Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique
Abstract
:1. Introduction
2. Methodology
2.1. Artificial Neural Network (ANN) Application
2.2. Tailing Sampling
3. Experimental Design
3.1. Dataset
3.2. Flowability Categories
3.3. Data Analysis
4. Results and Discussion
4.1. Correlation Matrix Analysis
4.2. ANN Performance Comparison
4.3. Variable Weights Analysis
4.4. ANN Model Training Stage
4.5. ANN Models Unsupervised Classification
4.6. Flowability Behaviour and Tailing Water Content Relations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lottermoser, B. Mine Wastes, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- ICCM. Tailings Management Good Practice Guide Writing Team; ICCM: London, UK, 2021. [Google Scholar]
- COCHILCO. Yearbook: Copper and Other Mineral Statistics 2001–2020; COCHILCO: Santiago, Chile, 2020. [Google Scholar]
- López, E. Estudio Experimental de la Permeabilidad de Materiales Depositados en Pilas de Lixiviación de Cobre. Licenciate Thesis, Universidad de Chile, Santiago, Chile, 2012. Available online: https://repositorio.uchile.cl/handle/2250/102744 (accessed on 24 July 2023).
- Parviainen, A.; Kauppila, T.; Loukola-Ruskeeniemi, K. Long-term lake sediment records and factors affecting the evolution of metal(loid) drainage from two mine sites (SW Finland). J. Geochem. Explor. 2012, 114, 46–56. [Google Scholar] [CrossRef]
- Zardari, M.A. Stability of Tailings Dams—Focus on Numerical Modelling. Licenciate Thesis, Luleå Tekniska Universitet, Luleå, Sweden, 2011. [Google Scholar]
- Liu, M.; Wen, J.; Tan, G.; Liu, G.; Wu, B. Experimental studies and pilot plant tests for acid leaching of low-grade copper oxide ores at the Tuwu Copper Mine. Hydrometallurgy 2016, 165, 227–232. [Google Scholar] [CrossRef]
- Marchant, A. Influencia de la Mineralogía de Alteración en el Comportamiento Hidráulico y Mecánico del Mineral en el Proceso de Heap Leaching Minera Antucoya; Universidad de Concepción: Concepción, Chile, 2017. [Google Scholar]
- Krzaklewski, M.; van Laere, H. Digital Mining in Europe: New Solutions for the Sustainable Production of Raw Materials; European Economic and Social Committee: Brussels, Belgium, 2020. [Google Scholar]
- Hannula, P.M.; Khalid, M.K.; Janas, D.; Yliniemi, K.; Lundström, M. Energy efficient copper electrowinning and direct deposition on carbon nanotube film from industrial wastewaters. J. Clean. Prod. 2019, 207, 1033–1039. [Google Scholar] [CrossRef]
- Kang, Z.; Catal, C.; Tekinerdogan, B. Machine learning applications in production lines: A systematic literature review. In Computers and Industrial Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 149. [Google Scholar] [CrossRef]
- Yin, S.; Wang, L.; Wu, A.; Free, M.L.; Kabwe, E. Enhancement of copper recovery by acid leaching of high-mud copper oxides: A case study at Yangla Copper Mine, China. J. Clean. Prod. 2018, 202, 321–331. [Google Scholar] [CrossRef]
- Zadeh, L.A. Soft Computing and Fuzzy Logic. IEEE Softw. 1994, 11, 48–56. [Google Scholar] [CrossRef]
- Correa Devés, R. Redes Neuronales Artificiales en Ingeniería y Física Nuclear Caracterización de Espectros PIXE; Editorial de la Universidad de Granada: Granada, Spain, 2006. [Google Scholar]
- Pouyanfar, S.; Sadiq, S.; Yan, Y.; Tian, H.; Tao, Y.; Reyes, M.P.; Shyu, M.L.; Chen, S.C.; Iyengar, S.S. A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Comput. Surv. 2018, 51, 1–36. [Google Scholar] [CrossRef]
