Origin of Siderite and Baryte in a Carbonate-Replacement Ag-Pb-Zn-Cu Sulphide Deposit: Walton, Nova Scotia, Canada
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Geology
2.2. Walton Geology and Mineralisation
2.3. Nature of Siderite and Baryte from Previous Studies
3. Previous Isotopic and Fluid Inclusion Studies
4. Materials and Methods
4.1. Sampling and Petrography
4.2. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)
4.3. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)
4.4. Secondary Ion Mass Spectrometry (SIMS)
5. Results
5.1. Petrography
5.1.1. Pre-Main Stage
5.1.2. Main Stage
5.1.3. Post-Main Stage
5.2. Baryte Cathodoluminescence
5.3. Carbonate Mineral Chemistry
5.3.1. Major and Trace Element Chemistry
5.3.2. REEY Chemistry
5.4. Baryte Mineral Chemistry
5.5. S Isotopes
6. Discussion
6.1. Origin of the Carbonates
6.1.1. Limestone (C0) and Early Calcite Cement (C1)
6.1.2. Dolostone (D0) and Ankerite Cement (A1)
6.1.3. Siderostone (Sd0) and Siderite Cements (Sd1–Sd5)
6.1.4. Late Calcite Cements (C2-C3) and Dolomite Veins (D1)
6.1.5. Integration of Carbonate Data
6.2. Origin of the Baryte
6.2.1. Early Baryte Types (B0 and B1)
6.2.2. Later Baryte Types (B2–B6)
6.2.3. Integration of the Baryte Data
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Emsbo, P.; Seal, R.R.; Breit, G.N.; Diehl, S.F.; Shah, A.K. Sedimentary Exhalative (Sedex) Zinc-Lead-Silver Deposit Model; U.S. Geological Survey: Reston, VA, USA, 2016; p. 57. [Google Scholar]
- Martin, S.; Toffolo, L.; Moroni, M.; Montorfano, C.; Secco, L.; Agnini, C.; Nimis, P.; Tumiati, S. Siderite Deposits in Northern Italy: Early Permian to Early Triassic Hydrothermalism in the Southern Alps. Lithos 2017, 284–285, 276–295. [Google Scholar] [CrossRef]
- Magnall, J.M.; Gleeson, S.A.; Blamey, N.J.F.; Paradis, S.; Luo, Y. The Thermal and Chemical Evolution of Hydrothermal Vent Fluids in Shale Hosted Massive Sulphide (SHMS) Systems from the MacMillan Pass District (Yukon, Canada). Geochim. Cosmochim. Acta 2016, 193, 251–273. [Google Scholar] [CrossRef]
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.R.; Gutzmer, J.; Walters, S. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In One Hundredth Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 561–607. ISBN 978-1-887483-01-8. [Google Scholar]
- Leach, D.L.; Bradley, D.C.; Huston, D.; Pisarevsky, S.A.; Taylor, R.D.; Gardoll, S.J. Sediment-Hosted Lead-Zinc Deposits in Earth History. Econ. Geol. 2010, 105, 593–625. [Google Scholar] [CrossRef]
- Leach, D.L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A Deposit Model for Mississippi Valley-Type Lead-Zinc Ores; U.S. Geological Survey: Reston, VA, USA, 2010; p. 52. [Google Scholar]
- Bau, M.; Möller, P. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite. Mineral. Petrol. 1992, 45, 231–246. [Google Scholar] [CrossRef]
- Feng, R. In Situ Trace Element Determination of Carbonates by laserProbe Inductively Coupled Plasma Mass Spectrometry Using Nonmatrix Matched Standardization. Geochim. Cosmochim. Acta 1994, 58, 1615–1623. [Google Scholar] [CrossRef]
- Kontak, D.J.; Jackson, S.E. Laser-Ablation ICP-MS Micro-Analysis of Calcite Cement from a Mississippi Valley-Type Zn-Pb Deposit, Nova Scotia: Dramatic Variability in REE Content on Macro- and Micro-Scales. Can. Mineral. 1995, 33, 445–467. [Google Scholar]
- Davies, J.F.; Prevec, S.A.; Whitehead, R.E.; Jackson, S.E. Variations in REE and Sr-Isotope Chemistry of Carbonate Gangue, Castellanos Zn–Pb Deposit, Cuba. Chem. Geol. 1998, 144, 99–119. [Google Scholar] [CrossRef]
- Jochum, K.P.; Scholz, D.; Stoll, B.; Weis, U.; Wilson, S.A.; Yang, Q.; Schwalb, A.; Börner, N.; Jacob, D.E.; Andreae, M.O. Accurate Trace Element Analysis of Speleothems and Biogenic Calcium Carbonates by LA-ICP-MS. Chem. Geol. 2012, 318–319, 31–44. [Google Scholar] [CrossRef]
- Mathieu, J.; Kontak, D.J.; Turner, E.C.; Fayek, M.; Layne, G. Geochemistry of Phanerozoic Diagenesis on Victoria Island, NWT, Canada. Chem. Geol. 2015, 415, 47–69. [Google Scholar] [CrossRef]
- Hahn, K.E.; Turner, E.C.; Kontak, D.J.; Fayek, M. Fluid-Chemical Evidence for One Billion Years of Fluid Flow through Mesoproterozoic Deep-Water Carbonate Mounds (Nanisivik Zinc District, Nunavut). Geochim. Cosmochim. Acta 2018, 223, 493–519. [Google Scholar] [CrossRef]
- Mathieu, J.; Turner, E.C.; Kontak, D.J.; Fayek, M. Geochemical Evidence for a Topographically Driven Regional Mineralizing Fluid in the Polaris Zn District, Arctic Canada. Econ. Geol. 2022, 117, 1451–1480. [Google Scholar] [CrossRef]
