S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana
Abstract
:1. Introduction
- (1)
- (2)
- Another perspective posits that during the late Neoproterozoic, the northern margin of Gondwana functioned as a passive continental margin (e.g., [9,24,25,26,27]), and that Early Paleozoic magmatic rocks were generated in a post-collisional extensional setting following the Pan-African orogeny (e.g., [7,28,29,30,31,32,33]).
- (3)
Location | Terrane | Lithology | Genesis Type | Method | Age | Ref. |
---|---|---|---|---|---|---|
Mabjia | Himalaya | Granitic gneiss | \ | SIMS | 530 | [39] |
Kampa | Himalaya | Granitic gneiss | \ | SHRIMP | 527, 506 | [40] |
Kangmar | Himalaya | Granitic gneiss | \ | U-Pb | 508 | [41] |
Kangmar | Himalaya | Granitic gneiss | \ | SHRIMP | 515 | [16] |
Kangmar | Himalaya | Granitic gneiss | S-type | LA-ICP-MS | 500~478 | [42] |
Kangmar | Himalaya | Granite | S-type | SHRIMP | 499~498 | [43] |
Gyirong | Himalaya | Granitic gneiss | \ | SHRIMP | 514 | [16] |
Gyirong | Himalaya | Granitic gneiss | \ | SHRIMP | 499 | [44] |
Gyirong | Himalaya | Granitic gneiss | S-type | LA-ICP-MS | 486~474 | [42] |
Gyirong | Himalaya | Granite | S-type | LA-ICP-MS | 486~429 | [43] |
Laguigangri | Himalaya | Granitic gneiss | S-type | LA-ICP-MS | 514 | [29] |
Yadong | Himalaya | Granite | \ | SHRIMP | 512 | [16] |
Yadong | Himalaya | Granite | S-type | SHRIMP | 508 | [43] |
Yadong | Himalaya | Granite | S-type | LA-ICP-MS | 499 | [45] |
Namche Bawa | Himalaya | Granite | S-type | SHRIMP | 506 | [43] |
Namche Bawa | Himalaya | Granitic gneiss | I-type | LA-ICP-MS | 503~490 | [46] |
Dinggye | Himalaya | Granitic gneiss | S-type | SHRIMP | 504~482 | [47] |
Nielamu | Himalaya | Granitic gneiss | \ | SHRIMP | 501 | [16] |
Yalaxiangbo | Himalaya | Granitic gneiss | S-type | LA-ICP-MS | 496~488 | [42] |
Xiaru | Himalaya | Granite | S-type | MC-ICP-MS | 486~446 | [43] |
Xiaru | Himalaya | Othogneiss | I-type or S-type | SIMS | 480~470 | [48] |
Xiaru | Himalaya | Granite | S-type | LA-ICP-MS | 478, 475 | [49] |
Kathmandu, Dadeldhura | Himalaya | Granite | \ | MC-ICP-MS | 484~476 | [34,50] |
Kathmandu | Himalaya | Granite | \ | LA-ICP-MS | 478, 477 | [10] |
Dadeldhura | Himalaya | Granite | \ | MC-ICP-MS | 482~474 | [51] |
Dadeldhura | Himalaya | Granite | \ | LA-ICP-MS | 478 | [52] |
Rupshu | Himalaya | Granite | Peral. I-type | IDMS | 482 | [53] |
Tso Morari | Himalaya | Granitic gneiss | S-type | IDMS | 479 | [53] |
Lhagoi Kangri | Himalaya | Granite | S-type | SHRIMP | 477 | [43] |
Mabjia | Himalaya | Granite | S-type | SHRIMP | 475 | [43] |
Simchar | Himalaya | Granite | \ | LA-ICP-MS | 471 | [54] |
Duguer | South Qiangtang | Granitic gneiss | S-type | LA-ICP-MS | 502~492 | [55] |
Duguer | South Qiangtang | Granitic gneiss | S-type | MC-ICP-MS | 490~473 | [56] |
Duguer | South Qiangtang | Gabbro | E-MORB | MC-ICP-MS | 490 | [57] |
Duguer | South Qiangtang | Basalt | E-MORB | MC-ICP-MS | 483 | [57] |
Duguer | South Qiangtang | Andesite | OIB | MC-ICP-MS | 477~473 | [57] |
Duguer | South Qiangtang | Granitic gneiss | \ | LA-ICP-MS | 476~471 | [58] |
Duguer | South Qiangtang | Granitic gneiss | A-type | MC-ICP-MS | 454 | [57] |
Bensong-Co | South Qiangtang | Granitic gneiss | S-type | LA-ICP-MS | 497, 496 | [59] |
Bensong-Co | South Qiangtang | Granitic gneiss | S-type | LA-ICP-MS | 486, 481 | [60] |
Gemuri | South Qiangtang | Granite | \ | MC-ICP-MS | 489, 480 | [61] |
Gemuri | South Qiangtang | Granite | S-type | LA-ICP-MS | 486, 480 | [60] |
Gemuri | South Qiangtang | Granite | S-type | MC-ICP-MS | 469~455 | [56] |
Gemuri | South Qiangtang | Granite | \ | MC-ICP-MS | 439 | [61] |
Ejiumai | South Qiangtang | Granite | \ | SHRIMP | 476~463 | [62] |
Moon-Co | South Qiangtang | Metabasalt | OIB | LA-ICP-MS | 476 | [63] |
