The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain)
Abstract
:1. Introduction
2. Geological Setting
2.1. Playa-Lake Sediments
2.2. Miocene Deposits
3. Materials and Methods
3.1. Bulk and Clay Mineral Assemblages (XRD)
3.2. Textural Features and Crystallochemical Compositions of Fibrous Clay Minerals (TEM-AEM)
4. Results
4.1. Miocene Clay Minerals
Textural and Crystallochemical Characterization of Miocen Fibrous Clay Minerals
4.2. Clay Mineralogy of the Playa-Lakes
4.2.1. Textural and Crystallochemical Characterization of Fibrous Clay Minerals from Playa-Lakes
Aluminum-Rich Plg
Iron-Rich Plg
Magnesium Plg and Aluminum Sep
Common and Ideal Plg
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, A. Palygorskite in sediments: Detrital, diagenetic or neoformed—A critical review. Int. J. Earth Sci. 1979, 68, 996–1008. [Google Scholar] [CrossRef]
- Calvo, J.P.; Blanc-Valleron, M.M.; Rodríguez-Aranda, J.P.; Rouchy, J.M.; Sanz-Montero, M.E. Authigenic clay minerals in continental evaporitic environments. In Palaeoweathering Palaeosurfaces and Related Continental Deposits; Wiley: Hoboken, NJ, USA, 1999; Volume 27, pp. 129–151. [Google Scholar]
- Akbulut, A.; Kadir, S. The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey. Clays Clay Miner. 2003, 51, 279–292. [Google Scholar] [CrossRef]
- Leguey, S.; Pozo, M.; Medina, J.A. Polygenesis of sepiolite and palygorskite in a fluvio-lacustrine environment in the Neogene basin of Madrid. Mineral. Petrogr. Acta 1985, 29, 287–301. [Google Scholar]
- Jones, B.F.; Galán, E. Sepiolite and palygorskite. In Hydrous Phyllosilicates; Bailey, S.W., Ed.; Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1988; Volume 19, pp. 631–674. [Google Scholar]
- Chen, T.; Xu, H.; Lu, A.; Xu, X.; Peng, S.; Yue, S. Direct evidence of transformation from smectite to palygorskite: TEM investigation. Sci. China D Earth Sci. 2004, 47, 985–994. [Google Scholar] [CrossRef]
- Singer, A.; Norrish, K. Pedogenic palygorskite occurrences in Australia. Am. Mineral. 1974, 59, 508–517. [Google Scholar]
- Chahi, A.; Fritz, B.; Duplay, J.; Weber, F.; Lucas, J. Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays Clay Miner. 1997, 45, 378–389. [Google Scholar] [CrossRef]
- Miller, C.R.; James, N.P. Autogenic microbial genesis of middle Miocene palustrine ooids; Nullarbor Plain, Australia. J. Sediment. Res. 2012, 82, 633–647. [Google Scholar] [CrossRef]
- Del Buey, P.; Cabestrero, Ó.; Arroyo, X.; Sanz-Montero, M.E. Microbially induced palygorskite-sepiolite authigenesis in modern hypersaline lakes (Central Spain). Appl. Clay Sci. 2018, 160, 9–21. [Google Scholar] [CrossRef]
- Suárez, M.; Robert, M.; Elsass, F.; Martín-Pozas, J.M. Evidence of a precursor in the neoformation of palygorskite—New data by analytical electron microscopy. Clay Miner. 1994, 29, 255–264. [Google Scholar] [CrossRef]
- Galán, E.; Ferrero, A. Palygorskite-sepiolite clays of Lebrija, Southern Spain. Clays Clay Miner. 1982, 30, 191–199. [Google Scholar] [CrossRef]
- Pozo, M.; Casas, J.C. Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain). Clay Miner. 1999, 34, 395–418. [Google Scholar] [CrossRef]
- Millot, G. Geology of Clays; Springer: London, UK, 1970; 429p. [Google Scholar]
- Deocampo, D.M.; Cuadros, J.; Wing-Dudek, T.; Olives, J.; Amouric, M. Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania. Am. J. Sci. 2009, 309, 834–868. [Google Scholar] [CrossRef]
- Stoessell, R.K. 25 °C and 1 atm. Dissolution experiments of sepiolite and kerolite. Geochim. Cosmochim. Acta 1988, 52, 365–373. [Google Scholar] [CrossRef]