- Stacey, J.; Wallace, M.; Reed, C.; Moynihan, C.; Leonard, W.; Hood, A. A Novel Chemical Model for Burial Diagenesis and Zn–Pb Sulphide Precipitation within the Carboniferous Waulsortian Limestone, Ireland. Sediment. Geol. 2022, 442, 106297. [Google Scholar] [CrossRef]
- Rieger, P.; Magnall, J.M.; Gleeson, S.A.; Oelze, M.; Wilke, F.D.H.; Lilly, R. Differentiating between Hydrothermal and Diagenetic Carbonate Using Rare Earth Element and Yttrium (REE+Y) Geochemistry: A Case Study from the Paleoproterozoic George Fisher Massive Sulfide Zn Deposit, Mount Isa, Australia. Miner. Deposita 2022, 57, 187–206. [Google Scholar] [CrossRef]
- Paytan, A.; Mearon, S.; Cobb, K.; Kastner, M. Origin of Marine Barite Deposits: Sr and S Isotope Characterization. Geology 2002, 30, 747. [Google Scholar] [CrossRef]
- Kusakabe, M.; Robinson, B.W. Oxygen and Sulfur Isotope Equilibria in the BaSO4·HSO4−H2O System from 110 to 350 °C and Applications. Geochim. Cosmochim. Acta 1977, 41, 1033–1040. [Google Scholar] [CrossRef]
- Griffith, E.M.; Paytan, A. Barite in the Ocean–Occurrence, Geochemistry and Palaeoceanographic Applications. Sedimentology 2012, 59, 1817–1835. [Google Scholar] [CrossRef]
- Jamieson, J.W.; Hannington, M.D.; Tivey, M.K.; Hansteen, T.; Williamson, N.M.-B.; Stewart, M.; Fietzke, J.; Butterfield, D.; Frische, M.; Allen, L.; et al. Precipitation and Growth of Barite within Hydrothermal Vent Deposits from the Endeavour Segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2016, 173, 64–85. [Google Scholar] [CrossRef]
- Lajoie, M.-È.; Piercey, S.J.; Conliffe, J.; Layton-Matthews, D. Geology, Mineralogy, S and Sr Isotope Geochemistry, and Fluid Inclusion Analysis of Barite Associated with the Lemarchant Zn–Pb–Cu–Ag–Au-Rich Volcanogenic Massive Sulphide Deposit, Newfoundland, Canada. Can. J. Earth Sci. 2020, 57, 133–166. [Google Scholar] [CrossRef]
- Wind, S.C.; Hannington, M.D.; Schneider, D.A.; Fietzke, J.; Kilias, S.P.; Gemmell, J.B. Origin of Hydrothermal Barite in Polymetallic Veins and Carbonate-Hosted Deposits of the Cyclades Continental Back Arc. Econ. Geol. 2023, 118, 1959–1994. [Google Scholar] [CrossRef]
- Götze, J.; Schertl, H.-P.; Neuser, R.D.; Kempe, U.; Hanchar, J.M. Optical Microscope-Cathodoluminescence (OM–CL) Imaging as a Powerful Tool to Reveal Internal Textures of Minerals. Mineral. Petrol. 2013, 107, 373–392. [Google Scholar] [CrossRef]
- Baele, J.; Decrée, S.; Rusk, B. Cathodoluminescence Applied to Ore Geology and Exploration. In Geophysical Monograph Series; Decrée, S., Robb, L., Eds.; Wiley: Washington, DC, USA, 2019; pp. 131–161. ISBN 978-1-119-29053-7. [Google Scholar]
- Cranstone, D.A. An Analysis of Ore Discovery Cost and Rates of Ore Discovery in Canada. Ph.D. Thesis, Harvard University, New Haven, CT, USA, 1982. [Google Scholar]
- Patterson, J.M. Exploration Potential for Argentiferous Base Metals at the Walton Deposit; Nova Scotia Department of Mines and Energy: Halifax, NS, Canada, 1988; p. 9. [Google Scholar]
- Conliffe, J.; Kontak, D.J.; Wallace, C.J.; Turner, E.C. Sedimentary-Rock-Hosted Zn-Pb Deposits of the Maritimes Basin, Atlantic Canada. Comparison with Irish-Type, MVT and SedEx/CD Deposit Models. In Irish-Type Zn-Pb Deposits Around the World; Andrew, C.J., Hitzman, M.W., Stanley, G., Eds.; Irish Association for Economic Geology: Dublin, Ireland, 2023; pp. 595–616. [Google Scholar]
- Savard, M.M.; Sangster, D.F.; Burtt, M.D. Isotope Geochemistry of Sideritized Host Rocks, Walton Ba Deposit, Kennetcook Sub-Basin, Nova Scotia, Canada. Econ. Geol. 1998, 93, 834–844. [Google Scholar] [CrossRef]
- Burtt, M.D. Geology of the B Baseline Zone, Walton, Ba-Cu-Pb-Zn-Ag Deposit, Nova Scotia. Master’s Thesis, University of Ottawa, Ottawa, ON, Canada, 1995. [Google Scholar]
- Tenny, R.E. The Walton Barite Deposit; Nova Scotia Department of Mines: Halifax, NS, Canada, 1951; pp. 127–143. [Google Scholar]
- Boyle, R.W. Geology of the Barite, Gypsum, Manganese, and Lead-Zinc-Copper-Silver Deposits of the Walton-Cheverie Area, Nova Scotia; Geological Survey of Canada: Ottawa, ON, Canada, 1963; p. 36. [Google Scholar]
- Boyle, R.W. The Geology, Geochemistry and Origin of the Barite, Manganese and Lead-Zinc-Copper-Silver Deposits of Walton-Cheverie Area, Nova Scotia; Geological Survey of Canada: Ottawa, ON, Canada, 1972; p. 181. [Google Scholar]
- Sangster, D.F.; Burtt, M.D.; Kontak, D.J. Geology of the B Baseline Zone, Walton Cu-Pb-Zn-Ag-Ba Deposit, Nova Scotia, Canada. Econ. Geol. 1998, 93, 869–882. [Google Scholar] [CrossRef]