Moon-Co | South Qiangtang | Metarhyolite | \ | LA-ICP-MS | 470, 461 | [63] |
Moon-Co | South Qiangtang | Metarhyolite | \ | LA-ICP-MS | 458, 454 | [64] |
Heibailing | South Qiangtang | Metarhyolite | \ | LA-ICP-MS | 467 | [63] |
Wugongshan | South Qiangtang | Granitic gneiss | \ | LA-ICP-MS | 465 | [19] |
Jitang | South Qiangtang | Granite | S-type | LA-ICP-MS | 455 | [65] |
Guomang-Co | Lhasa | Granite | S-type | MC-ICP-MS | 530, 480 | this study |
Banglei | Lhasa | Metarhyolite | \ | LA-ICP-MS | 536 | [28] |
Zhaqian | Lhasa | Metarhyolite | S-type | LA-ICP-MS | 525, 511 | [36] |
Zhakang | Lhasa | Metarhyolite | Peral. A-type | MC-ICP-MS | 512 | [38] |
Zhakang | Lhasa | Metarhyolite | S-type | LA-ICP-MS | 510 | [36] |
Zhakang | Lhasa | Metarhyolite | \ | LA-ICP-MS | 501 | [66] |
Xainza | Lhasa | Granite | \ | LA-ICP-MS | 510 | [67] |
Tongka | Lhasa | Granite | \ | SHRIMP | 507 | [18] |
Jili | Lhasa | Granitic gneiss | Peral. I-type | LA-ICP-MS | 504, 495 | [68] |
Milin | Lhasa | Granite | S-type | LA-ICP-MS | 501~496 | [69] |
Nyingchi | Lhasa | Granitic gneiss | \ | LA-ICP-MS | 496 | [70] |
Banglei | Lhasa | Metabasalt | \ | LA-ICP-MS | 492 | [11] |
Banglei | Lhasa | Metarhyolite | S-type | LA-ICP-MS | 492 | [11] |
Amdo | Amdo | Granitic gneiss | \ | LA-ICP-MS | 532~483 | [71] |
Amdo | Amdo | Granitic gneiss | \ | U–Pb | 531 | [72] |
Amdo | Amdo | Granitic gneiss | I-type | LA-ICP-MS | 517~505 | [37] |
Amdo | Amdo | Granitic gneiss | \ | SHRIMP | 502~483 | [46] |
Amdo | Amdo | Granitic gneiss | \ | LA-ICP-MS | 488 | [21] |
2. Geological Setting and Samples
3. Materials and Methods
3.1. Whole-Rock Geochemical Data
3.2. Zircon U-Pb Geochronological Investigations
3.3. Zircon Hf Isotope
3.4. Whole-Rock Sr-Nd-Pb Isotopes
4. Results
4.1. Whole-Rock Geochemical Characteristics
4.2. Zircon U-Pb Geochronological Investigations
4.3. Zircon Hf Isotope
4.4. Whole-Rock Sr−Nd−Pb Isotopes
5. Discussion
5.1. Petrogenesis and Magma Source
5.2. Tectonic Setting and Significance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stampfli, G.M.; Borel, G.D. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Hochard, C.; Vérard, C. The formation of Pangea. Tectonophysics 2013, 593, 1–19. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. The Palaeozoic geography of Laurentia and western Laurussia: A stable craton with mobile margins. Earth Sci. Rev. 2011, 106, 1–51. [Google Scholar] [CrossRef]
- Wu, F.-Y.; Wan, B.; Zhao, L.; Xiao, W.-J.; Zhu, R.-X. Tethyan geodynamics. Acta Petrol. Sin. 2020, 36, 1627–1674. [Google Scholar]
- Zhao, G.-C.; Wang, Y.-J.; Huang, B.-C.; Dong, Y.-P.; Li, S.-Z.; Zhang, G.-W.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
- Wilhem, C.; Windley, B.F.; Stampfli, G.M. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth Sci. Rev. 2012, 113, 303–341. [Google Scholar] [CrossRef]
- Miller, C.; Thöni, M.; Frank, W. The early Palaeozoic magmatic event in the Northwest Himalaya, India: Source, tectonic setting and age of emplacement. Geol. Mag. 2001, 138, 237–251. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Chung, S.-L. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Pan, G.-T.; Wang, L.-Q.; Zhang, W.-P.; Wang, B.-D.; Pan, G.T.; Wang, L.Q.; Li, R.S.; Yuan, S.H.; Ji, W.H.; Yin, F.G.; et al. Tectonic evolution of the Qinghai-Tibet plateau. Asian Earth Sci. 2012, 53, 314. [Google Scholar] [CrossRef]
- Cawood, P.A.; Johnson, M.R.W.; Nemchin, A.A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 2007, 255, 70–84. [Google Scholar] [CrossRef]
- Zhu, D.-C.; Zhao, Z.-D.; Niu, Y.-L.; Dilek, Y.; Wang, Q.; Ji, W.-H.; Dong, G.-C.; Sui, Q.-L.; Liu, Y.-S.; Yuan, H.-L.; et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem. Geol. 2012, 328, 290–308. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Xing, X.-W.; Cawood, P.A.; Lai, S.-C.; Xia, X.-P.; Fan, W.-M.; Liu, H.-C.; Zhang, F.-F. Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos 2013, 182–183, 67–85. [Google Scholar] [CrossRef]