- Deocampo, D.M. Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro crater, northern Tanzania. S. Afr. J. Geol. 2005, 108, 493–504. [Google Scholar] [CrossRef]
- Deocampo, D.M.; Blumenschine, R.J.; Ashley, G.M. Wetland diagensis and traces of early hominids, Olduvai Gorge, Tanzania. Quat. Res. 2002, 57, 271–281. [Google Scholar] [CrossRef]
- Cuevas, J.; Vigil de la Villa, R.; Ramírez, S.; Petit, S.; Meunier, A.; Leguey, S. Chemistry of Mg smectites in lacustrine sediments from the Vicálvaro sepiolite deposit, Madrid Neogene Basin (Spain). Clays Clay Miner. 2003, 51, 457–472. [Google Scholar] [CrossRef]
- Galán, E.; Pozo, M. Palygorskite and Sepiolite Deposits in Continental Environments. Description, Genetic Patterns and Sedimentary Settings. In Developments in Palygorskite-Sepiolite Research. A New Outlook on these Nanomaterials; Galán, E., Singer, A., Eds.; Elsevier: New York, NY, USA, 2011; Volume 3, pp. 125–166. [Google Scholar]
- Fernández-Macarro, B.; Armenteros, L.; Blanco, J.A. Procesos de alteración y paleosuelos ligados a la sedimentación miocena del noreste de Segovia, Depresión del Duero. Acta Geol. Hispánica 1988, 23, 269–281. [Google Scholar]
- Doval, M.; Domínguez, M.C.; Brell, J.M.; García, E. Mineralogía y sedimentología de las Facies distales del borde norte de la Cuenca del Tajo. Bol. Soc. Esp. Mineral. 1985, 8, 257–269. [Google Scholar]
- Ordóñez, S.; Calvo, J.P.; García del Cura, M.Á.; Alonso-Zarza, A.M.; Hoyos, M. Sedimentology of sodium sulphate deposits and special clays from the Tertiary Madrid Basin (Spain). In Lacustrine Facies Analysis; Anadón, P., Cabrera, L., Kelts, K., Eds.; Special Publication International Association of Sedimentologists; Blackwell Scientific Publications: Oxford, UK, 1991; Volume 13, pp. 39–55. [Google Scholar]
- García-Romero, E. Génesis de arcillas magnésicas en la cuenca de Madrid: Interrogantes planteados. Bol. Geol. Miner. 2004, 115, 629–640. [Google Scholar]
- Murray, H.H.; Pozo, M.; Galán, E. An introduction to palygorskite and sepiolite deposits. Location, geology and uses. In Developments in Palygorskite and Sepiolite Research. A New Outlook on These Nanomaterials; Galán, E., Singer, A., Eds.; Elsevier: New York, NY, USA, 2011; Volume 3, pp. 85–100. [Google Scholar]
- Sanz-Montero, M.E.; Rodríguez-Aranda, J.P.; Del Buey, P. Influencia del sustrato cenozoico en el origen y sedimentación de la laguna hiperalcalina de Caballo Alba (Segovia). Geogaceta 2021, 70, 31–34. [Google Scholar]
- Alonso-Gavilán, G.; Armenteros, I.; Carballeira, J.; Corrochano, A.; Huerta, P.; Rodríguez, J.M. Cuenca del Duero. In Geología de España; Vera, J.A., Ed.; SGE-IGME: Madrid, Spain, 2004; pp. 550–556. [Google Scholar]
- Portero, J.M.; Carreras, F.; Olivé, A.; Del Olmo, P. Mapa Geológico de España Escala 1:50.000, Hoja 428, Olmedo; IGME: Madrid, Spain, 1982. [Google Scholar]
- Cabestrero, Ó.; Sanz-Montero, M.E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 2018, 59, 139–157. [Google Scholar] [CrossRef]
- Del Buey, P. Interacciones Bióticas en la Neoformación de Minerales en Lagunas Salinas y Alcalinas, con Énfasis en los Minerales de la Arcilla. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2022. [Google Scholar]