- Kelley, K.D.; Dumoulin, J.A.; Jennings, S. The Anarraaq Zn-Pb-Ag and Barite Deposit, Northern Alaska: Evidence for Replacement of Carbonate by Barite and Sulfides. Econ. Geol. 2004, 99, 1577–1591. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Sediment-Hosted Zinc–Lead Mineralization. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–249. ISBN 978-0-08-098300-4. [Google Scholar]
- Sangster, D.F. Evidence That Broken Hill-Type Pb-Zn Deposits Are Metamorphosed SEDEX Deposits. Miner. Deposita 2020, 55, 1263–1270. [Google Scholar] [CrossRef]
- Boyle, R.W.; Jambor, J.L. Mineralogy, Geochemistry, and Origin of the Magnet Cove Barite Sulphide Deposit, Walton, N.S. Can. Min. Metall. Bull. 1966, 69, 394–413. [Google Scholar]
- Kontak, D.J.; Sangster, D.F. Aqueous and Liquid Petroleum Inclusions in Barite from the Walton Deposit, Nova Scotia, Canada; a Carboniferous, Carbonate-Hosted Ba-Pb-Zn-Cu-Ag Deposit. Econ. Geol. 1998, 93, 845–868. [Google Scholar] [CrossRef]
- Murphy, J.B.; Waldron, J.W.F.; Kontak, D.J.; Pe-Piper, G.; Piper, D.J.W. Minas Fault Zone: Late Paleozoic History of an Intra-Continental Orogenic Transform Fault in the Canadian Appalachians. J. Struct. Geol. 2011, 33, 312–328. [Google Scholar] [CrossRef]
- White, C.E. Stratigraphy of the Lower Paleozoic Goldenville and Halifax Groups in the Western Part of Southern Nova Scotia. Atl. Geol. 2010, 46, 136–154. [Google Scholar] [CrossRef]
- Bickerton, L.; Kontak, D.J.; Murphy, J.B.; Kellett, D.A.; Samson, I.M.; Marsh, J.H.; Dunning, G.; Stern, R. The Age and Origin of the South Mountain Batholith (Nova Scotia, Canada) as Constrained by Zircon U–Pb Geochronology, Geochemistry, and O–Hf Isotopes. Can. J. Earth Sci. 2022, 59, 418–454. [Google Scholar] [CrossRef]
- Giles, P.S. Orbital Forcing and Mississippian Sea Level Change: Time Series Analysis of Marine Flooding Events in the Visean Windsor Group of Eastern Canada and Implications for Gondwana Glaciation. Bull. Can. Pet. Geol. 2009, 57, 449–471. [Google Scholar] [CrossRef]
- Waldron, J.W.F.; Roselli, C.G.; Utting, J.; Johnston, S.K. Kennetcook Thrust System: Late Paleozoic Transpression near the Southern Margin of the Maritimes Basin, Nova Scotia. Can. J. Earth Sci. 2010, 47, 137–159. [Google Scholar] [CrossRef]
- Snyder, M.E.; Waldron, J.W.F. Unusual Soft-Sediment Deformation Structures in the Maritimes Basin, Canada: Possible Seismic Origin. Sediment. Geol. 2016, 344, 145–159. [Google Scholar] [CrossRef]
- White, C.E.; Palacios, T.; Jensen, S.; Barr, S.M. Cambrian-Ordovician Acritarchs in the Meguma Terrane, Nova Scotia, Canada: Resolution of Early Paleozoic Stratigraphy and Implications for Paleogeography. Geol. Soc. Am. Bull. 2012, 124, 1773–1792. [Google Scholar] [CrossRef]
- Giles, P.S.; Boehner, R.C.; Ryan, R.J. Carbonate Banks of the Gays River Formation in Central Nova Scotia; Nova Scotia Department of Mines: Halifax, NS, Canada, 1979; p. 57. [Google Scholar]
- Utting, J.; Keppie, J.D.; Giles, P.S. Palynology and Age of the Lower Carboniferous Horton Group. In Contributions to Canadian Paleontology; Norford, B.S., Ollerenshaw, N.C., Reynolds, L., Eds.; Bulletin 396; Geological Survey of Canada: Ottawa, ON, Canada, 1989; pp. 117–143. [Google Scholar]
- Moore, R.G. Geology of the Walton-Rainy Cove Brook Map (NTS 21H/01-Z2 and Z4), Hants County, Nova Scotia; Nova Scotia Department of Natural Resources: Halifax, NS, Canada, 1994; p. 36. [Google Scholar]
- Howie, R.D.; Barss, M.S. Upper Paleozoic Rocks of the Atlantic Provinces, Gulf of St.-Lawrence and Adjacent Continental 1157 Shelf. In Offshore Geology of Eastern Canada; Van der Linden, W.J.M., Wade, J.A., Eds.; Paper; Geological Survey of Canada: Ottawa, ON, Canada, 1975; Volume 2, pp. 35–50. [Google Scholar]
- Dunning, G.R.; Barr, S.M.; Giles, P.S.; McGregor, D.C.; Pe-Piper, G.; Piper, D.J. Chronology of Devonian to Early Carboniferous Rifting and Igneous Activity in Southern Magdalen Basin Based on U-Pb (Zircon) Dating. Can. J. Earth Sci. 2002, 39, 1219–1237. [Google Scholar] [CrossRef]
- Giles, P.S.; Boehner, R.C. Geological Map of the Shubenacadie and Musquodoboit Basins, Central Nova Scotia; Nova Scotia Department of Natural Resources, Mineral Resources Branch: Halifax, NS, Canada, 1982. [Google Scholar]
- Boehner, R.C.; Giles, P.S.; Murray, D.A.; Ryan, R.J. Carbonate Buildups of the Gays River Formation, Lower Carboniferous Windsor Group, Nova Scotia. Can. Soc. Pet. Geol. Mem. 1989, 13, 609–621. [Google Scholar]