- Liu, G.-C. Petrology Component and Geochronology of Early Paleozoic Proto-Tethys Ophiolitemélange in SW Yunnan. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2020. [Google Scholar]
- Liu, G.-C.; Zi, J.-W.; Nie, X.-M.; Santosh, M.; Zhu, C.; Wang, W.; Zhao, T.-Y.; Chen, G.-Y.; Feng, Q.-L. Late Cambrian Magmatic Events in SW Yunnan and Implications for the Tectonic Reconstruction of Northern Gondwana. J. Earth Sci. 2024, 35, 1407–1425. [Google Scholar] [CrossRef]
- Kennedy, W.Q. The structural differentiation of Africa in the Pan-Africa (±500 my) tectonic episode. Univ. Leeds Res. Inst. Afr. Geol. Ann. Rept. 1964, 8, 48–49. [Google Scholar]
- Xu, Z.-Q.; Yang, J.-S.; Liang, F.-H.; Qi, X.-X.; Liu, F.-C.; Zeng, L.-S.; Liu, M.-Y.; Li, H.-B.; Wu, C.-L.; Shi, R.-D.; et al. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane: Inference from SHRlMP U-Ph zircon ages. Acta Petrol. 2005, 21, 3–14. [Google Scholar]
- Liu, W.-C.; Zhou, Z.-G.; Zhang, X.-X.; Zhao, X.-G. SHRIMP zircon geochronological constraints on a Pan-African orogeny in the Yadong Area, Southern Tibet. Geochim. Cosmochim. Acta Suppl. 2006, 70, A365. [Google Scholar] [CrossRef]
- Li, C.; Xie, Y.-W.; Sha, S.-L.; Dong, Y.-S. SHRIMP U-Pb zircon dating of the Pan-African granite in Baxoi County, eastern Tibet, China. Geol. Bull. China 2008, 27, 64–68. [Google Scholar]
- Hu, P.-Y.; Li, C.; Su, L.; Li, C.-B.; Yu, H. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: Age records of Pan-African movement and Indo-China movement. Geol. China 2010, 37, 1050–1061. [Google Scholar]
- Xie, C.-M.; Li, C.; Su, L.; Wu, Y.-W.; Wang, M.; Yu, H. LA-ICP-MS U-Pb dating of zircon from granite-gneiss in the Amdo area, northern Tibet, China. Geol. Bull. China 2010, 29, 1737–1744. [Google Scholar]
- Liu, Q.-S.; Ye, P.-S.; Wu, Z.-H. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province. Geol. Bull. China 2012, 31, 250–257. [Google Scholar]
- Lin, S.-L.; Cong, F.; Gao, Y.-J.; Zou, G.-F. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province. Geol. Bull. China 2012, 31, 258–263. [Google Scholar]
- Wang, Y.-W.; Zhou, Q.; Xie, Q.-X.; Sun, P.; Zhang, J.-R.; Wang, H.; Xiao, L. Pan-African and Early Paleozoic Geological Orogenic Events in the Tethyan Himalaya: From Chronological Evidence of Gneissic Monzonitic Granite, Kangma, Tibet. Bull. Geol. Sci. Technol. 2016, 35, 30. [Google Scholar]
- Murphy, J.B.; Nance, R.D. Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 1991, 19, 469–472. [Google Scholar] [CrossRef]
- Brookfield, M.E. The Himalayan passive margin from Precambrian to Cretaceous times. Sediment. Geol. 1993, 84, 1–35. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Fan, J.-J. Geochronology and geochemistry of the Dabure basalts, central Qiangtang, Tibet: Evidence for~550 Ma rifting of Gondwana. Int. Geol. Rev. 2015, 57, 1791–1805. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.; Xie, C.-M. Dating of detrital zircons from the Dabure clastic rocks: The discovery of Neoproterozoic strata in southern Qiangtang, Tibet. Int. Geol. Rev. 2016, 58, 216–227. [Google Scholar] [CrossRef]
- Pan, X.-P.; Li, R.-S.; Wang, C.; Yu, P.-S.; Gu, P.-Y.; Zha, X.-F. Geochemical characteristics of the Cambrian volcanic rocks in Banglecun area on the northern margin of Gangdise, Nyima County, Tibet. Geol. Bull. China 2012, 31, 63–74. [Google Scholar]
- Gu, P.-Y.; He, S.-P.; Li, R.-S.; Shi, C.; Dong, Z.-C.; Zha, X.-F.; Wu, J.-L.; Wang, Y. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet. Acta Petrolog. Sin. 2013, 29, 756–768. [Google Scholar]
