Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru)
Abstract
:1. Introduction
2. Geological Setting
2.1. Cristal Prospect
2.2. Mina Grande Deposit
3. Materials and Methods
4. Results
4.1. XRPD Analysis on Oriented and Randomly Oriented Mounts
4.2. Chemical Composition and SEM Observations
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hitzman, M.W.; Reynolds, N.A.; Sangster, D.F.; Allen, C.R.; Carman, C.E. Classification, genesis, and exploration guides for nonsulfide Zinc deposits. Econ. Geol. 2003, 98, 685–714. [Google Scholar] [CrossRef]
- Boni, M.; Mondillo, N. The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores. Ore Geol. Rev. 2015, 67, 208–233. [Google Scholar] [CrossRef]
- Borg, G. A review of supergene nonsulphide zinc (SNSZ) deposits—The 2014 update. In Current Perspectives of Zinc Deposits; Archibald, S.M., Piercey, S.J., Eds.; Irish Association for Economic Geology: Dublin, Ireland; pp. 123–147. ISBN 978-0-9509894-5-7.
- Borg, G.; Kärner, K.; Buxton, M.; Armstrong, R.; Merwe, S.W. Geology of the Skorpion supergene Zn deposit, southern Namibia. Econ. Geol. 2003, 98, 749–771. [Google Scholar] [CrossRef]
- Kärner, K. The Metallogenesis of the Skorpion Non-Sulphide Zinc Deposit, Namibia. Ph.D. Thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany, July 2006. [Google Scholar]
- Connelly, D. High clay ores: A mineral processing nightmare part 2. Aust. J. Min. 2011, 24, 28–29. [Google Scholar]
- Lim, J. Controlling Clay Behaviour in Suspension: Developing a New Paradigm for the Minerals Industry. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, April 2011. [Google Scholar]
- Boni, M.; Schmidt, P.R.; de Wet, J.R.; Singleton, J.D.; Balassone, G.; Mondillo, N. Mineralogical signature of nonsulfide zinc ores at Accha (Peru): A key for recovery. Int. J. Miner. Process. 2009, 93, 267–277. [Google Scholar] [CrossRef]
- Rollinson, G.; Andersen, J.C.Ø.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterization of non-sulphide zinc deposits using QEMSCAN. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Kademli, M.; Gulzoy, O.Y. The role of particle size and solid contents of feed on mica-feldspar separation in gravity concentration. Physicochem. Probl. Miner. Process. 2012, 48, 645–654. [Google Scholar] [CrossRef]
- Bayraktar, I.; Aslan, A.; Ersayin, S. Effects of primary slime and clay on selectivity of flotation of sub-volcanogenic complex polymetallic ores. Trans. Inst. Min. Metall. Sect. B 1998, 107, C71–C76. [Google Scholar]
- Fuerstenau, M.C.; Chander, S.; Woods, R. Sulfide mineral flotation. In Froth Flotation: A Century of Innovation; Fuerstenau, M.C., Jameson, G., Yoon, R.-H., Eds.; SME: Littleton, CO, USA; pp. 425–464, ISBN-13 978-0873352529; ISBN-10 0873352521.
- Gnoinski, J. Skorpion Zinc: Optimization and innovation. J. S. Afr. Inst. Min. Metall. 2007, 107, 657–662. [Google Scholar]
- De Wet, J.R.; Singleton, J.D. Development of a viable process for the recovery of zinc from oxide ores. J. S. Afr. Inst. Min. Metall. 2008, 108, 253–259. [Google Scholar]
- Abkhoshk, E.; Jorjani, E.; Al-Harahsheh, M.S.; Rashchi, F.; Naazeri, M. Review of the hydrometallurgical processing of non-sulfide zinc ores. Hydrometallurgy 2014, 149, 153–167. [Google Scholar] [CrossRef]