- Lavoie, D.; Sami, T. Sedimentology of the Lowest Windsor Carbonate Rocks; Base Metal Hosts in the Maritimes Basin of Eastern Canada. Econ. Geol. 1998, 93, 719–733. [Google Scholar] [CrossRef]
- Graves, M.C.; Hein, F.J. Compilation, Synthesis, and Stratigraphic Framework of Mineral Deposits within the Basal Windsor Group, Atlantic Provinces, Canada; Geological Survey of Canada: Ottawa, ON, Canada, 1994; p. 529. [Google Scholar]
- Fallara, F.; Savard, M.M.; Paradis, S. A Structural, Petrographic, and Geochemical Study of the Jubilee Zn-Pb Deposit, Nova Scotia, Canada, and a New Metallogenic Model. Econ. Geol. 1998, 93, 757–778. [Google Scholar] [CrossRef]
- Dix, G.R.; James, N.P. Stratigraphy and Depositional Environments of the Upper Mississippian Codroy Group: Port Au Port Peninsula, Western Newfoundland. Can. J. Earth Sci. 1989, 26, 1089–1100. [Google Scholar] [CrossRef]
- Dix, G.R.; Edwards, C. Carbonate-Hosted, Shallow-Submarine and Burial Hydrothermal Mineralization in the Upper Mississippian Big Cove Formation, Port Au Port Peninsula, Western Newfoundland. Econ. Geol. 1996, 91, 180–203. [Google Scholar] [CrossRef]
- Waldron, J.W.F.; Roselli, C.; Johnston, S.K. Transpressional Structures on a Late Palaeozoic Intracontinental Transform Fault, Canadian Appalachians. Geol. Soc. Lond. Spec. Publ. 2007, 290, 367–385. [Google Scholar] [CrossRef]
- Bell, W.A. Horton-Windsor District, Nova Scotia; Geological Survey of Canada: Ottawa, ON, Canada, 1929; p. 268. [Google Scholar]
- Bell, W.A. Mississippian Horton Group of Type Windsor-Horton District, Nova Scotia; Geological Survey of Canada: Ottawa, ON, Canada, 1960; p. 112. [Google Scholar]
- Kontak, D.J.; Ansdell, K.; Archibald, D.A. Zn-Pb Mineralization Associated with a Mafic Dyke at Cheverie, Hants County, Nova Scotia: Implications for Carboniferous Metallogeny. Atl. Geol. 2000, 36, 1. [Google Scholar] [CrossRef] [PubMed]
- Schenk, P.E. The Macumber Formation of the Maritime Provinces, Canada—A Mississippian Analogue to Recent Strand-Line Carbonates of the Persian Gulf. SEPM J. Sediment. Res. 1967, 37, 365–376. [Google Scholar] [CrossRef]
- Lavoie, D.; Sangster, D.F.; Savard, M.M.; Fallara, F. Multiple Breccia Events in the Lower Part of the Carboniferous Windsor Group, Nova Scotia. Atl. Geol. 1995, 31, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Savard, M.M. Pre-Ore Burial Dolomitization Adjacent to the Carbonate-Hosted Gays River Zn–Pb Deposit, Nova Scotia. Can. J. Earth Sci. 1996, 33, 303–315. [Google Scholar] [CrossRef]
- Boyle, R.W.; Wanless, R.K.; Stevens, R.D. Sulfur Isotope Investigation of the Barite, Manganese, and Lead-Zinc-Copper-Silver Deposits of the Walton-Cheverie Area, Nova Scotia, Canada. Econ. Geol. 1976, 71, 749–762. [Google Scholar] [CrossRef]
- Ravenhurst, C.E.; Reynolds, P.H.; Zentilli, M. Isotopic Constraints on the Genesis of Zn-Pb Mineralization at Gays River, Nova Scotia, Canada. Econ. Geol. 1987, 82, 1294–1308. [Google Scholar] [CrossRef]
- Ravenhurst, C.E.; Reynolds, P.H.; Zentilli, M.; Krueger, H.W.; Blenkinsop, J. Formation of Carboniferous Pb-Zn and Barite Mineralization from Basin-Derived Fluids, Nova Scotia, Canada. Econ. Geol. 1989, 84, 1471–1488. [Google Scholar] [CrossRef]
- Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P. A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Jochum, K.P.; Willbold, M.; Raczek, I.; Stoll, B.; Herwig, K. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanalytical Res. 2005, 29, 285–302. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Hergt, J.M.; Greig, A.; Maas, R. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanalytical Res. 2007, 31, 331–343. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. J. Anal. At. Spectrom. 2011, 26, 2508. [Google Scholar] [CrossRef]
- Paul, B.; Paton, C.; Norris, A.; Woodhead, J.; Hellstrom, J.; Hergt, J.; Greig, A. CellSpace: A Module for Creating Spatially Registered Laser Ablation Images within the Iolite Freeware Environment. J. Anal. At. Spectrom. 2012, 27, 700. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Bau, M. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 37–55. [Google Scholar] [CrossRef]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A Novel Extraction Chromatography and MC-ICP-MS Technique for Rapid Analysis of REE, Sc and Y: Revising CI-Chondrite and Post-Archean Australian Shale (PAAS) Abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Comparing Yttrium and Rare Earths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour during near-Vent Mixing and for the YrHo Ratio of Proterozoic Seawater. Chem. Geol. 1999, 155, 77–90. [Google Scholar]
- Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R. Comparison of the Partitioning Behaviours of Yttrium, Rare Earth Elements, and Titanium between Hydrogenetic Marine Ferromanganese Crusts and Seawater. Geochim. Cosmochim. Acta 1996, 60, 1709–1725. [Google Scholar] [CrossRef]
- Zhang, B.-L.; Wang, C.-L.; Robbins, L.J.; Zhang, L.-C.; Konhauser, K.O.; Dong, Z.-G.; Li, W.-J.; Peng, Z.-D.; Zheng, M.-T. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang Province, China: Implications for the Depositional Environment and the Origin of Mineralization. Econ. Geol. 2020, 115, 1559–1588. [Google Scholar] [CrossRef]
- Bau, M.; Möller, P.; Dulski, P. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation during Redox-Cycling. Mar. Chem. 1997, 56, 123–131. [Google Scholar] [CrossRef]
- Murphy, J.B. Tectonic Influence on Sedimentation along the Southern Flank of the Late Paleozoic Magdalen Basin in the Canadian Appalachians: Geochemical and Isotopic Constraints on the Horton Group in the St. Marys Basin, Nova Scotia. Bull. Geol. Soc. Am. 2000, 112, 997–1011. [Google Scholar] [CrossRef]
- Goodarzi, F.; Gentzis, T.; Sanei, H.; Pedersen, P.K. Elemental Composition and Organic Petrology of a Lower Carboniferous-Age Freshwater Oil Shale in Nova Scotia, Canada. ACS Omega 2019, 4, 20773–20786. [Google Scholar] [CrossRef] [PubMed]
- Haley, B.A.; Klinkhammer, G.P.; McManus, J. Rare Earth Elements in Pore Waters of Marine Sediments. Geochim. Cosmochim. Acta 2004, 68, 1265–1279. [Google Scholar] [CrossRef]
- Machel, H.G. Effects of Groundwater Flow on Mineral Diagenesis, with Emphasis on Carbonate Aquifers. Hydrogeol. J. 1999, 7, 94–107. [Google Scholar] [CrossRef]
- Fernández-Nieto, C.; Torres-Ruiz, J.; Subías Pérez, I.; Fanlo González, I.; González López, J.M. Genesis of Mg-Fe Carbonates from the Sierra Menera Magnesite-Siderite Deposits, Northeast Spain: Evidence from Fluid Inclusions, Trace Elements, Rare Earth Elements, and Stable Isotope Data. Econ. Geol. 2003, 98, 1413–1426. [Google Scholar] [CrossRef]
- Torres-Ruiz, J. Geochemical Constraints on the Genesis of the Marquesado Iron Ore Deposits, Betic Cordillera, Spain: REE, C, O, and Sr Isotope Data. Econ. Geol. 2006, 101, 667–677. [Google Scholar] [CrossRef]
- Perry, E.P.; Gysi, A.P. Rare Earth Elements in Mineral Deposits: Speciation in Hydrothermal Fluids and Partitioning in Calcite. Geofluids 2018, 2018, 1–19. [Google Scholar] [CrossRef]
- Perry, E.; Gysi, A.P. Hydrothermal Calcite-Fluid REE Partitioning Experiments at 200 °C and Saturated Water Vapor Pressure. Geochim. Cosmochim. Acta 2020, 286, 177–197. [Google Scholar] [CrossRef]
- Sverjensky, D.A. Europium Redox Equilibria in Aqueous Solution. Earth Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Bau, M. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Bau, M.; Schmidt, K.; Koschinsky, A.; Hein, J.; Kuhn, T.; Usui, A. Discriminating between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium. Chem. Geol. 2014, 381, 1–9. [Google Scholar] [CrossRef]
- Emsbo, P. Sedex Brine Expulsions to Paleozoic Basins May Have Changed Global Marine 87Sr/86Sr Values, Triggered Anoxia, and Initiated Mass Extinctions. Ore Geol. Rev. 2017, 86, 474–486. [Google Scholar] [CrossRef]
- Byrne, R.H.; Kim, K.-H. Rare Earth Element Scavenging in Seawater. Geochim. Cosmochim. Acta 1990, 54, 2645–2656. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of Dissolved Yttrium and Rare Earths by Precipitating Iron Oxyhydroxide: Experimental Evidence for Ce Oxidation, Y-Ho Fractionation, and Lanthanide Tetrad Effect. Geochim. Cosmochim. Acta 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Rogers, K.M.; Savard, M.M. Geochemistry of Oil Inclusions in Sulfide-Related Calcites—Fingerprinting the Source of the Sulfate-Reducing Hydrocarbons of the Pb–Zn Carbonate-Hosted Jubilee Deposit of Nova Scotia, Canada. Appl. Geochem. 2002, 17, 69–77. [Google Scholar] [CrossRef]
- Lovley, D.R.; Phillips, E.J.P. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl. Environ. Microbiol. 1988, 54, 1472–1480. [Google Scholar] [CrossRef]
- Heimann, A.; Johnson, C.M.; Beard, B.L.; Valley, J.W.; Roden, E.E.; Spicuzza, M.J.; Beukes, N.J. Fe, C, and O Isotope Compositions of Banded Iron Formation Carbonates Demonstrate a Major Role for Dissimilatory Iron Reduction in ~2.5Ga Marine Environments. Earth Planet. Sci. Lett. 2010, 294, 8–18. [Google Scholar] [CrossRef]