- Del Buey, P.; Sanz-Montero, M.E. Biomineralization of ordered dolomite and magnesian calcite by the green alga Spirogyra. Sedimentology 2022, 70, 685–704. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; del Buey, P.; Cabestrero, Ó.; Sánchez-Román, M. Isotopic signatures of microbial Mg-carbonates deposited in an ephemeral hyperalkaline lake (Central, Spain): Paleoenvironmental implications. Minerals 2023, 13, 617. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Cabestrero, Ó.; Sánchez-Román, M. Microbial Mg-Rich Carbonates in an Extreme Alkaline Lake (Las Eras, Central Spain). Front. Microbiol. 2019, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. I. Matrix flushing method for quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–931. [Google Scholar] [CrossRef]
- Kübler, K. Cristallinité de L’illite, Méthodes Normalisées de Préparations, Méthodes Normalisées de Mesure; Série ADX; Cahiers Institut de Geologie: Neuchâtel, Switzerland, 1987; 13p. [Google Scholar]
- Nieto, F.; Arroyo, X.; Aróstegui, J. XRD-TEM-AEM comparative study of n-alkilamonnium smectites and interestratified minerals in shallow-diagenetic carbonate sediments of the Basque-Cantabrian Basin. Am. Mineral. 2016, 101, 385–398. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis Advanced Course; CABI Digital Library: Madison, WI, USA, 1969; 895p. [Google Scholar]
- Warr, L.N. IMA-CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Yebra, Á. Influencia de la Mineralogía, Quimismo y Textura en las Aplicaciones Básicas Industriales de la Sepiolita. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2000. [Google Scholar]
- Cliff, G.; Lorimer, G.W. The quantitative analysis of thin specimens. J. Microsc. 1975, 103, 203–207. [Google Scholar] [CrossRef]
- Elert, K.; Nieto, F.; Azañon, J.M. Effects of lime treatments on marls. Appl. Clay Sci. 2017, 135, 611–619. [Google Scholar] [CrossRef]
- García-Romero, E.; Suárez, M. Sepiolite-palygorskite: Textural study and genetic considerations. Appl. Clay Sci. 2013, 86, 129–144. [Google Scholar] [CrossRef]
- Suárez, M.; García-Romero, E. Sepiolite-palygorskite: A continous polysomatic series. Clays Clay Miner. 2013, 61, 461–472. [Google Scholar] [CrossRef]
- García-Romero, E.; Súarez, M. On the chemical composition of sepiolite and palygorskite. Clays Clay Miner. 2010, 58, 1–20. [Google Scholar] [CrossRef]
- Velde, B. Composition and mineralogy of clay minerals. In Origin and Mineralogy of Clays; Velde, B., Ed.; Springer: New York, NY, USA, 1995; pp. 8–42. [Google Scholar]
- Neaman, A.; Singer, A. The effects of palygorskite on chemical and physico-chemical properties of soils: A review. Geoderma 2004, 123, 297–303. [Google Scholar] [CrossRef]
- Muir, A. Notes on the soils of Syria. Eur. J. Soil. Sci. 1951, 2, 163–182. [Google Scholar] [CrossRef]
- Rogers, L.E.R.; Quirk, J.P.; Norrish, K. Ocurrence of an aluminum sepiolite in a soil having an unusual water relationships. J. Soil. Sci. 1956, 7, 177–185. [Google Scholar] [CrossRef]
- Singer, A. The texture of palygorskite from the Rift Valley, southern Israel. Clay Miner. 1981, 16, 415–419. [Google Scholar] [CrossRef]
- Ravikovitch, S.; Pines, F.; Ben-Yair, M. Composition of colloids in soils of Israel. J. Soil. Sci. 1960, 11, 82–91. [Google Scholar] [CrossRef]
- McLean, S.A.; Allen, B.L.; Craig, J.R. The occurrence of sepiolite and attapulgite on the southern High Plains. Clays Clay Miner. 1972, 20, 143–149. [Google Scholar] [CrossRef]
- Shadfan, H.; Mashhady, A.S. Distribution of palygorskite in sediments and soils of Eastern Saudi Arabia. Soil Sci. Soc. Am. J. 1985, 49, 243–250. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, Z.; Han, F. Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Appl. Clay Sci. 2020, 190, 105543. [Google Scholar] [CrossRef]
- Martínez-Ramirez, S.; Puertas, F.; Blanco-Varela, M.T. Stability of sepiolite in neutral and alkaline media at room temperature. Clay Mineral. 1996, 31, 225–232. [Google Scholar] [CrossRef]
