Analysis of Generalized Bessel–Maitland Function and Its Properties
Abstract
:1. Introduction
2. Characterization of EGBMF as Integral
3. Properties of the EGBMF and Derivative
4. Relation of the EGBMF with Laguerre Polynomial and Whittaker Function
5. Integral Transforms of EGBMF
6. Numerical Representations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge Mathematical Library Edition; Cambridge University Press: Cambridge, UK, 1965; Reprinted in 1996. [Google Scholar]
- Marichev, O.I. Handbook of Integral Transforms and Higher Transcendental Functions; Ellis Horwood: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1983. [Google Scholar]
- Choi, J.; Agarwal, P. Certain unified integrals associated with Bessel functions. Bound. Value Probl. 2013, 2013, 95. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Agarwal, P. Certain unified integrals involving a product of Bessel functions of first kind. Honam Math. J. 2013, 35, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Kamarujjama, M.; Khan, N.U.; Khan, O. Estimation of certain integrals associated with Multi-index Bessel function. Malaya J. Mat. 2019, 7, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.U.; Ghayasuddin, M.; Usman, T. On certain integral formulas involving the product of Bessel function and Jacobi polynomial. Tamkang J. Math. 2016, 47, 339–349. [Google Scholar] [CrossRef]
- Khan, N.U.; Khan, S.W.; Ghayasuddin, M. Some new results associated with the Bessel-Struve kernel function. Acta Univ. Apulensis. 2016, 48, 89–101. [Google Scholar]
- Khan, N.U.; Kashmin, T. Some integrals for the generalized Bessel-Maitland functions. Electron. J. Math. Anal. Appl. 2016, 4, 139–149. [Google Scholar]
- Khan, N.U.; Usman, T.; Aman, M. Extended beta, hypergeometric and confluent hypergeometric functions. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 2019, 39, 83–97. [Google Scholar]
- Özarsalan, M.A.; Özergin, E. Some generating relations for extended hypergeometric functions via generalized fractional derivative operator. Math. Comput. Model. 2010, 52, 1825–1833. [Google Scholar] [CrossRef]
- Shadab, M.; Jabee, S.; Choi, J. An extended beta function and its applications. Far East J. Math. Sci. 2018, 103, 235–251. [Google Scholar] [CrossRef]
- Singh, M.; Khan, M.A.; Khan, A.H. On some properties of a generalization of Bessel-Maitland function. Int. J. Math. Trends Technol. 2014, 14, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood) Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Suthar, D.L.; Habenom, H. Integrals involving generalized Bessel-Maitland function. J. Sci. Arts 2016, 16, 357–362. [Google Scholar]
- Arshad, M.; Mubeen, S.; Nisar, K.S.; Rahman, G. Extended Wright-Bessel function and its properties. Commun. Korean Math. Soc. 2018, 33, 143–155. [Google Scholar]
- Albayrak, D.; Dernek, A.; Dernek, N.; Uçar, F. New intregral transform with generalized Bessel–Maitland function kernel and its applications. Math. Meth. Appl. Sci. 2021, 44, 1394–1408. [Google Scholar] [CrossRef]
- Zayed, H.M. On generalized Bessel–Maitland function. Adv. Differ. Equ. 2021, 2021, 432. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; NorthHolland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Miller, K.S. An Introduction to Fractional Calculus and Fractional Differential Equations; John Wiley and Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Pathak, R.S. Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transformations. Proc. Nat. Acad. Sci. India. Sect. A. 1966, 36, 81–86. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Guzmán, P.M.; Langton, G.; Lugo, L.M.; Medina, J.; Valdés, J.E.N. A new definition of a fractional derivative of local type. J. Math. Anal. 2019, 9, 88–98. [Google Scholar]
- Abu-Shady, M.; Kaabar, M.K.A. A generalized definition of the fractional derivative with applications. Math. Probl. Eng. 2021, 2021, 9444803. [Google Scholar] [CrossRef]
- Wang, K.-J. The fractal active low-pass filter within the local fractional derivative on the Cantor set. Int. J. Comput. Math. Electr. Electron. Eng. 2023. Accepted. [Google Scholar] [CrossRef]
- Wang, K. Fractal travelling wave solution for the fractal-fractional Ablowitz-Kaup-Segur model. Fractals 2022, 30, 2250171. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Res. Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Use of Integral Transforms; Tata McGraw-Hill: New Delhi, India, 1979. [Google Scholar]
- Sharma, S.C.; Devi, M. Unified Mittag–Leffler Function and Extended Riemann–Liouville Fractional Derivative Operator. Int. J. Math. Res. 2017, 9, 135–148. [Google Scholar]
- Shadab, M.; Khan, M.F.; Lopez-Bonilla, J.L. A new Riemann–Liouville type fractional derivative operator and its application in generating functions. Adv. Differ. Equ. 2018, 2018, 167. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, P.; Nieto, J.J.; Luo, M.J. Extended Riemann–Liouville type fractional derivative operator with applications. Open Math. 2019, 15, 1667–1681. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, T.; Khan, N.; Martínez, F. Analysis of Generalized Bessel–Maitland Function and Its Properties. Axioms 2023, 12, 356. https://doi.org/10.3390/axioms12040356
Usman T, Khan N, Martínez F. Analysis of Generalized Bessel–Maitland Function and Its Properties. Axioms. 2023; 12(4):356. https://doi.org/10.3390/axioms12040356
Chicago/Turabian StyleUsman, Talha, Nabiullah Khan, and Francisco Martínez. 2023. "Analysis of Generalized Bessel–Maitland Function and Its Properties" Axioms 12, no. 4: 356. https://doi.org/10.3390/axioms12040356
APA StyleUsman, T., Khan, N., & Martínez, F. (2023). Analysis of Generalized Bessel–Maitland Function and Its Properties. Axioms, 12(4), 356. https://doi.org/10.3390/axioms12040356