- Tang, D.; Shi, X.; Jiang, G.; Wu, T.; Ma, J.; Zhou, X. Stratiform Siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and Environmental Implications. Gondwana Res. 2018, 58, 1–15. [Google Scholar] [CrossRef]
- Southam, G.; Saunders, J.A. The Geomicrobiology of Ore Deposits. Econ. Geol. 2005, 100, 1067–1084. [Google Scholar] [CrossRef]
- Roy, S. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Sci. Rev. 2006, 77, 273–305. [Google Scholar] [CrossRef]
- Mozley, P.S.; Carothers, W.W. Elemental and Isotopic Composition of Siderite in the Kuparuk Formation, Alaska: Effect of Microbial Activity and Water/Sediment Interaction on Early Pore-Water Chemistry. SEPM J. Sediment. Res. 1992, 62, 681–692. [Google Scholar] [CrossRef]
- Machel, H.G. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Kelley, K.D.; Leach, D.L.; Johnson, C.A.; Clark, J.L.; Fayek, M.; Slack, J.F.; Anderson, V.M.; Ayuso, R.A. Textural, Compositional, and Sulfur Isotope Variations of Sulfide Minerals in the Red Dog Zn-Pb-Ag Deposits, Brooks Range, Alaska: Implications for Ore Formation. Econ. Geol. 2004, 99, 1509–1532. [Google Scholar] [CrossRef]
- Reynolds, M.A.; Gleeson, S.A.; Creaser, R.A.; Friedlander, B.A.; Haywood, J.C.; Hnatyshin, D.; McCusker, J.; Waldron, J.W.F. Diagenetic Controls on the Formation of the Anarraaq Clastic-Dominated Zn-Pb-Ag Deposit, Red Dog District, Alaska. Econ. Geol. 2021, 116, 1803–1824. [Google Scholar] [CrossRef]
- Grema, H.M.; Magnall, J.M.; Whitehouse, M.J.; Gleeson, S.A.; Schulz, H.-M. The Formation of Highly Positive δ34S Values in Late Devonian Mudstones: Microscale Analysis of Pyrite (δ34S) and Barite (δ34S, δ18O) in the Canol Formation (Selwyn Basin, Canada). Front. Earth Sci. 2022, 9, 784824. [Google Scholar] [CrossRef]
- Berner, R.A. A New Geochemical Classification of Sedimentary Environments. SEPM J. Sediment. Res. 1981, 51, 359–365. [Google Scholar] [CrossRef]
- Nozaki, Y.; Zhang, J.; Amakawa, H. The Fractionation between Y and Ho in the Marine Environment. Earth Planet. Sci. Lett. 1997, 148, 329–340. [Google Scholar] [CrossRef]
- Tostevin, R.; Shields, G.A.; Tarbuck, G.M.; He, T.; Clarkson, M.O.; Wood, R.A. Effective Use of Cerium Anomalies as a Redox Proxy in Carbonate-Dominated Marine Settings. Chem. Geol. 2016, 438, 146–162. [Google Scholar] [CrossRef]
- Large, R.R.; McGoldrick, P.J. Lithogeochemical Halos and Geochemical Vectors to Stratiform Sediment Hosted Zn–Pb–Ag Deposits, 1. Lady Loretta Deposit, Queensland. J. Geochem. Explor. 1998, 63, 37–56. [Google Scholar] [CrossRef]
- Bonsall, T.A.; Spry, P.G.; Voudouris, P.C.; Tombros, S.; Seymour, K.S.; Melfos, V. The Geochemistry of Carbonate-Replacement Pb-Zn-Ag Mineralization in the Lavrion District, Attica, Greece: Fluid Inclusion, Stable Isotope, and Rare Earth Element Studies. Econ. Geol. 2011, 106, 619–651. [Google Scholar] [CrossRef]
- Magnall, J.M.; Gleeson, S.A.; Stern, R.A.; Newton, R.J.; Poulton, S.W.; Paradis, S. Open System Sulphate Reduction in a Diagenetic Environment–Isotopic Analysis of Barite (δ34S and δ18O) and Pyrite (δ34S) from the Tom and Jason Late Devonian Zn–Pb–Ba Deposits, Selwyn Basin, Canada. Geochim. Cosmochim. Acta 2016, 180, 146–163. [Google Scholar] [CrossRef]
- Paytan, A.; Yao, W.; Faul, K.L.; Gray, E.T. Sulfur Isotope Stratigraphy. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 259–278. ISBN 978-0-12-824360-2. [Google Scholar]
- Cecile, M.P.; Shakur, M.A.; Krouse, H.R. The Isotopic Composition of Western Canadian Barites and the Possible Derivation of Oceanic Sulphate δ 34 S and δ 18 O Age Curves. Can. J. Earth Sci. 1983, 20, 1528–1535. [Google Scholar] [CrossRef]
- Barnes, R.O.; Goldberg, E.D. Methane Production and Consumption in Anoxic Marine Sediments. Geology 1976, 4, 297–300. [Google Scholar] [CrossRef]
- Knittel, K.; Boetius, A. Anaerobic Oxidation of Methane: Progress with an Unknown Process. Annu. Rev. Microbiol. 2009, 63, 311–334. [Google Scholar] [CrossRef]
- Torres, M.E.; Brumsack, H.J.; Bohrmann, G.; Emeis, K.C. Barite Fronts in Continental Margin Sediments: A New Look at Barium Remobilization in the Zone of Sulfate Reduction and Formation of Heavy Barites in Diagenetic Fronts. Chem. Geol. 1996, 127, 125–139. [Google Scholar] [CrossRef]
- Worden, R.H.; Smalley, P.C.; Oxtoby, N.H. Gas Souring by Thermochemical Sulfate Reduction at 140 °C. AAPG Bull. 1995, 79, 854–863. [Google Scholar] [CrossRef]
