiaodong gold province. Acta Petrol. Sin. 2022, 38, 63–77. [Google Scholar] [CrossRef]
- Deng, J.; Liu, X.F.; Wang, Q.F.; Dilek, Y.; Liang, Y.Y. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin. 2017, 129, 1379–1407. [Google Scholar] [CrossRef]
- Yang, L.Q.; Deng, J.; Goldfarb, R.J.; Zhang, J.; Gao, B.F.; Wang, Z.L. 40Ar/39Ar Geochronological Constraints on the Formation of the Dayingezhuang Gold Deposit: New Implications for Timing and Duration of Hydrothermal Activity in the Jiaodong Gold Province, China. Gondwana Res. 2014, 25, 1469–1483. [Google Scholar] [CrossRef]
- Shandong Gold Mining Co., Ltd. 2022 Annual Report. Shandong Gold Mining Co., Ltd.: Jinan, China, 2022. [Google Scholar]
- Yang, L.Q.; Wei, Y.J.; Wang, S.R.; Zhang, L.; Ju, L.; Li, R.H.; Gao, X.; Qiu, K.F. A preliminary study of reserve estimate and resource potential assessment of critical elements in the Jiaodong gold deposits, China. Acta Petrol. Sin. 2022, 38, 9–22. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yang, L.Q.; Deng, J.; Santosh, M.; Zhang, H.F.; Liu, Y.; Li, R.H.; Huang, T.; Zheng, X.L.; Zhao, H. Gold-Hosting High Ba-Sr Granitoids in the Xincheng Gold Deposit, Jiaodong Peninsula, East China: Petrogenesis and Tectonic Setting. J. Asian Earth Sci. 2014, 95, 274–299. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.Q.; Wang, Z.L.; Zhang, L.; Zhang, C.; Wang, X.D. Petrogeochemistry and Geochronology of Gold-Hosting Monzogranites in the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implication for Gold Mineralization. Acta Geol. Sin. 2014, 88, 1646–1647. [Google Scholar] [CrossRef]
- Wen, B.J.; Fan, H.R.; Hu, F.F.; Liu, X.; Yang, K.F.; Sun, Z.F.; Sun, Z.F. Fluid Evolution and Ore Genesis of the Giant Sanshandao Gold Deposit, Jiaodong Gold Province, China: Constrains from Geology, Fluid Inclusions and H–O–S–He–Ar Isotopic Compositions. J. Geochem. Explor. 2016, 171, 96–112. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.Q.; Wang, S.R.; Zhang, L.; Wei, Y.J.; Lü, G.Y. The process of rubefication and its relationship with gold mineralization of Sizhuang gold deposit, northwestern Jiaodong Peninsula, eastern China. Acta Petrol. Sin. 2020, 36, 1515–1528. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S. -s. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Cook, N.J.; Yang, T.; Ciobanu, C.L.; Zhao, K.D.; Jiang, S.Y. Mapping of Sulfur Isotopes and Trace Elements in Sulfides by LA-(MC)-ICP-MS: Potential Analytical Problems, Improvements and Implications. Minerals 2016, 6, 110. [Google Scholar] [CrossRef]
- Fan, H.R.; Li, X.H.; Zuo, Y.B.; Chen, L.; Liu, S.; Hu, F.F.; Feng, K. In-situ LA-(MC)-ICPMS and (Nano)SIMS trace elements and sulfur isotope analyses on sulfides and application to confine metallogenic process of ore deposit. Acta Petrol. Sin. 2018, 34, 3479–3496. [Google Scholar]
- Pi, Q.H.; Hu, R.Z.; Xiong, B.; Li, Q.L.; Zhong, R.C. In Situ SIMS U-Pb Dating of Hydrothermal Rutile: Reliable Age for the Zhesang Carlin-Type Gold Deposit in the Golden Triangle Region, SW China. Miner. Deposita 2017, 52, 1179–1190. [Google Scholar] [CrossRef]
- Doyle, M.G.; Fletcher, I.R.; Foster, J.; Large, R.R.; Mathur, R.; McNaughton, N.J.; Meffre, S.; Muhling, J.R.; Phillips, D.; Rasmussen, B. Geochronological Constraints on the Tropicana Gold Deposit and Albany-Fraser Orogen, Western Australia. Econ. Geol. 2015, 110, 355–386. [Google Scholar] [CrossRef]