- Tiller, K.G.; Pickering, J.G. The synthesis of zinc silicates at 20 °C and atmospheric pressure. Clays Clay Miner. 1974, 22, 409–416. [Google Scholar] [CrossRef]
- Harder, H. Clay mineral formation under lateritic weathering conditions. Clay Miner. 1977, 12, 281–288. [Google Scholar] [CrossRef]
- Kittrick, J.A. Soil minerals in the AI2O3-SiO2-H2O system and a theory of their formation. Clays Clay Miner. 1969, 17, 157–167. [Google Scholar] [CrossRef]
- Sherman, D.M. Weathering Reactions and Soil-Groundwater Chemistry; Lecture Notes 2001/2002; Environmental Geochemistry, University of Bristol: Bristol, UK, 2001. [Google Scholar]
- Roy, D.M.; Mumpton, F.A. Stability of minerals in the system ZnO-SiO2-H2O. Econ. Geol. 1956, 51, 432–443. [Google Scholar] [CrossRef]
- Kloprogge, T.; Komarneni, S.; Amonette, J. Synthesis of smectite clay minerals: A critical review. Clays Clay Miner. 1999, 47, 529–554. [Google Scholar] [CrossRef]
- Higashi, S.; Miki, K.; Komarneni, S. Hydrothermal synthesis of Zn-smectite. Clays Clay Miner. 2002, 50, 299–305. [Google Scholar] [CrossRef]
- Petit, S.; Righi, D.; Decarreau, A. Transformation of synthetic Zn-stevensite to Zn-talc induced by the Hofmann-Klemen effect. Clays. Clay Miner. 2008, 56, 645–654. [Google Scholar] [CrossRef]
- Pascua, C.S.; Ohnuma, M.; Matsushita, Y.; Tamura, K.; Yamada, H.; Cuadros, J.; Ye, J. Synthesis of monodisperse Zn-smectite. Appl. Clay Sci. 2010, 48, 55–59. [Google Scholar] [CrossRef]
- Garrels, R.M.; Christ, C.L. Solutions, Minerals, and Equilibria, 1st ed.; Harpers’ Geoscience Series; Harper and Row: New York, NY, USA; 450p, ISBN 13 9780877353331.
- Coppola, V.; Boni, M.; Gilg, H.A.; Balassone, G.; Dejonghe, L. The “calamine” nonsulfide Zn-Pb deposits of Belgium: Petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 2008, 33, 187–210. [Google Scholar] [CrossRef]
- Choulet, F.; Buatier, M.; Barbanson, L.; Guégan, R.; Ennaciri, A. Zinc-rich clays in supergene non-sulfide zinc deposits. Miner. Depos. 2016, 51, 467–490. [Google Scholar] [CrossRef] [Green Version]
- Will, P.; Friedrich, F.; Hochleitner, R.; Gilg, H.A. Fraipontite in the hydrothermally overprinted oxidation zone of the Preguiça mine, Southern Portugal. In Proceedings of the Mid-European Clay Conference, Dresden, Germany, 16–19 September 2014. [Google Scholar]
- Mondillo, N.; Nieto, F.; Balassone, G. Micro- and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru. Am. Mineral. 2015, 100, 2484–2496. [Google Scholar] [CrossRef]
- Buatier, M.; Choulet, F.; Petit, S.; Chassagnon, R.; Vennemann, T. Nature and origin of natural Zn clay minerals from the Bou Arhous Zn ore deposit: Evidence from electron microscopy (SEM-TEM) and stable isotope compositions (H and O). Appl. Clay Sci. 2016, 132, 377–390. [Google Scholar] [CrossRef]
- Balassone, G.; Nieto, F.; Arfè, G.; Boni, M.; Mondillo, N. Zn-clay minerals in the nonsulfide orebody of Skorpion (Namibia): Identification and genetic clues revealed by HRTEM and AEM study. Appl. Clay Sci. 2017, 150, 309–322. [Google Scholar] [CrossRef]