- Yang, X.-J.; Jia, X.-C.; Xiong, C.-L.; Bai, X.-Z.; Huang, B.-X.; Luo, G.; Yang, C.-B. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance. Geol. Bull. China 2012, 31, 264–276. [Google Scholar]
- Liu, Y.-M. Magmatism at 550~450 Ma Within the SouthQiangtang-Baoshan Plate of the Tibetan Plateau: Constraintson the Tectonic Evolution of the Basement of the northernGondwana Margin. Ph.D. Thesis, Jinlin University, Changchun, China, 2017. [Google Scholar]
- Lv, P.-R.; Zhang, H.-D.; Luo, Y.-J.; Yao, W.-G. LA-ICP-MS Zircon U-Pb Dating of Granitic Gneiss from Yadong Area in South Tibet and Its Geochemical Characteristics. Earth Sci. 2018, 43, 4459–4474. [Google Scholar]
- Zhang, T.-Y. Early Paleozoic Tectonic Movement on the Tibetan Plateauand Its Adjacent Areas: A Case Study of Cambrian-Ordovician Unconformity. Ph.D. Thesis, Jinlin University, Changchun, China, 2018. [Google Scholar]
- Gehrels, G.E.; DeCelles, P.G.; Martin, A.; Ojha, T.P.; Pinhassi, G. Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt. GSA Today 2003, 13, 4–9. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Wang, J.-L.; Shen, K.; Shi, C. Paleozoic circum-Gondwana orogens: Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrolog. Sin. 2008, 24, 1627–1637. [Google Scholar]
- Hu, P.-Y.; Li, C.; Wang, M.; Xie, C.-M.; Wu, Y.-W. Cambrian volcanism in the Lhasa terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc along the Gondwana proto-Tethyan margin. J. Asian Earth Sci. 2013, 77, 91–107. [Google Scholar] [CrossRef]
- Xie, C.-M.; Li, C.; Su, L.; Wu, Y.-W.; Xie, Y.-W. Pan-African and early Paleozoic tectonothermal events in the Nyainrong microcontinent: Constraints from geochronology and geochemistry. Sci. China Earth Sci. 2014, 56, 2066–2079. [Google Scholar] [CrossRef]
- Ding, H.-X.; Zhang, Z.-M.; Dong, X.; Yan, R.; Lin, Y.-H.; Jiang, H.-Y. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana. Gondwana Res. 2014, 27, 1616–1629. [Google Scholar] [CrossRef]
- Lee, J.; Whitehouse, M.J. Onset of mid-crustal extensional flow in southern Tibet: Evidence from U/Pb zircon ages. Geology 2007, 35, 45–48. [Google Scholar] [CrossRef]
- Quigley, M.C.; Liangjun, Y.; Gregory, C.; Corvino, A.; Sandiford, M.; Wilson, C.J.L.; Xiaohan, L. U–Pb SHRIMP zircon geochronology and T–t–d history of the Kampa Dome, southern Tibet. Tectonophysics 2008, 446, 97–113. [Google Scholar] [CrossRef]
- Lee, J.; Hacker, B.R.; Dinklage, W.S.; Wang, Y.; Gans, P.; Calvert, A.; Wan, J.-L.; Chen, W.-J.; Blythe, A.E.; McClelland, W. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics 2000, 19, 872–895. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhang, J.-J.; Santosh, M.; Liu, J.; Yan, S.-Y.; Lei, G. Andean-type orogeny in the Himalayas of south Tibet: Implications for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos 2012, 154, 248–262. [Google Scholar] [CrossRef]
- Gao, L.-E.; Zeng, L.-S.; Hu, G.-Y.; Wang, Y.-Y.; Wang, Q.; Guo, C.-L.; Hou, K.-J. Early Paleozoic magmatism along the northern margin of East Gondwana (Review). Lithos 2019, 334–335, 25–41. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhang, J.-J.; Yang, X.-Y.; Zhang, B. Zircon SHRIMP U-Pb ages, Hf isotopie features and their geologicalsiqnificance of the Greater Himalayan Crystalline Complex augen qneiss in Gyirong Area, south Tibet. Earth Sci. Front. 2011, 18, 127–139. [Google Scholar]
- Shi, C.; Li, R.-S.; He, S.-P.; Wang, C.; Pan, S.-J.; Liu, Y.; Gu, P.-Y. LA-ICP-MS zircon U-Pb dating for gneissic garnet-bearing bi otite granodiorite in the Yadong area, southern Tibet, China and its geological significance. Geol. Bull. China 2010, 29, 1745–1753. [Google Scholar]
- Zhang, Z.-M.; Dong, X.; Santosh, M.; Liu, F.; Wang, W.; Yiu, F.; He, Z.-Y.; Shen, K. Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: Constraints on the origin and evolution of the north-eastern margin of the Indian Craton. Gondwana Res. 2012, 21, 123–137. [Google Scholar] [CrossRef]