- Dickens, G.R. Sulfate Profiles and Barium Fronts in Sediment on the Blake Ridge: Present and Past Methane Fluxes through a Large Gas Hydrate Reservoir. Geochim. Cosmochim. Acta 2001, 65, 529–543. [Google Scholar] [CrossRef]
- Iversen, N.; Jorgensen, B.B. Anaerobic Methane Oxidation Rates at the Sulfate-methane Transition in Marine Sediments from Kattegat and Skagerrak (Denmark)1. Limnol. Oceanogr. 1985, 30, 944–955. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.C. Illumination of Vein Quartz Textures in a Porphyry Copper Ore Deposit Using Scanned Cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. Am. Mineral. 2001, 86, 652–666. [Google Scholar] [CrossRef]
- Vaughan, J.R.; Hickey, K.A.; Barker, S.L.L. Isotopic, Chemical, and Textural Evidence for Pervasive Calcite Dissolution and Precipitation Accompanying Hydrothermal Fluid Flow in Low-Temperature, Carbonate-Hosted, Gold Systems. Econ. Geol. 2016, 111, 1127–1157. [Google Scholar] [CrossRef]
- Mao, W.; Rusk, B.; Yang, F.; Zhang, M. Physical and Chemical Evolution of the Dabaoshan Porphyry Mo Deposit, South China: Insights from Fluid Inclusions, Cathodoluminescence, and Trace Elements in Quartz. Econ. Geol. 2017, 112, 889–918. [Google Scholar] [CrossRef]
- Putnis, A. Mineral Replacement Reactions: From Macroscopic Observations to Microscopic Mechanisms. Mineral. Mag. 2002, 66, 689–708. [Google Scholar] [CrossRef]
- Blount, C.W. Barite Solubilities and Thermodynamic Quantities up to 300 °C and 1400 Bars. Am. Mineral. 1977, 62, 942–957. [Google Scholar]
- Seal, R.R.; Alpers, C.N.; Rye, R.O. Stable Isotope Systematics of Sulfate Minerals. Rev. Mineral. Geochem. 2000, 40, 541–602. [Google Scholar] [CrossRef]
- Reynolds, M.A. Sediment-Hosted Zn-Pb-Ag Mineralization in the Red Dog District, Alaska, USA: Pre-Ore Environments and Mineralizing Processes. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2019. [Google Scholar]
- Sivan, O.; Antler, G.; Turchyn, A.V.; Marlow, J.J.; Orphan, V.J. Iron Oxides Stimulate Sulfate-Driven Anaerobic Methane Oxidation in Seeps. Proc. Natl. Acad. Sci. USA 2014, 111, E4139–E4147. [Google Scholar] [CrossRef]
- Taksavasu, T.; Monecke, T.; Reynolds, T.J. Textural Characteristics of Noncrystalline Silica in Sinters and Quartz Veins: Implications for the Formation of Bonanza Veins in Low-Sulfidation Epithermal Deposits. Minerals 2018, 8, 331. [Google Scholar] [CrossRef]
- Gissler, G.D.; Monecke, T.; Reynolds, T.J.; Guzman, M.A.; Ellison, E.T.; Sherlock, R. Microtextural Evidence for the Recrystallization of Opal-A to Quartz in Epithermal Veins: A Case Study from the McLaughlin Deposit, California. Ore Geol. Rev. 2024, 169, 106105. [Google Scholar] [CrossRef]
- Dawson, J.B. Concretionary Barytes from Walton Mine, Nova Scotia. Trans. Inst. Min. Metall. Sect. B 1966, 75, B162–B164. [Google Scholar]
- Bottrell, S.H.; Parkes, R.J.; Cragg, B.A.; Raiswell, R. Isotopic Evidence for Anoxic Pyrite Oxidation and Stimulation of Bacterial Sulphate Reduction in Marine Sediments. J. Geol. Soc. 2000, 157, 711–714. [Google Scholar] [CrossRef]
- Aharon, P.; Fu, B. Sulfur and Oxygen Isotopes of Coeval Sulfate–Sulfide in Pore Fluids of Cold Seep Sediments with Sharp Redox Gradients. Chem. Geol. 2003, 195, 201–218. [Google Scholar] [CrossRef]
- Johnson, C.A.; Kelley, K.D.; Leach, D.L. Sulfur and Oxygen Isotopes in Barite Deposits of the Western Brooks Range, Alaska, and Implications for the Origin of the Red Dog Massive Sulfide Deposits. Econ. Geol. 2004, 99, 1435–1448. [Google Scholar] [CrossRef]
- Moles, N.R.; Boyce, A.J.; Warke, M.R.; Claire, M.W. Syn-Sedimentary Exhalative or Diagenetic Replacement? Multi-Proxy Evidence for Origin of Metamorphosed Stratiform Barite–Sulfide Deposits near Aberfeldy, Scottish Highlands. Minerals 2024, 14, 865. [Google Scholar] [CrossRef]
- Bowers, T.S.; Jackson, K.J.; Helgeson, H.C. Equilibrium Activity Diagrams; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-46513-0. [Google Scholar]
- Martel, A.T.; Gibling, M.R. Stratigraphy and Tectonic History of the Upper Devonian to Lower Carboniferous Horton Bluff Formation, Nova Scotia. Atl. Geol. 1996, 32, 1. [Google Scholar] [CrossRef]
- Anderson, G.M. Organic Maturation and Ore Precipitation in Southeast Missouri. Econ. Geol. 1991, 86, 909–926. [Google Scholar] [CrossRef]
- Berndt, C.; Hensen, C.; Mortera-Gutierrez, C.; Sarkar, S.; Geilert, S.; Schmidt, M.; Liebetrau, V.; Kipfer, R.; Scholz, F.; Doll, M.; et al. Rifting under Steam—How Rift Magmatism Triggers Methane Venting from Sedimentary Basins. Geology 2016, 44, 767–770. [Google Scholar] [CrossRef]