- Choi, J.; Komarneni, S.; Grover, K.; Katsuki, H.; Park, M. Hydrothermal synthesis of Mn–mica. Appl. Clay Sci. 2009, 46, 69–72. [Google Scholar] [CrossRef]
- Sharygin, V. Zincian micas from peralkaline phonolites of the Oktyabrsky massif, Azov Sea region, Ukrainian Shield. Eur. J. Min. 2015, 27, 521–533. [Google Scholar] [CrossRef]
- Arfè, G.; Mondillo, N.; Boni, M.; Balassone, G.; Joachimski, M.; Mormone, A.; Di Palma, T. The karst hosted Mina Grande nonsulfide zinc deposit, Bongará district (Amazonas region, Peru). Econ. Geol. 2017, 112, 1089–1110. [Google Scholar] [CrossRef]
- Arfè, G.; Mondillo, N.; Boni, M.; Joachimski, M.; Balassone, G.; Mormone, A.; Santoro, L.; Castro Medrano, E. The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: An example of supergene zinc enrichments in tropical areas. Ore Geol. Rev. 2017. under review. [Google Scholar]
- Rosas, S.; Fontboté, L.; Tankard, A. Tectonic evolution and paleogeography of the Mesozoic Pucará basin, central Peru. J. S. Am. Earth Sci. 2007, 24, 1–24. [Google Scholar] [CrossRef]
- Spikings, R.; Reitsma, M.J.; Boekhout, F.; Mišković, A.; Ulianov, A.; Chiaradia, M.; Gerdes, A.; Schaltegger, U. Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res. 2016, 35, 124–143. [Google Scholar] [CrossRef]
- Reid, C.J. Stratigraphy and Mineralization of the Bongara MVT Zinc-Lead District, Northern Peru. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2001. [Google Scholar]
- Mišković, A.; Spikings, RA.; Chew, D.M.; Košler, J.; Ulianov, A.; Schaltegger, U. Tectonomagmatic evolution of Western Amazonia: Geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids. Geol. Soc. Am. Bull. 2009, 121, 1298–1324. [Google Scholar] [CrossRef]
- Mégard, F. Geología del Cuadrángulo de Huancayo; Servicio de Geología y Minería: Lima, Peru, 1968; 123p. [Google Scholar]
- Szekely, T.S.; Grose, L.T. Stratigraphy of the carbonate, black shale, and phosphate of the Pucará Group (Upper Triassic-Lower Jurassic), central Andes, Peru. Geol. Soc. Am. Bull. 1972, 83, 407–428. [Google Scholar] [CrossRef]
- Rosas, S.; Fontboté, L. Evolución sedimentólgica del Grupo Pucará (Triásico superior-Jurásico inferior) en un perfil SW-NE en el centro del Perú. In Volume Jubilar Alberto Benavides; Sociedad Geólgica del Perú: Lima, Peru, 1995; pp. 279–309. [Google Scholar]
- Mathalone, J.M.P.; Montoya, R.M. Petroleum geology of the sub-Andean basins of Peru. Am. Assoc. Petr. Geol. Mem. 1995, 62, 423–444. [Google Scholar]
- Instituto Geologico Minero y Metalurgico (INGEMMET). Geologia de Los Cuadrangulos de Bagua Grande, Jumbilla, Lonya Grande, Chachapoyas, Rioja, Leimebamba y Bolivar; Carta Geologica Nacional, Peru; Boletin 56 Serie A; Instituto Geologico Minero y Metalurgico: Lima, Peru, 1995; 390p. [Google Scholar]
- Gregory-Wodzicki, K.M. Uplift history of the Central Northern Andes: A review. Geol. Soc. Am. Bull. 2000, 112, 1092–1105. [Google Scholar] [CrossRef]
- Klein, G.D.; Zúñiga y Rivero, F.G.; Hay-Roe, H.; Alvarez-Calderon, E. A Reappraisal of the Mesozoic/Cenozoic Tectonics and Sedimentary Basins of Peru. In Search and Discover Article (AAPG); AAPG/Datapages, Inc.: Tulsa, OK, USA, 2011; 55p. [Google Scholar]
