James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets
Abstract
:1. Introduction
2. Methodology
2.1. The Beta Ridge Regression Estimator
2.2. The Beta Liu Estimator
2.3. The JSE for the BRM
2.4. Theoretical Comparison among the BRM’s Estimators
2.4.1. The MLE versus the BJSE
2.4.2. The BRRE versus the BJSE
2.4.3. The BLE versus the BJSE
2.4.4. Computation of the Biasing Parameters
3. Simulation Study
3.1. Simulation Layout
3.2. Simulation Results Discussion
- The first factor that affected the MSEs of the BRM estimate was multicollinearity, which had a direct effect on the estimators’ performance. This was indicated by the fact that as we increased the level of multicollinearity, the MSEs of the considered estimators were increasing. On comparing the performance of the BJSE under multicollinearity, it was observed that the increase in MSE of the BJSE was too small as compared to the MSEs of the MLE, BRRE and BLE. These results show that the performance of the proposed estimator was better than the available estimators.
- The second factor that affected the performance of the BRM estimators was the sample size. From the simulation results, we found that the estimated MSEs of the considered estimators decreased with the increase in sample size. For all considered sample sizes, the performance of the BJSE was better as compared to other BRM’s estimators.
- The number of explanatory variables also affected the simulation results of the BRM’s estimators. Simulation results show that there was a direct relationship between the MSEs of the estimators and the number of explanatory variables. This indicated that the number of explanatory variables increased the MSEs of the BRM’s estimators. This increase in the MSE of the BJSE was very small as compared to other biased estimators. Again, BJSE showed an efficient and more consistent performance as compared to other biased estimators for dealing with the issue of multicollinearity for larger p and precision.
- The last factor affecting the performance of the biased estimators is the dispersion parameter. As the dispersion parameter increased, the MSEs of the estimators decreased because the dispersion parameter is the reciprocal of the precision parameter.
4. Empirical Applications
4.1. Application 1: Heat-Treating Test Data
4.2. Application 2: Body Fat Data
5. Limitations of the Proposed Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrari, S.; Cribari-Neto, F. Beta regression for modelling rates and proportions. J. Appl. Stat. 2004, 31, 799–815. [Google Scholar] [CrossRef]
- Abonazel, M.R.; Taha, I.M. Beta ridge regression estimators: Simulation and application. Commun. Stat.-Simul. Comput. 2021, 1–13. [Google Scholar] [CrossRef]
- Brambilla, F. Statistical confluence analysis by means of complete regression systems. G. Econ. Riv. Stat. 1937, 77, 160–163. [Google Scholar]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Imdadullah, M.; Aslam, M.; Altaf, S. mctest: An R Package for Detection of Collinearity among Regressors. R J. 2016, 8, 495. [Google Scholar] [CrossRef]
- Stein, C. Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution; Stanford University Stanford United States: Stanford, CA, USA, 1956. [Google Scholar]
- Massy, W.F. Principal components regression in exploratory statistical research. J. Am. Stat. Assoc. 1965, 60, 234–256. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun. Stat.-Theory Methods 1975, 4, 105–123. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- McDonald, G.C.; Galarneau, D.I. A Monte Carlo evaluation of some ridge-type estimators. J. Am. Stat. Assoc. 1975, 70, 407–416. [Google Scholar] [CrossRef]
- Hocking, R.R.; Speed, F.; Lynn, M. A class of biased estimators in linear regression. Technometrics 1976, 18, 425–437. [Google Scholar] [CrossRef]
- Lawless, J.F.; Wang, P. A simulation study of ridge and other regression estimators. Commun. Stat.-Theory Methods 1976, 5, 307–323. [Google Scholar]
- Gunst, R.F.; Mason, R.L. Advantages of examining multicollinearities in regression analysis. Biometrics 1977, 33, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Kibria, B.G. Performance of some new ridge regression estimators. Commun. Stat.-Simul. Comput. 2003, 32, 419–435. [Google Scholar] [CrossRef]