Statistic | C0 | C1 | D0 | A1 | Sd0a | Sd0b | Sd1a | Sd1b | Sd2 | Sd3 | Sd4 | Sd5 | D1 | C2 | C3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΣREEY | n | 4 | 4 | 6 | 6 | 20 | 7 | 9 | 3 | 15 | 14 | 25 | 5 | 5 | 4 | 4 |
(ppm) | max | 47.3 | 35.1 | 5.5 | 34.2 | 91.4 | 103 | 36.1 | 6.9 | 40.3 | 36.7 | 42.9 | 63.7 | 6.2 | 45.2 | 42.2 |
min | 9.7 | 31 | 2.4 | 7.9 | 14.8 | 36.4 | 13.2 | 4.2 | 4.5 | 9.2 | 13.9 | 26 | 4.4 | 20.3 | 0.7 | |
mean | 22.6 | 32.5 | 4.2 | 17.7 | 42.6 | 62.6 | 22.8 | 5.6 | 25.3 | 23.3 | 24.9 | 39 | 5.5 | 33.5 | 18.9 | |
st. dev. | 16.9 | 1.8 | 1.2 | 10.3 | 20 | 24 | 7.6 | 1.2 | 10.7 | 10 | 8.7 | 17 | 0.7 | 12.2 | 17.6 | |
Y/Ho | n | 4 | 4 | 6 | 6 | 20 | 7 | 9 | 3 | 15 | 14 | 25 | 5 | 5 | 4 | 4 |
max | 40.1 | 35.7 | 38.8 | 23.5 | 24.5 | 24.7 | 17.5 | 13.7 | 16 | 25.7 | 23.2 | 22 | 36.9 | 30.5 | 40.1 | |
min | 34.5 | 31.7 | 27.7 | 19.2 | 12 | 18.4 | 12.3 | 10.6 | 10.1 | 11.4 | 12.7 | 17.9 | 28.7 | 25.9 | 29.7 | |
mean | 37.9 | 33.5 | 31.6 | 20.9 | 16.6 | 20.6 | 15.7 | 12.2 | 12.9 | 16 | 17.2 | 19.9 | 33.4 | 27.9 | 37.1 | |
st. dev. | 2.4 | 1.7 | 4.5 | 1.6 | 3.4 | 2.2 | 2.1 | 1.5 | 1.7 | 4.6 | 3.4 | 1.9 | 3.9 | 2 | 5 | |
Ce/Ce* | n | 4 | 4 | 6 | 6 | 19 | 7 | 8 | <LOD | 15 | 9 | 20 | 5 | 5 | 4 | 3 |
max | 1.17 | 0.93 | 1 | 0.89 | 1.96 | 0.85 | 0.75 | 1.16 | 0.86 | 0.98 | 1.24 | 0.95 | 1.06 | 0.19 | ||
min | 0.84 | 0.8 | 0.82 | 0.54 | 0.48 | 0.57 | 0.42 | 0.48 | 0.48 | 0.25 | 0.77 | 0.86 | 0.86 | 0.05 | ||
mean | 1.03 | 0.89 | 0.9 | 0.69 | 0.77 | 0.68 | 0.58 | 0.77 | 0.63 | 0.59 | 1.03 | 0.9 | 0.97 | 0.1 | ||
st. dev. | 0.14 | 0.06 | 0.07 | 0.14 | 0.34 | 0.11 | 0.11 | 0.18 | 0.15 | 0.18 | 0.31 | 0.04 | 0.09 | 0.08 | ||
Eu/Eu* | n | 4 | 4 | 6 | 6 | 20 | 7 | 9 | 1 | 15 | 13 | 24 | 5 | 5 | 4 | 3 |
max | 1.44 | 1.61 | 1.35 | 1.21 | 1.08 | 0.96 | 0.98 | 0.55 | 1.46 | 1.47 | 1.93 | 1.66 | 1.37 | 1.26 | 1.31 | |
min | 1.01 | 1.19 | 1.12 | 0.96 | 0.68 | 0.83 | 0.51 | 0.5 | 0.87 | 0.47 | 0.71 | 1.25 | 1.15 | 1.29 | ||
mean | 1.18 | 1.32 | 1.2 | 1.1 | 0.93 | 0.88 | 0.78 | 0.82 | 1.04 | 0.95 | 1.09 | 1.28 | 1.2 | 1.3 | ||
st. dev. | 0.21 | 0.19 | 0.09 | 0.09 | 0.1 | 0.06 | 0.17 | 0.25 | 0.23 | 0.28 | 0.39 | 0.05 | 0.06 | 0.01 | ||
Y/Yo* | n | 4 | 4 | 6 | 6 | 20 | 7 | 7 | 3 | 15 | 14 | 25 | 5 | 5 | 4 | 4 |
max | 1.53 | 1.35 | 1.52 | 0.87 | 0.88 | 0.93 | 0.69 | 0.6 | 0.63 | 0.89 | 0.9 | 0.86 | 1.41 | 1.03 | 1.51 | |
min | 1.35 | 1.16 | 0.96 | 0.69 | 0.48 | 0.73 | 0.54 | 0.54 | 0.42 | 0.47 | 0.53 | 0.7 | 1.01 | 0.87 | 1.04 | |
mean | 1.41 | 1.25 | 1.17 | 0.74 | 0.64 | 0.81 | 0.63 | 0.57 | 0.52 | 0.62 | 0.67 | 0.78 | 1.22 | 0.93 | 1.29 | |
st. dev. | 0.08 | 0.08 | 0.23 | 0.06 | 0.11 | 0.07 | 0.06 | 0.03 | 0.06 | 0.15 | 0.12 | 0.06 | 0.17 | 0.07 | 0.25 |
Stage | δ34SVCDT (‰) | Stage | δ34SVCDT (‰) | Stage | δ34SVCDT (‰) |
---|---|---|---|---|---|
B0 | 15.8 | B1 (rim) | 19.8 | B4 | 16.6 |
B0 | 15.3 | B1 (rim) | 20.7 | B4 | 15.0 |
B0 | 14.1 | B1 (rim) | 20.3 | B4 | 16.7 |
B0 | 15.0 | B1 (rim) | 20.2 | B4 | 15.2 |
B0 | 15.2 | B1 (rim) | 20.3 | B4 | 14.5 |
B0 | 14.4 | B1 (rim) | 20.3 | B4 | 15.8 |
B0 | 14.4 | B1 (rim) | 20.3 | B6 | 11.1 |
B0 | 14.4 | B1 (rim) | 20.1 | B6 | 9.4 |
B0 | 14.1 | B1 (rim) | 19.9 | B6 | 9.7 |
B0 | 13.3 | B4 | 15.0 | B6 | 9.5 |
B1 (core) | 17.0 | B4 | 13.9 | B6 | 8.8 |
B1 (core) | 16.2 | B4 | 13.5 | B6 | 10.1 |
B1 (core) | 16.7 | B4 | 14.1 | B6 | 9.1 |
B1 (core) | 16.6 | B4 | 15.7 | B6 | 9.9 |
B1 (core) | 16.4 | B4 | 14.4 | B6 | 9.2 |
B1 (core) | 14.9 | B4 | 15.1 | B6 | 9.3 |
B1 (rim) | 19.7 | B4 | 14.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, C.J.; Kontak, D.J.; Turner, E.C.; Fayek, M. Origin of Siderite and Baryte in a Carbonate-Replacement Ag-Pb-Zn-Cu Sulphide Deposit: Walton, Nova Scotia, Canada. Minerals 2025, 15, 327. https://doi.org/10.3390/min15030327
Wallace CJ, Kontak DJ, Turner EC, Fayek M. Origin of Siderite and Baryte in a Carbonate-Replacement Ag-Pb-Zn-Cu Sulphide Deposit: Walton, Nova Scotia, Canada. Minerals. 2025; 15(3):327. https://doi.org/10.3390/min15030327
Chicago/Turabian StyleWallace, Chaneil J., Daniel J. Kontak, Elizabeth C. Turner, and Mostafa Fayek. 2025. "Origin of Siderite and Baryte in a Carbonate-Replacement Ag-Pb-Zn-Cu Sulphide Deposit: Walton, Nova Scotia, Canada" Minerals 15, no. 3: 327. https://doi.org/10.3390/min15030327
APA StyleWallace, C. J., Kontak, D. J., Turner, E. C., & Fayek, M. (2025). Origin of Siderite and Baryte in a Carbonate-Replacement Ag-Pb-Zn-Cu Sulphide Deposit: Walton, Nova Scotia, Canada. Minerals, 15(3), 327. https://doi.org/10.3390/min15030327