De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers
Abstract
:1. Introduction
2. Matrix Representations for Any Unit Hybrid Number
3. De Moivre’s Formula of Real Matrices of Hybrid Numbers
4. Euler Formula for the Matrices of Hybrid Numbers
5. Roots of the Matrices of Hybrid Numbers
6. Applications
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cho, E. Euler’s Formula and De Moivre’s Formula For Quaternions. Mo. J. Math. Sci. 1999, 11, 2. [Google Scholar] [CrossRef]
- Jafari, M.; Mortazaasl, H.; Yayli, Y. De Moivre’s Formula for Matrices of Quaternions. J. Algebr. Number Theory Appl. 2011, 21, 57–67. [Google Scholar]
- Kabadayi, H.; Yayli, Y. De Moivre’s Formula for Dual Quaternions. Kuwait J. Sci. 2011, 38, 15–23. [Google Scholar]
- Özdemir, M. The Roots of Split Quaternion. Appl. Math. Lett. 2009, 22, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Erdogdu, M.; Ozdemir, M. De Moivre’s and Euler Formulas for Matrices of Split Quaternions. 2015. Available online: https://arxiv.org/abs/1503.05413.pdf (accessed on 12 July 2021).
- Jafari, M.; Yayli, Y. Matrix Theory Over the Split Quaternions. Int. J. Geom. 2014, 3, 57–69. [Google Scholar]
- Ercan, Z.; Yüce, S. On Properties of the Dual Quaternions. Eur. J. Pure Appl. Math. 2011, 4, 142–146. [Google Scholar]
- Kösal, H.H.; Bilgili, T. Euler and De Moivre’s Formulas for Fundamental Matrices of Commutative Quaternions. Int. Electron. J. Geom. 2020, 13, 98–107. [Google Scholar] [CrossRef]
- Kosal, I.A. A note on hyperbolic quaternions. Univers. J. Math. Appl. 2018, 1, 155–159. [Google Scholar]
- Szynal-Liana, A.; Włoch, I. On Special Spacelike Hybrid Numbers. Mathematics 2020, 8, 1671. [Google Scholar] [CrossRef]
- Bród, D.; Szynal-Liana, A.; Włoch, I. Two Generalizations of Dual-Hyperbolic Balancing Numbers. Symmetry 2020, 12, 1866. [Google Scholar] [CrossRef]
- Kim, J.E. A Representation of De Moivre’s Formula Over Pauli-Quaternions. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2017, 9, 145–151. [Google Scholar]
- Ozdemir, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebr. 2018, 28, 11. [Google Scholar] [CrossRef]
- Öztürk, İ.; Özdemir, M. Similarity of hybrid numbers. Math. Methods Appl. Sci. 2020, 15, 8867–8881. [Google Scholar] [CrossRef]
- Özdemir, M. Finding nth Roots of a 2 × 2 Real Matrix Using De Moivre’s Formula. Adv. Appl. Clifford Algebr. 2019, 29, 1–25. [Google Scholar] [CrossRef]
Character of Hybrid Number | Polar Form | Conditions |
---|---|---|
Unit elliptic hybrid | ||
Unit spacelike hyperbolic hybrid | ||
Unit parabolic hybrid | ||
Unit lightlike hyperbolic hybrid | ||
Unit timelike hyperbolic hybrid | () |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbıyık, M.; Yamaç Akbıyık, S.; Karaca, E.; Yılmaz, F. De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers. Axioms 2021, 10, 213. https://doi.org/10.3390/axioms10030213
Akbıyık M, Yamaç Akbıyık S, Karaca E, Yılmaz F. De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers. Axioms. 2021; 10(3):213. https://doi.org/10.3390/axioms10030213
Chicago/Turabian StyleAkbıyık, Mücahit, Seda Yamaç Akbıyık, Emel Karaca, and Fatih Yılmaz. 2021. "De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers" Axioms 10, no. 3: 213. https://doi.org/10.3390/axioms10030213
APA StyleAkbıyık, M., Yamaç Akbıyık, S., Karaca, E., & Yılmaz, F. (2021). De Moivre’s and Euler Formulas for Matrices of Hybrid Numbers. Axioms, 10(3), 213. https://doi.org/10.3390/axioms10030213