- Yang, D.-T. Geochronology, Geochemistry and Tectonic Implication of EarlyPaleozoic Granitic Gneisses in the Dinggyê Area, Southern Tibet. Master’s Thesis, Chinese Academy of Geological Science, Beijing, China, 2015. [Google Scholar]
- Liu, Z.-C.; Wu, F.-Y.; Ding, L.; Liu, X.-C.; Wang, J.-G.; Ji, W.-Q. Highly fractionated Late Eocene (~35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos 2016, 240–243, 337–354. [Google Scholar] [CrossRef]
- Zhang, S.-Z.; Li, F.-Q.; Li, Y.; Liu, W.; Qin, Y.-D. Early Ordovician strongly peraluminous granite in the middle section of the Yarlung Zangbo junction zone and its geological significance. Sci. China Earth Sci. 2014, 57, 630–643. [Google Scholar] [CrossRef]
- Gehrels, G.E.; DeCelles, P.G.; Ojha, T.P.; Upreti, B.N. Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol. Soc. Am. Bull. 2006, 118, 185–198. [Google Scholar] [CrossRef]
- Gehrels, G.E.; DeCelles, P.G.; Ojha, T.P.; Upreti, B.N. Geologic and U–Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. J. Asian Earth Sci. 2006, 28, 385–408. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; LaReau, B.; Spurlin, M. Tectonic implications of U-Pb zircon ages of the Himalayan Orogenic Belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef]
- Girard, M.; Bussy, F. Late Pan-African magmatism in the Himalaya: New geochronological and geochemical data from the Ordovician Tso Morari metagranites (Ladakh, NW India). Schweiz. Mineral. Petrogr. Mitt. 1999, 79, 399–418. [Google Scholar]
- Johnson, M.R.W.; Oliver, G.J.H.; Parrish, R.R.; Johnson, S.P. Synthrusting metamor phism, cooling and erosion of the Himalayan Kathmandu complex, Nepal. Tectonics 2001, 20, 394–415. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Li, C.; Xie, C.-M.; Fan, J.-J.; Wu, H.; Jiang, Q.-Y.; Li, X. Cambrian granitic gneiss within the central Qiangtang terrane, Tibetan Plateau: Implications for the early Palaeozoic tectonic evolution of the Gondwanan margin. Int. Geol. Rev. 2016, 58, 1043–1063. [Google Scholar] [CrossRef]
- Wang, H.-T.; Zhai, Q.-G.; Hu, P.-Y.; Zeng, L.-S.; Tang, Y.; Zhu, Z.-C. Early Paleozoic granitic rocks of the South Qiangtang Terrane, northern Tibetan Plateau: Implications for subduction of the Proto- (Paleo-) Tethys Ocean. J. Asian Earth Sci. 2020, 204, 104579. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Xie, C.-M.; Li, C.; Li, S.-Z.; Santosh, M.; Wang, M.; Fan, J.-J. Breakup of the northern margin of Gondwana through lithospheric delamination: Evidence from the Tibetan Plateau. Geol. Soc. Am. Bull. 2019, 131, 675–694. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Gehrels, G.E.; Ding, L.; Zhang, Q. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Bulletin 2011, 123, 585–600. [Google Scholar] [CrossRef]
- Peng, Z.M.; Geng, Q.R.; Wang, L.Q.; Zhang, Z.; Guan, J.L.; Cong, F.; Liu, S.S. Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco, central Qiangtang, Qinghai-Tibet Plateau. Chin. Sci. Bull. 2014, 59, 2621–2629. (In Chinese) [Google Scholar]
- Hu, P.-Y.; Zhai, Q.-G.; Jahn, B. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin. Lithos 2015, 220, 318–338. [Google Scholar] [CrossRef]
- Wang, H.-T.; Zhai, Q.-G.; Hu, P.-Y.; Zeng, L.-S.; Tang, Y.; Zhu, Z.-C. Late Cambrian to Early Silurian Granitic Rocks of the Gemuri Area, Central Qiangtang, North Tibet: New Constraints on the Tectonic Evolution of the Northern Margin of Gondwana. Acta Geol. Sin. 2020, 94, 1007–1019. [Google Scholar] [CrossRef]
- Zheng, Y.-L.; Wang, G.-H.; Guo, Z.-W.; Liang, X.; Yuan, G.-L.; Wang, H.-D.; Huang, B.; He, Y.-D. The record of the Pan African and the Indosinian tectono-thermal event in Qiangtang terrane, northern Tibet: Evidence from geochemical characteristics and U-Pb geochronology of the metamorphic complex in Ejiumai area. Acta Petrol. Sin. 2015, 31, 1137–1152. [Google Scholar]