- Bergh, L.G.; Yianatos, J.B.; Leiva, C.A. Fuzzy supervisory control of flotation columns. Miner. Eng. 1998, 11, 739–748. [Google Scholar] [CrossRef]
- Umucu, Y.; Deniz, V.; Bozkurt, V.; Fatih Çağlar, M. The evaluation of grinding process using artificial neural network. Int. J. Miner. Process. 2016, 146, 46–53. [Google Scholar] [CrossRef]
- Leiva, C.; Flores, V.; Salgado, F.; Poblete, D.; Acuña, C. Applying Softcomputing for Copper Recovery in Leaching Process. Sci. Program. 2017, 2017, 6459582. [Google Scholar] [CrossRef]
- Nuri, O.S.; Allahkarami, E.; Irannajad, M.; Abdollahzadeh, A. Estimation of selectivity index and separation efficiency of copper flotation process using ANN model. Geosystem Eng. 2017, 20, 41–50. [Google Scholar] [CrossRef]
- Ai, M.; Xie, Y.; Tang, Z.; Zhang, J.; Gui, W. Deep learning feature-based setpoint generation and optimal control for flotation processes. Inf. Sci. 2021, 578, 644–658. [Google Scholar] [CrossRef]
- Hui, S.R.; Nrc, C. A need of advanced monitoring system for tailings ponds. In Proceedings of the CDA Conference and Exhibition, Mississauga, ON, Canada, 3–8 October 2015; pp. 1–10. [Google Scholar]
- Ge, Z.; Song, Z.; Gao, F. Review of Recent Research on Data-Based Process Monitoring. Ind. Eng. Chem. Res. 2013, 52, 3543–3562. [Google Scholar] [CrossRef]
- Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 2018, 18, 3682. [Google Scholar] [CrossRef]
- Yu, G.M.; Song, C.W.; Zou, J.B.; Wu, Y.X.; Pan, Y.Z.; Liang, L.I.; Ran, L.I.; Wang, P.S.; Wang, Y.L. Applications of online monitoring technology for tailings dam on digital mine. Trans. Nonferrous Met. Soc. China 2011, 21 (Suppl. 3), 604–609. [Google Scholar] [CrossRef]
- Hu, J.; Liu, X. Design and implementation of tailings dam security monitoring system. Procedia Eng. 2011, 26, 1914–1921. [Google Scholar] [CrossRef]
- Sun, N.; Guo, Y. A modified incremental learning approach for data stream classification. In Proceedings of the 6th International Conference on Internet Computing for Science and Engineering, ICICSE 2012, Zhengzhou, China, 21–23 April 2012; pp. 122–125. [Google Scholar] [CrossRef]
- Boente, C.; Albuquerque, M.T.D.; Gerassis, S.; Rodríguez-Valdés, E.; Gallego, J.R. A coupled multivariate statistics, geostatistical and machine-learning approach to address soil pollution in a prototypical Hg-mining site in a natural reserve. Chemosphere 2019, 218, 767–777. [Google Scholar] [CrossRef]
- Prakash, M.; Rothauge, K.; Cleary, P.W. Modelling the impact of dam failure scenarios on flood inundation using SPH. Appl. Math. Model. 2014, 38, 5515–5534. [Google Scholar] [CrossRef]
- Li, Q.M.; Wang, Y.H.; Li, G. Tailings dam breach disaster on-line monitoring method and system realization. Procedia Eng. 2011, 26, 1674–1681. [Google Scholar] [CrossRef]
- Liu, H. An Experimental and Numerical Study of Runout from a Tailings Dam Failure. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2018. [Google Scholar]
- Trewhela, T.; Ihle, C.; Tamburrino, A. Numerical simulations of comminution slurries over complex topographies: Putting together CFD and pipeline integrity. Miner. Eng. 2014, 63, 139–148. [Google Scholar] [CrossRef]
- Vergara, Á.; Palma, S.; Álvarez, A.; Zandarín, M.T. Hazards in mining: A novel model for the prediction of run-out distances in tailings dams using CFD. Int. J. Rock Mech. Min. Sci. 2022, 153, 105049. [Google Scholar] [CrossRef]