- Grim, R.E. Clay Mineralogy; Mc Graw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Hodge, T.; Turchenek, L.W.; Oades, J.M. Ocurrence of palygorskite in ground water rendzinas (petrocalcic Calciaquolls) in Southeast South Australia. In Palygorskite-Sepiolite: Occurrences, Genesis and Uses; Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 37, pp. 199–210. [Google Scholar]
- Verrechia, E.P.; Le Coustumer, M.N. Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boquer, Negev desert, Israel. Clay Mineral. 1996, 31, 183–202. [Google Scholar] [CrossRef]
- Birsoy, R. Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner. 2002, 50, 736–745. [Google Scholar] [CrossRef]
- Krekeler, M.P.S.; Hammerley, E.; Rakovan, J.; Guggenheim, S. Microscopy studies of the palygorskite to smectite transformation. Clays Clay Miner. 2005, 53, 92–99. [Google Scholar] [CrossRef]
- Golden, D.C.; Dixon, J.B.; Shadfan, H.; Kippenberger, L.A. Palygorskite and sepiolite alteration to smectite under alkaline conditions. Clays Clay Miner. 1985, 33, 44–50. [Google Scholar] [CrossRef]
- Rodas, M.; Luque, F.J.; Mas, R.; Garzón, M.G. Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo Basins, Central Spain. Clay Mineral. 1994, 29, 273–285. [Google Scholar] [CrossRef]
- Malmström, M.; Banwart, S.; Lewenhagen, J.; Duro, L.; Bruno, J. The dissolution of biotite and chlorite at 25 °C in the near-neutral pH region. J. Contam. Hydrol. 1996, 21, 201–213. [Google Scholar] [CrossRef]
- Rochelle, C.A.; Bateman, K.; MacGregor, R.; Pearce, J.M.; Savage, D.; Wetton, P.D. Experimental determination of chlorite dissolution rates. MRS Online Proc. Lib. 1996, 353, 149–156. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry; Wiley-Interscience: New York, NY, USA, 1996. [Google Scholar]
- Lowson, R.T.; Josick-Comarmond, M.C.; Rajaratnam, G.; Brown, P.L. The kinetics of dissolution of the chlorite as a function of pH and at 25 °C. Geochim. Cosmochim. Acta 2005, 69, 1687–1699. [Google Scholar] [CrossRef]
- Huang, Y.J.; Li, Z.; Li, S.Z.; Shi, Z.L.; Yin, L.; Hsia, Y.F. Mössbauer investigations of palygorskite from Xuyi, China. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 260, 657–662. [Google Scholar] [CrossRef]
- Grunwald, C. Estudio geoquímico de depósitos lagunares en la Cuenca del Duero con énfasis en la distribución del arsénico. Master’s Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2024. [Google Scholar]
- Torres-Ruíz, J.; López-Galindo, A.; González-López, J.M.; Delgado, A. Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes. Chem. Geol. 1994, 112, 221–245. [Google Scholar] [CrossRef]
- Chryssikos, G.D.; Gionis, V.; Kacandes, G.H.; Statopoulou, E.T.; Suárez, M.; García-romero, E.; Sánchez del Río, M. Octahedral cation distribution in palygorskite. Am. Mineral. 2009, 94, 200–203. [Google Scholar] [CrossRef]
- Abbaslou, H.; Abtahi, A.; Martin Peinado, F.J.; Owliaie, H.; Khormali, F. Mineralogy and characteristic of soils developed on Persian Gulf and Oman Sea basin, southern Iran: Implications for soil evolution in relation to sedimentary parent material. Soil Sci. 2013, 178, 568–584. [Google Scholar] [CrossRef]
- Stoffers, P.; Ross, D.A. Late Pleistocene and Holocene sedimentation in the Persian Gulf-Gulf of Oman. Sediment. Geol. 1979, 23, 181–208. [Google Scholar] [CrossRef]
- Al-Bakri, D.; Khalaf, F.; Al-Ghadban, A. Mineralogy, genesis, and sources of surficial sediments in the Kuwait marine environment, northern Arabian Gulf. J. Sed. Petrol. 1984, 54, 1266–1279. [Google Scholar]