- Xie, C.-M.; Li, C.; Fan, J.-J.; Su, L. Ordovician sedimentation and bimodal volcanism in the Southern Qiangtang terrane of northern Tibet: Implications for the evolution of the northern Gondwana margin. Int. Geol. Rev. 2017, 59, 2078–2105. [Google Scholar] [CrossRef]
- Xie, C.-M.; Li, C.; Fan, J.-J.; Wang, M.; Liu, Y.-M.; Zhang, H.-Y. Establishment of Middle-Upper Ordovician Dawashan Formationin central Oiangtang, Tibetan Plateau, and its significance. Geol. Bull. China 2015, 34, 1812–1820. [Google Scholar]
- Ren, F.; Yin, F.-G.; Xu, B.; Liu, H.-L.; Fan, B.-L.; Xu, C.-H.; Bai, J.-G. Zircon U-Pb age and Hf isotope of Early Paleozoic granite from the Jitang area in eastern Tibet and its insight into the evolution of the Proto-Tethys Ocean. Geol. Bull. China 2021, 40, 1865–1876. [Google Scholar]
- Ji, W.-H.; Chen, S.-J.; Zhao, Z.-M.; Li, R.-S.; He, S.-P.; Wang, C. Discovery of the Cambiran volcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance. Geol. Bull. China 2009, 28, 1350–1354. [Google Scholar]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N.; et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Kang, C.; Dai, K.; Li, H.; Liang, C.; Chen, X.; Zha, X.; Wang, T.; Li, J. The Cambrian metamorphic granites in the Jili area, Baxoi, Xizang: U-Pb dating, geochemical signatures and geological significance. Sediment. Geol. 2019, 39, 1–13. [Google Scholar]
- Dong, X.; Zhang, Z.-M. Cambrian granitoids from the southeastern Tibetan Plateau: Research on petrology and zircon Hf isotope. Acta Petrolog. Sin. 2015, 31, 1183–1199. [Google Scholar]
- Dong, X.; Zhang, Z.-M.; Wang, J.-L.; Zhao, G.-C.; Liu, F.; Wang, W.; Yu, F. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: Petrology and zircon U-Pb geochronology. Acta Petrolog. Sin. 2009, 25, 1678–1694. [Google Scholar]
- Guynn, J.; Kapp, P.; Gehrels, G.E.; Ding, L. U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications. J. Asian Earth Sci. 2012, 43, 23–50. [Google Scholar] [CrossRef]
- Xu, R.-H.; Schärer, U.; Claude, J. Allègre.Magmatism and Metamorphism in the Lhasa Block (Tibet): A Geochronological Study. J. Geol. 1985, 93, 41–57. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.-P.; Zhai, Q.-G.; Zhu, T.-X.; Yu, Y.-S.; Wang, G.-H.; Zeng, Q.-G. The Longmu Co-Shuanghu-Jitang plate suture andthe northern boundary of Gondwanaland in the Qinghai-Tibet plateau. Earth Sci. Front. 2006, 13, 136–147. [Google Scholar]
- Zhu, D.-C.; Zhao, Z.-D.; Niu, Y.-L.; Wang, Q.; Dilek, Y.; Dong, G.-C.; Mo, X.-X. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geol. J. China Univ. 2012, 18, 1–15. [Google Scholar]
- Xu, M.-J.; Li, C.; Wu, Y.-W.; Xie, C.-M. Geochemical characteristics and sedimentary environments of siliceous rocks in Guomang-Co ophiolitic mélange of Tibet. Geol. Bull. China 2014, 33, 1061–1066. [Google Scholar]
- Li, C.; Wu, Y.-W.; Wang, M.; Yang, H.-T. Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau—Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area, Tibet, China. Geol. Bull. China 2010, 29, 1733–1736. [Google Scholar]
- Hu, D.; Wu, Z.; Jiang, W.; Shi, Y.; Ye, P.; Liu, Q. SHRIMP zircon U-Pb age and Nd isotope study of the Nianqing Tanggula Group in Tibet. Sci. China Ser. D Earth Sci. 2005, 48, 1377–1386. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X.-X.; Zhsng, Z.-P.; Jiao, S.-W.; Duan, K.; Dong, H.; Wang, X.-W.; Ma, T.; Li, P.-J.; Liang, Z.-Y.; et al. Geochemical Features of the Nyainqentanglha Group in the Western Lhasa Terrane, Western Tibet and Their Tectonic Significance. Acta Geol. Sin. 2016, 90, 3081–3098. [Google Scholar]