- Pfiffner, O.A.; Gonzalez, L. Mesozoic-Cenozoic evolution of the Western Margin of South America: Case study of the Peruvian Andes. Geosciences 2013, 3, 262–310. [Google Scholar] [CrossRef]
- Brophy, J.A. Rio Cristal Resources Corp., Bongará Zinc Project; NI 43-101 Technical Report; SMV-Superintendencia del Mercado de Valores: Lima, Peru, 2012; 104p. [Google Scholar]
- Mondillo, N.; Arfè, G.; Boni, M.; Balassone, G.; Boyce, A.; Joachimski, M.; Villa, I.M. The Cristal Zinc Zn prospect (Amazonas region, Northern Peru). Part I: New insights on the sulfide mineralization in the Bongará province. Ore Geol. Rev. 2017. under review. [Google Scholar]
- Basuki, N.I.; Spooner, E.T.C. Fluid evolution and flow direction of MVT Zn-Pb related basinal brines, Bongará area, northern Peru: CL and fluid inclusion data. In Proceedings of the Geological-Mineralogical Association of Canada-Society of Economic Geologists—Society for Geology Applied to Mineral Deposits Meeting, Quebec City, QC, Canada, 26–28 May 2008. [Google Scholar]
- Basuki, N.I.; Spooner, E.T.C. Post-early Cretaceous Mississippi Valley Type Zn-Pb mineralization in the Bongará Area, Northern Peru: Fluid evolution and Paleo-Flow from fluid inclusions evidence. Explor. Min. Geol. 2009, 18, 25–39. [Google Scholar] [CrossRef]
- Basuki, N.I.; Taylor, B.E.; Spooner, E.T.C. Sulfur Isotope Evidence for Thermochemical Reduction of Dissolved Sulfate in Mississippi Valley-Type Zinc-Lead Mineralization, Bongara Area, Northern Peru. Econ. Geol. 2008, 103, 783–799. [Google Scholar] [CrossRef]
- Mondillo, N.; Arfè, G.; Herrington, R.; Boni, M.; Wilkinson, C.; Mormone, A. Possible economic enrichments of Ge in supergene settings: Evidence from the Cristal supergene Zn nonsulfide prospect, Bongará district, Northern Peru. Miner. Depos. 2017. under review. [Google Scholar]
- Workman, A.; Breede, K. Technical Report on the Bongará Zinc Project in the Yambrasbamba Area, Northern Peru; NI 43-101 Technical Report; Watts, Griffis and McOuat Limited Consulting Geologists and Engineers: Toronto, ON, Canada, 2016; 139p. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford University Press: New York, NY, USA, 1997; 378p, ISBN 9780195087130. [Google Scholar]
- Brunton, G. Vapour pressure glycolation of oriented clay minerals. Am. Mineral. 1955, 40, 124–126. [Google Scholar]
- Drits, V.A.; Sokolova, T.N.; Sokolova, G.V.; Cherkashin, V.I. New members of the hydrotalcite-manasseite group. Clays Clay Miner. 1987, 35, 401–417. [Google Scholar] [CrossRef]
- Merlino, S.; Orlandi, P. Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: Their chemical compositions, physical properties, and structural features. Am. Mineral. 2001, 86, 1293–1301. [Google Scholar] [CrossRef]
- Lozano, R.P.; Rossi, C.; La Iglesia, Á.; Matesanz, E. Zaccagnaite-3R, a new Zn-Al hydrotalcite polytype from El Soplao cave (Cantabria, Spain). Am. Mineral. 2012, 97, 513–523. [Google Scholar] [CrossRef]
- Keller, W.D.; Reynolds, R.C.; Inque, A. Morphology of clay minerals in the smectite-to-illite conversion series by scanning electron microscopy. Clays Clay Miner. 1986, 34, 187–197. [Google Scholar] [CrossRef]