- Aqrawi, A.A.M. Petrography and mineral content of sea-floor sediments of the Tigris-Euphrates Delta, North-West Arabian Gulf, Iraq. Estuar. Coast. Shelf. Sci. 1994, 38, 569–582. [Google Scholar] [CrossRef]
- Kadir, S.; Eren, M.; Külah, T.; Önalgil, N.; Cesur, M.; Gürel, A. Genesis of Late Miocene-Pliocene lacustrine palygorskite and calcretes from Kirsehir, central Anatolia, Turkey. Clay Mineral. 2014, 49, 473–494. [Google Scholar] [CrossRef]
- Munara, A.; Cathelineau, M.; Carpentier, C.; Abylay, N. Clays as indicator of paleoclimate and source rocks in The Chu-Sarysu Basin (Kazakhstan). Kazakhstan J. Oil Gas Ind. 2023, 5, 21–35. [Google Scholar] [CrossRef]
- Voigt, S.; Weber, Y.; Frisch, K.; Barteinstein, A.; Hellwing, A.; Petschick, R.; Bahr, A.; Pross, J.; Koutsodendris, A.; Voigt, T. Climatically forced moisture supply, sediment flux and pedogenesis in Miocene mudflat deposits of south-east Kazakhstan, Central Asia. Depos. Rec. 2017, 3, 209–232. [Google Scholar] [CrossRef]
- Hameed, A.; Raja, P.; Ali, M.; Upreti, N.; Kumar, N.; Tripathi, J.K.; Srivastava, P. Micromorphology, clay mineralogy, and geochemistry of calcic-soils from western Thar Desert: Implications from origin of palygorskite and southwestern monsoonal fluctuations over the last 30 ka. Catena 2018, 163, 378–398. [Google Scholar] [CrossRef]
Sample | Si | IV Al | VI Al | Mg | Fe3+ | ∑OC | Ca | K | Na | Type |
---|---|---|---|---|---|---|---|---|---|---|
CA I/01 | 7.4 | 0.6 | 1.41 | 2.19 | 0.47 | 4.07 | 0.1 | 0.23 | 0.14 | Type II |
CA I/02 | 7.45 | 0.55 | 1.09 | 2.55 | 0.49 | 4.13 | 0.09 | 0.32 | 0.17 | Type III |
CA I/03 | 7.10 | 0.9 | 0.88 | 2.88 | 0.64 | 4.4 | 0.07 | 0.29 | 0.16 | Type III |
CA I/04 | 7.36 | 0.64 | 0.53 | 3.37 | 0.38 | 4.28 | 0.21 | 0.11 | 0.64 | Type III |
CA I/05 | 7 | 1 | 0.57 | 2.78 | 0.8 | 4.15 | 0.21 | 0.19 | 0.72 | Type III |
CA I/06 | 6.94 | 1.06 | 0.74 | 3.54 | 0.42 | 4.7 | 0.05 | 0.25 | 0.15 | Type III |
CA I/07 | 7.21 | 0.79 | 0.82 | 3.57 | 0.31 | 4.7 | 0.09 | 0.07 | 0.03 | Type III |
CA I/08 | 7.23 | 0.77 | 1.6 | 1.46 | 0.51 | 3.57 | 0.23 | 0.51 | 0.55 | Type IV |
CA I/09 | 6.68 | 1.32 | 1.29 | 1.35 | 0.74 | 3.38 | 0.52 | 0.61 | 0.86 | Type IV |
CA I/10 | 7.47 | 0.53 | 2.18 | 0.7 | 0.43 | 3.31 | 0.13 | 0.82 | 0.24 | Type IV |
CA I/11 | 7.35 | 0.65 | 2.23 | 0.85 | 0.34 | 3.42 | 0.12 | 0.71 | 0.3 | Type IV |
MAX | 7.47 | 1.32 | 2.23 | 3.57 | 0.8 | 4.7 | 0.52 | 0.82 | 0.86 | |
MIN | 6.68 | 0.53 | 0.53 | 0.7 | 0.31 | 3.31 | 0.07 | 0.07 | 0.03 | |
MEAN | 7.20 | 0.80 | 1.21 | 2.29 | 0.50 | 4.01 | 0.17 | 0.37 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Buey, P.; Sanz-Montero, M.E.; Rodríguez-Aranda, J.P.; Sánchez-Román, M.; Nieto, F. The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain). Minerals 2025, 15, 50. https://doi.org/10.3390/min15010050
del Buey P, Sanz-Montero ME, Rodríguez-Aranda JP, Sánchez-Román M, Nieto F. The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain). Minerals. 2025; 15(1):50. https://doi.org/10.3390/min15010050
Chicago/Turabian Styledel Buey, Pablo, María Esther Sanz-Montero, Juan Pablo Rodríguez-Aranda, Mónica Sánchez-Román, and Fernando Nieto. 2025. "The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain)" Minerals 15, no. 1: 50. https://doi.org/10.3390/min15010050
APA Styledel Buey, P., Sanz-Montero, M. E., Rodríguez-Aranda, J. P., Sánchez-Román, M., & Nieto, F. (2025). The Miocene Source-to-Sink Evolution of Fibrous Clay Minerals in Hyperalkaline Playa-Lakes, Duero Basin (Central Spain). Minerals, 15(1), 50. https://doi.org/10.3390/min15010050