- McBride, D.; Gebhardt, J.; Croft, N.; Cross, M. Heap leaching: Modelling and forecasting using CFD technology. Minerals 2018, 8, 9. [Google Scholar] [CrossRef]
- Adiguzel, D.; Bascetin, A. The investigation of effect of particle size distribution on flow behavior of paste tailings. J. Environ. Manag. 2019, 243, 393–401. [Google Scholar] [CrossRef]
- Qi, C.; Ly, H.B.; Chen, Q.; Le, T.T.; Le, V.M.; Pham, B.T. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere 2020, 244, 125450. [Google Scholar] [CrossRef]
- Arancibia, G.V.; Bustamante, O.P.; Vigneau, G.H.; Allende-Cid, H.; Fuentelaba, G.S.; Nieto, V.A. Estimation of Moisture Content in Thickened Tailings Dams: Machine Learning Techniques Applied to Remote Sensing Images. IEEE Access 2021, 9, 16988–16998. [Google Scholar] [CrossRef]
- Balaniuk, R.; Isupova, O.; Reece, S. Mining and tailings dam detection in satellite imagery using deep learning. Sensors 2020, 20, 6936. [Google Scholar] [CrossRef]
- Herrera, N.; Gonzalez, M.S.; Okkonen, J.; Mollehuara, R. Soft Computing Application in Mining, Mineral Processing and Metallurgy with an Approach to Using It in Mineral Waste Disposal. Minerals 2023, 13, 1450. [Google Scholar] [CrossRef]
- Herrera, N.; Sinche Gonzalez, M.; Okkonen, J.; Mollehuara Canales, R. Predicting Flowability at Disposal of Spent Heap Leach by Applying Artificial Neural Networks Based on Operational Variables. Minerals 2023, 14, 40. [Google Scholar] [CrossRef]
- He, W.; Ruhani, B.; Toghraie, D.; Izadpanahi, N.; Esfahani, N.N.; Karimipour, A.; Afrand, M. Using of Artificial Neural Networks (ANNs) to predict the thermal conductivity of Zinc Oxide–Silver (50%–50%)/Water hybrid Newtonian nanofluid. Int. Commun. Heat Mass Transf. 2020, 116, 104645. [Google Scholar] [CrossRef]
- Sarraute, C. Aplicacion de las Redes Neuronales al Reconocimiento de Sistemas Operativos. May 2013. [Online]. Available online: http://arxiv.org/abs/1305.4686 (accessed on 18 January 2024).
- Dantas, C.A.; Nunes, R.O.; Canuto, A.M.P.; Xavier-Júnior, J.C. Dynamic feature selection based on clustering algorithm and individual similarity. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2017; pp. 467–474. [Google Scholar] [CrossRef]
- Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.; Alves, S. Artificial Neural Networks a Practical Course; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Catalán Martínez, D. Modelación Mediante Redes Neuronales del Ensuciamiento de Membranas Cerámicas de Ultrafiltración. Master’s Thesis, Universitat Politècnica de València, Valencia, Spain, 2012. [Google Scholar]
- Magdon-Ismail, M.; Atiya, A. Neural Networks for Density Estimation. In Advances in Neural Information Processing Systems, 11; The MIT Press: Cambridge, MA, USA, 1998; ISBN 9780262112451. [Google Scholar]
- Dikshit, A.; Pradhan, B.; Santosh, M. Artificial neural networks in drought prediction in the 21st century—A scientometric analysis. Appl. Soft Comput. 2022, 114, 108080. [Google Scholar] [CrossRef]
- Gutiérrez, R.B.; Arango, Y.; Asociado, P. Sobre Algunas Tecnicas de Remuestreo: El Metodo de ‘Jackknife’. Departamento de Información y Sistemas, Universidad del Valle: Cali, Colombia, 2013. Available online: https://bibliotecadigital.univalle.edu.co/bitstream/10893/6359/1/Heuristica06-A06.pdf (accessed on 24 May 2023).