- Ye, G.L.; Yang, L.Q.; Zhang, L.; Wang, S.R.; Wei, Y.J.; Xie, D.; Yang, W.; Liu, Y.Q. 2023. Characteristics and in situ U-Pb dating of rutile in Xiadian, Jiaong gold provience, eastern China. Acta Petrol Sin. 2023, 39, 340–356. [Google Scholar] [CrossRef]
- Scott, K.M.; Radford, N.W. Rutile Compositions at the Big Bell Au Deposit as a Guide for Exploration. Geochem. Explor. Environ. Anal. 2007, 7, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.M.; Radford, N.W.; Hough, R.M.; Reddy, S.M. Rutile Compositions in the Kalgoorlie Goldfields and Their Implications for Exploration. Aust. J. Earth Sci. 2011, 58, 803–812. [Google Scholar] [CrossRef]
- Schirra, M.; Laurent, O. Petrochronology of Hydrothermal Rutile in Mineralized Porphyry Cu Systems. Chem. Geol. 2021, 581, 120407. [Google Scholar] [CrossRef]
- Win, M.M.; Enami, M.; Kato, T.; Thu, Y.K. A Mechanism for Nb Incorporation in Rutile and Application of Zr-in-Rutile Thermometry: A Case Study from Granulite Facies Paragneisses of the Mogok Metamorphic Belt, Myanmar. Mineral. Mag. 2017, 81, 1503–1521. [Google Scholar] [CrossRef]
- Eilu, P.K.; Mathison, C.; Groves, D.; Allardyce, W. Atlas of Alteration Assemblages, Styles and Zoning in Orogenic Lode-Gold Deposits in a Variety of Host Rock and Metamorphic Settings; University of Western Australia, Geology Department and Extension Service: Perth, Australia, 1999; Volume 30, ISBN 978-0-86422-902-1. [Google Scholar]
- Liu, L.; Xiao, Y.L.; Wörner, G.; Kronz, A.; Simon, K.; Hou, Z.H. Detrital Rutile Geochemistry and Thermometry from the Dabie Orogen: Implications for Source–Sediment Links in a UHPM Terrane. J. Asian Earth Sci. 2014, 89, 123–140. [Google Scholar] [CrossRef]
- Klemme, S.; Prowatke, S.; Hametner, K.; Günther, D. Partitioning of Trace Elements between Rutile and Silicate Melts: Implications for Subduction Zones. Geochim. Cosmochim. Acta 2005, 69, 2361–2371. [Google Scholar] [CrossRef]
- Majzlan, J.; Bolanz, R.; Göttlicher, J.; Mikuš, T.; Milovská, S.; Čaplovičová, M.; Števko, M.; Rössler, C.; Matthes, C. Incorporation Mechanism of Tungsten in W-Fe-Cr-V-Bearing Rutile. Am. Mineral. 2021, 106, 609–619. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, L.F.; Wei, C.J.; Zhang, G.B. Application of Zr-in-rutile thermometry and its interpretation on the Archean eclogite from Belomorian province, Russia. Acta Petrol. Sin. 2017, 33, 3263–3277. [Google Scholar]
- Ward, C.D.; Mcarthur, J.M.; Walsh, J.N. Rare Earth Element Behaviour During Evolution and Alteration of the Dartmoor Granite, SW England. J. Petrol. 1992, 33, 785–815. [Google Scholar] [CrossRef]
- Zheng, F.S.; Song, G.X. Application of Eu anomaly in Geology. Acta Petrol. Sin. 2023, 39, 2832–2856. [Google Scholar] [CrossRef]
- She, H.D.; Fan, H.R.; Hu, F.F.; Yang, K.F.; Yang, Z.F.; Wang, Q.W. Migration and precipitation of rare earth elements in the hydrothermal fluids. Acta Petrol. Sin. 2018, 34, 3567–3581. [Google Scholar]
- Wang, Y.R.; Hu, S.X. Experimental study on gold activation and transfer in the process of potassium metasomatic alteration—Taking gold deposits in North China platform as an example. Sci. China Earth Sci. 2000, 30, 499–509. [Google Scholar] [CrossRef]
- Migdisov, A.; Williams-Jones, A.E.; Brugger, J.; Caporuscio, F.A. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chem. Geol. 2016, 439, 13–42. [Google Scholar] [CrossRef]
