Some New Fractional Estimates of Inequalities for LR- -Convex Interval-Valued Functions by Means of Pseudo Order Relation
Abstract
:1. Introduction
2. Preliminaries
3. LR--Convex Interval-Valued Functions
Fractional Hermite-Hadamard Type Inequalities
4. Conclusions
Author Contributions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
- Awan, M.U.; Akhtar, N.; Iftikhar, S.; Noor, M.A.; Chu, Y.-M. New Hermite–Hadamard type inequalities for n-polynomial harmonically convex functions. J. Inequal. Appl. 2020, 2020, 125. [Google Scholar] [CrossRef]
- Latif, M.A.; Rashid, S.; Dragomir, S.S.; Chu, Y.-M. Hermite–Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 317. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.-M.; Wang, G.-D.; Zhang, X.-H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 653–663. [Google Scholar] [CrossRef]
- Chu, Y.M.; Xia, W.-F.; Zhang, X.-H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef] [Green Version]
- Zaheer Ullah, S.; Adil Khan, M.; Khan, Z.A.; Chu, Y.-M. Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, 2019, 9487823. [Google Scholar] [CrossRef]
- Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, 2019, 58. [Google Scholar] [CrossRef] [Green Version]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.-S.; Wan, J.-P. p-convex functions and their properties. Pure Appl. Math. 2007, 23, 130–133. [Google Scholar]
- Chang, S.S.; Zhu, Y.G. On variational inequalities for fuzzy mappings. Fuzzy Sets Syst. 1989, 32, 359–367. [Google Scholar] [CrossRef]
- Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
- Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. A note on generalized convex functions. J. Inequal. Appl. 2019, 2019, 15. [Google Scholar] [CrossRef]
- Liu, W. New integral inequalities involving beta function via P-convexity. Miskolc. Math. Notes 2014, 15, 585–591. [Google Scholar] [CrossRef]
- Fej’er, L. Uberdie Fourierreihen II. Math. Naturwise. Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
- Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen. Pupl. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequat. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Iscan, I. Hermite–Hadamard type inequalities for p-convex functions. Int. J. Anal Appl. 2016, 11, 137–145. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
- Roman-Flores, H.; Chalco-Cano, Y.; Silva, G.N. A note on Gronwall type inequality for interval-valued functions. In Proceedings of the IEEE IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 24–28 June 2013; Volume 35, pp. 1455–1458. [Google Scholar]
- Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Nikodem, K.; Snchez, J.L.; Snchez, L. Jensen and Hermite–Hadamard inequalities for strongly convex set-valued maps. Math. Aterna 2014, 4, 979–987. [Google Scholar]
- Matkowski, J.; Nikodem, K. An integral Jensen inequality for convex multifunctions. Results Math. 1994, 26, 348–353. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Monotonicity results for fractional difference operators with discrete exponential kernels. Adv. Differ. Equ. 2017, 2017, 78. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Purohit, S.D.; Kritika. A mathematical fractional model with nonsingular kernel for thrombin receptor activation in calcium signaling. Math. Methods Appl. Sci. 2019, 42, 7160–7171. [Google Scholar] [CrossRef]
- Agarwal, R.; Yadav, M.P.; Baleanu, D.; Purohit, S.D. Existence and uniqueness of miscible flow equation through porous media with a non-singular fractional derivative. AIMS Math. 2019, 5, 1062–1073. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Purohit, S.D.; Swroop, R. A hybrid analytical algorithm for nonlinear fractional wave-like equations. Math. Model. Nat. Phenom. 2019, 14, 304. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6, 1–15. [Google Scholar]
- Toplu, T.; Set, E.; İşcan, İ.; Maden, S. Hermite–Hadamard type inequalities for p-convex functions via Katugampola fractional integrals. Facta Univ. Ser. Math. Inform. 2019, 34, 149–164. [Google Scholar]
- Adil Khan, M.; Begum, S.; Khurshid, Y.; Chu, Y.-M. Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, 2018, 70. [Google Scholar] [CrossRef]
- Fang, Z.B.; Shi, R. On the (p, h)-convex function and some integral inequalities. J. Inequal. Appl. 2014, 2014, 45. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; İşcan, İ. Hermite–Hadamard–Fejér type inequalities for p-convex functions. Arab J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-L.; Ye, G.-J.; Zhao, D.-F.; Liu, W. Fractional Hermite–Hadamard type inequalities for interval-valued functions. J. Inequal. Appl. 2019, 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, Y.-M.; Wang, H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011, 2011, 896483. [Google Scholar] [CrossRef]
- Precup, R.E.; Teban, T.A.; Albu, A.; Borlea, A.B.; Zamfirache, I.A.; Petriu, E.M. Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans. Instrum. Meas. 2020, 69, 4625–4636. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.-M. New Hermite-Hadamard Type Inequalities for (h1, h2)-Convex Fuzzy-Interval-Valued Functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite–Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 2021, 1–15. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some New Classes of Preinvex Fuzzy-Interval-Valued Functions and Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. On Strongly Generalized Preinvex Fuzzy Mappings. J. Math. 2021, 2021, 6657602. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Ab Ghani, A.T.; Abdullah, L. Extended perturbed mixed variational-like inequalities for fuzzy mappings. J. Math. 2021, 2021, 6652930. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Almusawa, H.; Nisar, K.S. Exponentially Preinvex Fuzzy Mappings and Fuzzy Exponentially Mixed Variational-Like Inequalities. Int. J. Anal. Appl. 2021, 19, 518–541. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically Convex Fuzzy-Interval-Valued Functions and Fuzzy-Interval Riemann–Liouville Fractional Integral Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. Higher-Order Strongly Preinvex Fuzzy Mappings and Fuzzy Mixed Variational-Like Inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1856–1870. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I. On Some Characterization of Preinvex Fuzzy Mappings. Earth. J. Math. Sci. 2021, 5, 17–42. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Noor, K.I. On Fuzzy Quasi-Invex Sets. Int. J. Algeb. Stat. 2021, 9, 11–26. [Google Scholar]
- Mohammed, P.O. New generalized Riemann-Liouville fractional integral inequalities for convex functions. J. Math. Inequal. 2021, 15, 511–519. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Baleanu, D.; Guirao, J.L.G.
Some New Fractional Estimates of Inequalities for LR-
Khan MB, Mohammed PO, Noor MA, Baleanu D, Guirao JLG.
Some New Fractional Estimates of Inequalities for LR-
Khan, Muhammad Bilal, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Dumitru Baleanu, and Juan Luis García Guirao.
2021. "Some New Fractional Estimates of Inequalities for LR-