- Yu, H. Mineral Geochemical Characteristics and Genetic Mechanism of Olivine Rocks in Shangnan, Shanxi. Master’s Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Li, W.-Q. Testing accuracy of 10 major elements in diabase by borate melting sample preparation method. World Geol. 2019, 38, 843–851. [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F.Y. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newslett. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Hao, Y.-J.; Ren, Y.-S.; Zhao, H.-L.; Lai, K.; Zhao, X.; Ma, Y.-P. Metallogenic mechanism and tectonic setting of tungsten mineralization in the Yangbishan deposit in northeastern China. Acta Geol. Sin. 2018, 92, 241–267. [Google Scholar] [CrossRef]
- Liu, J.-F.; Chi, X.G.; Dong, C.-Y.; Zhao, Z.-L.; Guan, R.; Zhao, Y.-D. Discovery of Early Paleozoic granites in the eastern Xiao Hinggan Mountains, northeastern China and their tectonic significance. Geol. Bull. China 2008, 27, 534–544. [Google Scholar]
- Ludwig, K.R. Isoplot version 4.15: A geochronological toolkit for microsoft Excel; Berkeley Geochronology Center, Special Publication: Berkeley, CA, USA, 2008; Volume 4, pp. 247–270. [Google Scholar]
- Hou, K.-J. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrol. Sin. 2007, 23, 2595–2604. [Google Scholar]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Griffin, W.L.; Wang, X.; Jackson, S.E. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Liang, X.-R. Precise measurement of 143Nd/144Nd and Sm/Na ratios using multiple collectors-inductively coupled plasma mass spectrometer (MC-ICPMS). Geochimica 2003, 32, 91–96. [Google Scholar]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Routledge: London, UK, 2014. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. 1985. Available online: https://www.osti.gov/biblio/6582885 (accessed on 3 January 2025).
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalt: Implication for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef]
- Kelsey, C.H. Calculation of the CIPW norm. Mineral. Mag. 1965, 34, 276–282. [Google Scholar]
- Chappell, B.W.; White, A.J.R. I-and S-type granites in the Lachlan Fold Belt. Earth Environ. Sci. Trans. R. Soc. Edinb. 1992, 83, 1–26. [Google Scholar]
- Chappell, B.W.; White, A.J. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Hou, Q.-L. Advanced Structural Geology; Science Press: Beijing, China, 2018; Volume 1. [Google Scholar]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu∗, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Streckeisen, A.L. Classification of the common igneous rocks by means of their chemical composition: A provisional attempt. N. Jb. Miner. Mon. 1976, 1, 1–15. [Google Scholar]
- Hoskin, P.W.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Zhu, D.-C.; Zhao, Z.-D.; Niu, Y.; Mo, X.-X.; Chung, S.-L.; Hou, Z.-Q.; Wang, L.-Q.; Wu, F.-Y. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth Planet. Sci. Lett. 2011, 301, 241–255. [Google Scholar] [CrossRef]
- Hu, P.-Y.; Zhai, Q.-G.; Wang, J.; Tang, Y.; Wang, H.-T.; Zhu, Z.-C.; Wu, H. Middle Neoproterozoic (ca. 760 Ma) arc and back-arc system in the North Lhasa terrane, Tibet, inferred from coeval N-MORB-and arc-type gabbros. Precambrian Res. 2018, 316, 275–290. [Google Scholar] [CrossRef]