- Jara, A.; Figueroa, J. Estudio de Mantenimiento Basado en la Confiabilidad Acorde al Sistema Asset Management Aplicado a la Flota de Bulldozer CAT D10T, Minera Anglo American Operación Mantoverde; Universidad del Bio-Bio: Concepción, Chile, 2014. [Google Scholar]
- Tabbussum, R.; Qayoom Dar, A. Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. Environ. Sci. Pollut. Res. 2021, 28, 25265–25282. [Google Scholar] [CrossRef]
- Sarkkinen, M.; Kujala, K.; Gehör, S. Efficiency of MgO activated GGBFS and OPC in the stabilization of highly sulfidic mine tailings. J. Sustain. Min. 2019, 18, 115–126. [Google Scholar] [CrossRef]
- Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Condon, D. Performance of Artificial Neural Networks on Small Structured Datasets. AMSI Vacation Research Scholarships 2018-2019. Australian Mathematical Sciences Institute. The University of Melbourne: Melbourne, Australia, 2019. Available online: https://vrs.amsi.org.au/wp-content/uploads/sites/84/2019/06/condon-researchpaper.pdf (accessed on 26 June 2023).
- Feng, S.; Zhou, H.; Dong, H. Using deep neural network with small dataset to predict material defects. Mater. Des. 2019, 162, 300–310. [Google Scholar] [CrossRef]
- Olcay Barreda, R.H.; Sales Valadão, G.E.; Osorio, C.A.H. Main Characteristics of Mineral Manganese Tailings Pastes Thickener Prepared in Laboratory Scale; Universidad Nacional Mayor de San Marcos: Lima District, Per, 2014. [Google Scholar]
- Jeldres, R.I.; Piceros, E.C.; Wong, L.-S.; Leiva, W.H.; Herrera, N.; Toledo, P.G. Dynamic moduli of flocculated kaolinite sediments: Effect of salinity, flocculant dose, and settling time. Colloid Polym. Sci. 2018, 296, 1935–1943. [Google Scholar] [CrossRef]
- Sofrá, F.; Boger, D.V. Environmental rheology for waste minimisation in the minerals industry. Chem. Eng. J. 2002, 86, 319–330. [Google Scholar] [CrossRef]
- Clayton, S.; Grice, T.G.; Boger, D.V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int. J. Miner. Process. 2003, 70, 3–21. [Google Scholar] [CrossRef]
- MKwak; James, D.F.; Klein, K.A. Flow behaviour of tailings paste for surface disposal. Int. J. Miner. Process. 2005, 77, 139–153. [Google Scholar] [CrossRef]
- de Oliveira, V.N.; Gitirana, G.D.F., Jr.; Dos Anjos Mascarenha, M.M.; Sales, M.M.; Varrone, L.F.R.; da Luz, M.P. An enhanced flume testing procedure for the study of rill erosion. Water 2021, 13, 2956. [Google Scholar] [CrossRef]
- Kotu, V.; Deshpande, B. Predictive Analytics and Data Mining; Morgan Kaufmann: Boston, MA, USA, 2015. [Google Scholar] [CrossRef]
- Rico, M.; Benito, G.; Díez-Herrero, A. Floods from tailings dam failures. J. Hazard. Mater. 2008, 154, 79–87. [Google Scholar] [CrossRef]
- Martin, V.; Eng, P.; Fontaine, D.; Cathcart, J. Challenges with Conducting Tailings Dam Breach Studies. In Proceedings of the Tailings and Mine Waste Conference, Vancouver, BC, Canada, 26–28 October 2015; 2015. [Google Scholar] [CrossRef]
- Palmer, J.; Kauppi, J.; Management, M. Holistic Tailings Management Solutions. Materials Management and Dewatering; Outotec Ltd.: Helsinki, Finland, 2016; pp. 1–16. [Google Scholar]