- Liu, Y.; Chao, C.; Xiao, C.S.; Guo, D.X.; Zi, J.L.; Hai, X.Z.; Yu, H.J. The Formation Model of the Carbonatite-Syenite Complex REE Deposits in the East to of Tibetan Plateau: A Case Study of Dalucao REE Deposits. Acta Petrol. Sin. 2017, 33, 1978–2000. [Google Scholar]
- Ferry, J.M.; Watson, E.B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Kohn, M.J. A Refined Zirconium-in-Rutile Thermometer. Am. Mineral. 2020, 105, 963–971. [Google Scholar] [CrossRef]
- Jiang, Z.; Oliver, N.H.S.; Barr, T.D.; Power, W.L.; Ord, A. Numerical Modeling of Fault-Controlled Fluid Flow in the Genesis of Tin Deposits of the Malage Ore Field, Gejiu Mining District, China. Econ. Geol. 1997, 92, 228–247. [Google Scholar] [CrossRef]
- Chevychelov, V.Y.; Zaraisky, G.P.; Borisovskii, S.E.; Borkov, D.A. Effect of Melt Composition and Temperature on the Partitioning of Ta, Nb, Mn, and F between Granitic (Alkaline) Melt and Fluorine-Bearing Aqueous Fluid: Fractionation of Ta and Nb and Conditions of Ore Formation in Rare-Metal Granites. Petrol. C/C Petrol. 2005, 13, 305. [Google Scholar]
- Zhang, Q.B.; Ding, Z.J.; Qiu, K.F.; Qu, P.; Zhao, X. Hydrothermal origin of the Jiaojia altered rock type gold deposit: Constrains from mineralogy, geochronology and geochemistry of apatite. Acta Petrol. Sin. 2023, 39, 411–431. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Akinfiev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold Speciation and Transport in Geological Fluids: Insights from Experiments and Physical-Chemical Modelling. Geol. Soc. Lond. Spec. Publ. 2014, 402, 9–70. [Google Scholar] [CrossRef]
- Ling, H.F.; Hu, S.X.; Sun, J.G.; Ni, P.; Shen, K. Geochemical Study of Granitic wall-rock Alteration in Dayingezhuang Gold Deposit of Alteration Rock Type and Jinqingding Gold Deposit of Quartz-vein Type. Min Miner. Depos. 2002, 21, 187–199. [Google Scholar] [CrossRef]
- Wei, Q.; Fan, H.R.; Lan, T.G.; Liu, X.; Jiang, X.H.; Wen, B.J. Genesis of Sizhuang gold deposit, Jiaodong Peninsula: Evidences from fluid inclusion and quartz solubility modeling. Acta Petrol. Sin. 2015, 31, 1049–1062. [Google Scholar]
- Li, X.H.; Klyukin, Y.I.; Steele-MacInnis, M.; Fan, H.R.; Yang, K.F.; Zoheir, B. Phase Equilibria, Thermodynamic Properties, and Solubility of Quartz in Saline-Aqueous-Carbonic Fluids: Application to Orogenic and Intrusion-Related Gold Deposits. Geochim. Cosmochim. Acta 2020, 283, 201–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-J.; Yang, L.-Q.; Xie, D.; Yang, W.; Li, D.-P.; Feng, T.; Deng, J. Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile. Minerals 2024, 14, 417. https://doi.org/10.3390/min14040417
Liu Z-J, Yang L-Q, Xie D, Yang W, Li D-P, Feng T, Deng J. Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile. Minerals. 2024; 14(4):417. https://doi.org/10.3390/min14040417
Chicago/Turabian StyleLiu, Zhen-Jun, Li-Qiang Yang, Dong Xie, Wei Yang, Da-Peng Li, Tao Feng, and Jun Deng. 2024. "Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile" Minerals 14, no. 4: 417. https://doi.org/10.3390/min14040417
APA StyleLiu, Z. -J., Yang, L. -Q., Xie, D., Yang, W., Li, D. -P., Feng, T., & Deng, J. (2024). Hydrothermal Alteration Processes of Xincheng Gold Deposit Jiaodong Peninsula, China: Constraints from Composition of Hydrothermal Rutile. Minerals, 14(4), 417. https://doi.org/10.3390/min14040417