- Liu, Q.-S.; Jiang, W.; Jian, P.; Ye, P.-S.; Wu, Z.-H.; Hu, D.-G. Zircon SHRIMP U-Pb age and petrochemical and geochemicalfeatures of Mesozoic muscovite monzonitic granite at Ningzhong, Tibet. Acta Petrol. Sin. 2006, 22, 643–652. [Google Scholar]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Inger, S.; Harris, N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J. Petrol. 1993, 34, 345–368. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Kang, D.-Y.; Ding, H.-X.; Tian, Z.-L.; Dong, X.; Qin, S.-K.; Mu, H.-C.; Li, M.-M. Partial meltig of Himalayan Orogen and formation mechanism of leucogranites. Earth Sci. 2018, 43, 82–98. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas–petrogenetic issues, models and evidence. Earth Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Sylvester, P.J. Post-collisional strongly peraluminous granites. Lithos 1998, 45, 29–44. [Google Scholar] [CrossRef]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Patiño Douce, A.E.; Johnston, A.D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contrib. Mineral. Petrol. 1991, 107, 202–218. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzer, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Collins, W.J.; Richards, S.W. Geodynamic significance of S-type granites in circum-Pacific orogens. Geology 2008, 36, 559–562. [Google Scholar] [CrossRef]
- Barbarin, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Whalen, J.B.; Hildebrand, R.S. Trace element discrimination of arc, slab failure, and A-type granitic rocks. Lithos 2019, 348, 105–179. [Google Scholar]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interp retation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef]
- Harris, N.B.W.; Pearce, J.A.; Tindle, A.G. Geochemical characteristics of collision-zone magmatism. Geol. Soc. Lond. Spec. Publ. 1986, 19, 67–81. [Google Scholar] [CrossRef]
- Batchelor, R.A.; Bowden, P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem. Geol. 1985, 48, 43–55. [Google Scholar] [CrossRef]
- Collins, A.S.; Pisarevsky, S.A. Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogen. Earth Sci. Rev. 2005, 71, 229–270. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Wang, J.-L.; Zhao, G.-C.; Shi, C. Geochronology and Precambrian tectonic evolution of the Namche Barwacomplex from the eastern Himalayan syntaxis, Tibet. Acta Petrolog. Sin. 2008, 24, 1477–1487. [Google Scholar]
- Rojo-Pérez, E.; Fuenlabrada, J.M.; Díez Fernández, R.; Arenas, R. Origin and evolution of Cadomian magmatism in SW Iberia: From subduction onset and arc building to a tectonic switching. Int. Geol. Rev. 2024, 66, 1885–1909. [Google Scholar] [CrossRef]
- Moreno-Martín, D.; Fernández, R.D.; Albert, R.; Martínez, S.S.; Rojo-Pérez, E.; Gerdes, A.; Arenas, R. Cuartel Ophiolite: Structure, timing and exhumation mechanisms for a Cadomian suture zone in the peri-Gondwanan Realm (SW Iberia). Gondwana Res. 2025, 137, 255–273. [Google Scholar] [CrossRef]
- Fuenlabrada, J.M.; Arenas, R.; Martínez, S.S.; Fernández, R.D.; Pieren, A.P.; Pereira, M.F.; Chichorro, M.; Silva, J.B. Geochemical and isotopic (Sm-Nd) provenance of Ediacaran-Cambrian metasedimentary series from the Iberian Massif. Paleoreconstruction of the North Gondwana margin. Earth-Sci. Rev. 2020, 201, 103079. [Google Scholar] [CrossRef]
- Cai, Z.-H.; Xu, Z.-Q.; Duan, X.-D.; Li, H.-Q.; Cao, H.; Huang, X.-M. Early stage of Farly Paleozoie orogenic event in western Yunnan Province, south eastern margin of Tibet Plateau. Acta Petrol. Sin. 2013, 29, 2123–2140. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, M.; Yu, C.; Li, Z. S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana. Minerals 2025, 15, 284. https://doi.org/10.3390/min15030284
Zhang Y, Wang M, Yu C, Li Z. S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana. Minerals. 2025; 15(3):284. https://doi.org/10.3390/min15030284
Chicago/Turabian StyleZhang, Yuhe, Ming Wang, Changsheng Yu, and Zhenglong Li. 2025. "S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana" Minerals 15, no. 3: 284. https://doi.org/10.3390/min15030284
APA StyleZhang, Y., Wang, M., Yu, C., & Li, Z. (2025). S-Type Granites from the Guomang-Co Area in Central Tibet: A Response to Early Paleozoic Andean-Type Orogeny Along the Northern Margin of East Gondwana. Minerals, 15(3), 284. https://doi.org/10.3390/min15030284