- Shen, L.; Luo, S.; Zeng, X.; Wang, H. Review on anti-seepage technology development of tailings pond in China. Procedia Eng. 2011, 26, 1803–1809. [Google Scholar] [CrossRef]
- Hu, J. Application of Automatic Safety Monitoring System in the Tailings Dam. Ind. Saf. Environ. Prot. 2010, 11, 43–45. [Google Scholar]
- Gao, J.; Fourie, A. Using the flume test for yield stress measurement of thickened tailings. Miner. Eng. 2015, 81, 116–127. [Google Scholar] [CrossRef]
- Jeldres, R.I.; Piceros, E.C.; Leiva, W.H.; Toledo, P.G.; Herrera, N. Viscoelasticity and yielding properties of flocculated kaolinite sediments in saline water. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 1009–1015. [Google Scholar] [CrossRef]
- Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.; Awwal, A.A.; Asari, V.K. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019, 8, 292. [Google Scholar] [CrossRef]
- Albalasmeh, A.; Mohawesh, O.; Gharaibeh, M.; Deb, S.; Slaughter, L.; el Hanandeh, A. Artificial neural network optimization to predict saturated hydraulic conductivity in arid and semi-arid regions. Catena 2022, 217, 106459. [Google Scholar] [CrossRef]
- Pieretti, M.; Karlsson, T.; Arvilommi, S.; Muniruzzaman, M. Challenges in predicting the reactivity of mine waste rocks based on kinetic testing: Humidity cell tests and reactive transport modeling. J. Geochem. Explor. 2022, 237, 106996. [Google Scholar] [CrossRef]
- Landim, A.D.S.; Corrêa, Y.; Silva, J.P.; Marinho, A.M.F. Evaluation a volumetric water content sensor to be used for compacted filtered iron ore tailings. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2023. [Google Scholar] [CrossRef]
- Gao, F. On-Line Measurement of Moisture Content of Iron Ore Slurries. The University Digital Conservancy. University of Minnesota: Minnesota, United States. 2014. Available online: https://hdl.handle.net/11299/187021 (accessed on 24 May 2023).
Variable ID | Variable Name | Acronym | Average | Standard Deviation | Low Range | Medium Range | High Range |
---|---|---|---|---|---|---|---|
1 | Initial solid percentage (%) | Cpi | 22.0 | 5.6 | 15.0 | 20.0 | 30.0 |
2 | Flocculation dosage (g/t) | Floc. | 17.9 | 5.6 | 10.0 | 20.0 | 25.0 |
3 | Sedimentation rate (cm/min) | SR | 0.258 | 0.174 | 0.052 | 0.202 | 0.871 |
4 | Yield stress (N/m) | φ | 281.6 | 105.0 | 96.4 | 264.2 | 684.6 |
5 | Viscosity (mPa.S) | μ | 2356.2 | 4943.2 | 254.9 | 423.6 | 23,953.6 |
6 | Turbidity (NTU) | Tn | 44.1 | 56.0 | 3.5 | 19.5 | 231.2 |
7 | Water recovered (sed. test) (mL) | Wsr | 891.5 | 46.6 | 780.3 | 896.2 | 971.6 |
8 | Water content (%) | Wc | 27.1 | 4.9 | 10.5 | 28.2 | 34.9 |
9 | Underflow solid percentage (%) | CPu | 71.9 | 4.4 | 65.0 | 70.5 | 85.5 |
10 | Repose angle (qr) | Qr | 4.2 | 0.8 | 2.0 | 4.3 | 5.8 |
11 | Water recovered (flume test) (mL) | Wfr | 464.9 | 153.2 | 80.2 | 449.7 | 917.8 |
12 | Run-out distance (cm) | Rod | 133.2 | 17.8 | 74.8 | 132.6 | 179.8 |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