- Meunier, A. Clays; Springer: Berlin/Heidelberg, Germany, 2005; 476p, ISBN 3-540-21667-7. [Google Scholar]
- Frondel, C.; Ito, J. Hendricksite: A new species of mica. Am. Mineral. 1966, 51, 1107–1127. [Google Scholar]
- Leavens, P.B.; Zullo, J.; Verbeek, E. A complex, genthelvite-bearing skarn from the Passaic pit, Sterling Hill mine, Ogdensburg, New Jersey. Axis 2009, 5, 1–26. [Google Scholar]
- Perrotta, A.J.; Garland, T.J. Low Temperature Synthesis of Zinc-Phlogopite. Am. Mineral. 1975, 60, 152–154. [Google Scholar]
Location | Cristal | Mina Grande | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample ID | CR03-3 | CR03-3 | CR03-3 | CR03-3 | CR07-13 | CR07-13 | CR13-5 | CR13-6 | CR13-6 | CR13-6 | CR13-7 | ZB1 | ZB1 |
wt % | |||||||||||||
SiO2 | 48.17 | 56.84 | 50.97 | 53.00 | 48.60 | 47.41 | 47.42 | 49.94 | 51.33 | 43.19 | 47.25 | 46.10 | 47.17 |
TiO2 | 0.24 | 0.42 | 0.13 | 0.26 | 0.45 | 0.45 | 0.14 | 0.26 | 0.33 | 0.11 | 0.37 | 0.17 | 0.16 |
Al2O3 | 28.33 | 22.37 | 20.34 | 25.70 | 29.13 | 36.35 | 26.69 | 29.34 | 25.54 | 26.72 | 25.02 | 36.84 | 27.71 |
MgO | 2.12 | 1.90 | 2.99 | 3.48 | 1.89 | 0.99 | 2.22 | 2.27 | 3.14 | 1.67 | 2.56 | - | 2.72 |
MnO | 0.22 | 0.15 | 0.09 | - | - | 0.24 | 1.66 | - | 0.39 | 5.75 | 1.06 | 0.08 | - |
FeOt a | 4.25 | 1.83 | 1.60 | 1.66 | 5.06 | 0.82 | 3.49 | 0.79 | 1.34 | 0.68 | 2.48 | 1.27 | 1.07 |
ZnO | 0.85 | 2.82 | 12.61 | 1.10 | 0.06 | 0.55 | 0.92 | 3.83 | 5.49 | 8.11 | 5.85 | 0.70 | 9.28 |
K2O | 10.90 | 7.01 | 6.04 | 9.13 | 10.92 | 10.16 | 10.67 | 8.52 | 6.60 | 8.02 | 8.50 | 11.64 | 7.63 |
CaO | - | 0.25 | 0.60 | 0.36 | 0.22 | - | 0.44 | 0.80 | 0.38 | 0.39 | 0.17 | - | 0.30 |
PbO | - | - | 0.15 | - | - | - | - | 0.49 | - | 0.40 | 0.20 | 0.06 | 0.24 |
Total | 95.08 | 93.59 | 95.54 | 94.69 | 96.33 | 96.97 | 93.64 | 96.24 | 94.55 | 95.04 | 93.46 | 96.87 | 96.28 |
apfu | On the Basis of 11 O | ||||||||||||
Si | 3.29 | 3.79 | 3.55 | 3.52 | 3.27 | 3.09 | 3.28 | 3.32 | 3.46 | 3.10 | 3.33 | 3.04 | 3.23 |
Al | 0.71 | 0.21 | 0.45 | 0.48 | 0.73 | 0.91 | 0.72 | 0.68 | 0.54 | 0.90 | 0.67 | 0.96 | 0.77 |
ΣT | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Al | 1.57 | 1.55 | 1.22 | 1.53 | 1.58 | 1.88 | 1.45 | 1.62 | 1.49 | 1.36 | 1.41 | 1.90 | 1.47 |
Ti | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
Mg | 0.22 | 0.19 | 0.31 | 0.34 | 0.19 | 0.10 | 0.23 | 0.22 | 0.32 | 0.18 | 0.27 | - | 0.28 |
Mn | 0.01 | 0.01 | 0.01 | - | - | 0.01 | 0.10 | - | 0.02 | 0.35 | 0.06 | - | - |
Fe | 0.24 | 0.10 | 0.09 | 0.09 | 0.28 | 0.04 | 0.20 | 0.04 | 0.08 | 0.04 | 0.15 | 0.07 | 0.06 |
Zn | 0.04 | 0.14 | 0.65 | 0.05 | - | 0.03 | 0.05 | 0.19 | 0.27 | 0.43 | 0.30 | 0.03 | 0.47 |
Pb | - | - | 0.003 | - | - | - | - | 0.01 | - | 0.01 | - | - | - |
ΣO | 2.09 | 2.01 | 2.28 | 2.03 | 2.06 | 2.08 | 2.03 | 2.09 | 2.20 | 2.37 | 2.21 | 2.01 | 2.28 |
Ca | - | 0.02 | 0.05 | 0.03 | 0.02 | - | 0.03 | 0.06 | 0.03 | 0.03 | 0.01 | - | 0.02 |
K | 0.95 | 0.60 | 0.54 | 0.77 | 0.94 | 0.84 | 0.94 | 0.72 | 0.57 | 0.73 | 0.76 | 0.98 | 0.67 |
ΣI | 0.95 | 0.62 | 0.59 | 0.80 | 0.96 | 0.84 | 0.97 | 0.77 | 0.59 | 0.76 | 0.77 | 0.98 | 0.69 |
Σch(T) | −0.71 | −0.21 | −0.45 | −0.48 | −0.73 | −0.91 | −0.72 | −0.68 | −0.54 | −0.90 | −0.67 | −0.96 | −0.77 |
Σch(O) | −0.24 | −0.43 | −0.19 | −0.35 | −0.25 | 0.07 | −0.28 | −0.16 | −0.09 | 0.11 | −0.11 | −0.02 | 0.06 |
Σch(I) | 0.95 | 0.64 | 0.64 | 0.83 | 0.98 | 0.84 | 1.00 | 0.84 | 0.63 | 0.79 | 0.78 | 0.98 | 0.71 |
Location | Mina Grande | Cristal | ||||||
---|---|---|---|---|---|---|---|---|
Sample ID | ZB1 | CR03-3 | CR07-9 | CR13-6 | CR13-6 | |||
Mineral | Fraipontite | Sauconite | Zn-Mn-Bearing Mica | |||||
wt % | ||||||||
SiO2 | 19.64 | 16.35 | 37.78 | 37.88 | 40.44 | 35.99 | 34.86 | 38.99 |
TiO2 | - | - | 0.12 | 0.12 | 0.13 | 0.12 | - | 0.17 |
Al2O3 | 20.41 | 20.46 | 6.52 | 5.08 | 7.11 | 18.21 | 20.15 | 23.13 |
MgO | 0.07 | 0.05 | 0.78 | 0.47 | 0.75 | 2.18 | 1.64 | 1.67 |
MnO | 0.05 | - | - | - | - | 9.97 | 10.89 | 7.85 |
FeOta | 0.77 | 0.32 | 0.35 | 0.27 | 0.11 | 2.59 | 1.42 | 0.66 |
ZnO | 46.67 | 49.16 | 37.00 | 40.24 | 34.73 | 19.17 | 16.85 | 13.15 |
CaO | 0.04 | - | 1.52 | 0.95 | 1.00 | 0.38 | 0.11 | 0.17 |
K2O | - | 0.01 | 0.73 | 0.15 | 1.15 | 4.56 | 5.61 | 6.86 |
PbO | - | 0.21 | - | - | - | - | 1.18 | 0.57 |
Total | 87.65 | 86.56 | 84.80 | 85.16 | 85.42 | 93.15 | 92.71 | 93.23 |
apfu | On the Basis of 14 O | On the Basis of 11 O | On the Basis of 11 O | |||||
Si | 2.48 | 2.15 | 3.52 | 3.57 | 3.64 | 2.92 | 2.85 | 2.99 |
Al | 1.52 | 1.85 | 0.48 | 0.43 | 0.36 | 1.08 | 1.15 | 1.01 |
ΣT | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Al | 1.52 | 1.32 | 0.24 | 0.13 | 0.39 | 0.66 | 0.79 | 1.08 |
Ti | - | - | 0.01 | 0.01 | 0.01 | 0.01 | - | 0.01 |
Mg | 0.01 | 0.04 | 0.11 | 0.07 | 0.10 | 0.26 | 0.20 | 0.19 |
Mn | 0.01 | 0.01 | - | - | - | 0.68 | 0.75 | 0.51 |
Fe | 0.08 | 0.11 | 0.03 | 0.02 | 0.01 | 0.18 | 0.10 | 0.04 |
Zn | 4.36 | 4.76 | 2.54 | 2.80 | 2.31 | 1.15 | 1.02 | 0.75 |
Pb | - | 0.02 | - | - | - | - | 0.03 | 0.01 |
ΣO | 5.98 | 6.26 | 2.93 | 3.03 | 2.82 | 2.94 | 2.89 | 2.59 |
Ca | 0.01 | - | 0.15 | 0.10 | 0.10 | 0.03 | 0.01 | 0.01 |
K | - | 0.03 | 0.09 | 0.02 | 0.13 | 0.47 | 0.58 | 0.67 |
ΣI | 0.01 | 0.03 | 0.24 | 0.12 | 0.23 | 0.50 | 0.59 | 0.68 |
Σch(T) | −1.52 | −1.85 | −0.48 | −0.43 | −0.36 | −1.08 | −1.15 | −1.01 |
Σch(O) | 1.50 | 1.82 | 0.09 | 0.21 | 0.03 | 0.55 | 0.55 | 0.32 |
Σch(I) | 0.02 | 0.03 | 0.39 | 0.22 | 0.33 | 0.53 | 0.60 | 0.69 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfè, G.; Mondillo, N.; Balassone, G.; Boni, M.; Cappelletti, P.; Di Palma, T. Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru). Minerals 2017, 7, 214. https://doi.org/10.3390/min7110214
Arfè G, Mondillo N, Balassone G, Boni M, Cappelletti P, Di Palma T. Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru). Minerals. 2017; 7(11):214. https://doi.org/10.3390/min7110214
Chicago/Turabian StyleArfè, Giuseppe, Nicola Mondillo, Giuseppina Balassone, Maria Boni, Piergiulio Cappelletti, and Tommaso Di Palma. 2017. "Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru)" Minerals 7, no. 11: 214. https://doi.org/10.3390/min7110214
APA StyleArfè, G., Mondillo, N., Balassone, G., Boni, M., Cappelletti, P., & Di Palma, T. (2017). Identification of Zn-Bearing Micas and Clays from the Cristal and Mina Grande Zinc Deposits (Bongará Province, Amazonas Region, Northern Peru). Minerals, 7(11), 214. https://doi.org/10.3390/min7110214