Correlation | RMSE | Correlation | RMSE | Correlation | RMSE | |
Generalised Linear Model | 0.800 | 0.505 | 0.880 | 0.444 | 0.949 | 0.399 |
Artificial Neural Network | 0.846 | 0.442 | 0.913 | 0.323 | 0.982 | 0.177 |
Decision Tree | 0.739 | 0.494 | 0.873 | 0.381 | 0.964 | 0.324 |
Random Forest | 0.816 | 0.460 | 0.888 | 0.429 | 0.957 | 0.348 |
Gradient-Boosted Trees | 0.769 | 0.520 | 0.864 | 0.400 | 0.925 | 0.429 |
Support Vector Machine | 0.779 | 0.569 | 0.846 | 0.431 | 0.935 | 0.336 |
Model 1 (3C) | Model 2 (3C) | Model 3 (3C) | ||||
---|---|---|---|---|---|---|
Tailing Flowability Categories | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified |
Solid | 6 | 50.00 | 6 | 33.33 | 8 | 62.50 |
Intermediate | 62 | 90.32 | 59 | 89.83 | 59 | 94.92 |
Liquid | 22 | 72.73 | 25 | 72.00 | 23 | 65.22 |
Total | 90 | 83.33 | 90 | 81.11 | 90 | 84.44 |
Model 1 (5C) | Model 2 (5C) | Model 3 (5C) | ||||
---|---|---|---|---|---|---|
Tailing Flowability Categories | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified |
Solid | 2 | 100.00 | 2 | 100.00 | 2 | 100.00 |
Semi-solid | 9 | 88.89 | 8 | 50.00 | 10 | 90.00 |
Intermediate | 37 | 81.08 | 40 | 90.00 | 37 | 89.19 |
Semi-liquid | 34 | 82.35 | 34 | 76.47 | 34 | 73.53 |
Liquid | 8 | 50.00 | 6 | 50.00 | 7 | 71.43 |
Total | 90 | 80.00 | 90 | 78.89 | 90 | 82.22 |
Model 1 (3C) | Model 2 (3C) | Model 3 (3C) | ||||
---|---|---|---|---|---|---|
Tailing Flowability Categories | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified |
Solid | 2 | 50.00 | 2 | 100.00 | 1 | 100.00 |
Intermediate | 9 | 88.89 | 13 | 92.31 | 12 | 91.67 |
Liquid | 7 | 71.43 | 3 | 100.00 | 5 | 60.00 |
Total | 18 | 77.78 | 18 | 94.44 | 18 | 83.33 |
Model 1 (5C) | Model 2 (5C) | Model 3 (5C) | ||||
---|---|---|---|---|---|---|
Tailing Flowability Categories | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified | Cases | Percentage Correctly Classified |
Solid | 1 | 0.00 | 1 | 100.00 | 0 | 0.00 |
Semi-solid | 1 | 100.00 | 2 | 50.00 | 1 | 100.00 |
Intermediate | 8 | 75.00 | 6 | 85.71 | 7 | 85.71 |
Semi-liquid | 7 | 57.14 | 8 | 75.00 | 8 | 62.50 |
Liquid | 1 | 0.00 | 1 | 100.00 | 2 | 50.00 |
Total | 18 | 70.72 | 18 | 77.78 | 18 | 72.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera, N.; Mollehuara, R.; Gonzalez, M.S.; Okkonen, J. Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique. Minerals 2024, 14, 737. https://doi.org/10.3390/min14080737
Herrera N, Mollehuara R, Gonzalez MS, Okkonen J. Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique. Minerals. 2024; 14(8):737. https://doi.org/10.3390/min14080737
Chicago/Turabian StyleHerrera, Nelson, Raul Mollehuara, María Sinche Gonzalez, and Jarkko Okkonen. 2024. "Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique" Minerals 14, no. 8: 737. https://doi.org/10.3390/min14080737
APA StyleHerrera, N., Mollehuara, R., Gonzalez, M. S., & Okkonen, J. (2024). Predictive Insight into Tailings Flowability at Their Disposal Using Operating Data-Driven Artificial Neural Network (ANN) Technique. Minerals, 14(8), 737. https://doi.org/10.3390/min14080737