- Khalaf, G.; Shukur, G. Choosing ridge parameter for regression problems. Commun. Stat.-Theory Methods 2005, 34, 1177–1182. [Google Scholar] [CrossRef]
- Dorugade, A.V. New ridge parameters for ridge regression. J. Assoc. Arab Univ. Basic Appl. Sci. 2014, 15, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Asar, Y.; Genç, A. A note on some new modifications of ridge estimators. Kuwait J. Sci. 2017, 44, 75–82. [Google Scholar]
- Alkhamisi, M.A.; Shukur, G. A Monte Carlo study of recent ridge parameters. Commun. Stat.-Simul. Comput. 2007, 36, 535–547. [Google Scholar] [CrossRef]
- Alkhamisi, M.A.; Shukur, G. Developing ridge parameters for SUR model. Commun. Stat.-Theory Methods 2008, 37, 544–564. [Google Scholar] [CrossRef]
- Månsson, K.; Shukur, G. On ridge parameters in logistic regression. Commun. Stat.-Theory Methods 2011, 40, 3366–3381. [Google Scholar] [CrossRef]
- Månsson, K. Developing a Liu estimator for the negative binomial regression model: Method and application. J. Stat. Comput. Simul. 2013, 83, 1773–1780. [Google Scholar] [CrossRef]
- Algamal, Z.Y. Developing a ridge estimator for the gamma regression model. J. Chemom. 2018, 32, e3054. [Google Scholar] [CrossRef]
- Kejian, L. A new class of blased estimate in linear regression. Commun. Stat.-Theory Methods 1993, 22, 393–402. [Google Scholar] [CrossRef]
- Qasim, M.; Amin, M.; Amanullah, M. On the performance of some new Liu parameters for the gamma regression model. J. Stat. Comput. Simul. 2018, 88, 3065–3080. [Google Scholar] [CrossRef]
- Schaefer, R.; Roi, L.; Wolfe, R. A ridge logistic estimator. Commun. Stat.-Theory Methods 1984, 13, 99–113. [Google Scholar] [CrossRef]
- Qasim, M.; Amin, M.; Omer, T. Performance of some new Liu parameters for the linear regression model. Commun. Stat.-Theory Methods 2020, 49, 4178–4196. [Google Scholar] [CrossRef]
- Amin, M.; Qasim, M.; Amanullah, M.; Afzal, S. Performance of some ridge estimators for the gamma regression model. Stat. Pap. 2020, 61, 997–1026. [Google Scholar] [CrossRef]
- Schaefer, R.L. Alternative estimators in logistic regression when the data are collinear. J. Stat. Comput. Simul. 1986, 25, 75–91. [Google Scholar] [CrossRef]
- Akram, M.N.; Amin, M.; Amanullah, M. James Stein estimator for the inverse Gaussian regression model. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1389–1403. [Google Scholar] [CrossRef]
- Qasim, M.; Månsson, K.; Golam Kibria, B. On some beta ridge regression estimators: Method, simulation and application. J. Stat. Comput. Simul. 2021, 91, 1699–1712. [Google Scholar] [CrossRef]
- Karlsson, P.; Månsson, K.; Kibria, B.G. A Liu estimator for the beta regression model and its application to chemical data. J. Chemom. 2020, 34, e3300. [Google Scholar] [CrossRef]
- Farebrother, R.W. Further results on the mean square error of ridge regression. J. R. Stat. Soc. Ser. B 1976, 38, 248–250. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Johnson, R.W. Fitting percentage of body fat to simple body measurements. J. Stat. Educ. 1996, 4, 1–7. [Google Scholar] [CrossRef]
- Bailey, C. Smart Exercise: Burning Fat, Getting Fit; Houghton Mifflin Harcourt: Bosten, MA, USA, 1996. [Google Scholar]
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 7.4720 | 5.2695 | 4.3458 | 0.3620 |
0.90 | 13.8808 | 9.4073 | 7.2598 | 0.6329 | |
0.95 | 27.9617 | 18.8364 | 13.8743 | 1.3023 | |
0.99 | 132.5772 | 88.1338 | 60.7300 | 6.5650 | |
50 | 0.80 | 6.7380 | 4.9260 | 4.1176 | 0.4236 |
0.90 | 13.2774 | 9.5429 | 7.7423 | 0.7180 | |
0.95 | 25.2382 | 17.9623 | 14.0631 | 1.3564 | |
0.99 | 120.9114 | 85.1745 | 63.8230 | 6.1307 | |
100 | 0.80 | 6.2525 | 4.6966 | 3.9740 | 0.3585 |
0.90 | 10.9847 | 8.0504 | 6.6582 | 0.6836 | |
0.95 | 20.0590 | 14.4570 | 11.7781 | 1.3142 | |
0.99 | 97.8141 | 70.2476 | 56.4144 | 5.1157 | |
200 | 0.80 | 5.7034 | 4.2754 | 3.6733 | 0.2895 |
0.90 | 9.9486 | 7.2555 | 6.0527 | 0.5565 | |
0.95 | 18.2090 | 13.2011 | 10.9296 | 1.1866 | |
0.99 | 84.7205 | 60.3296 | 48.4312 | 6.4092 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 6.4627 | 1.3987 | 1.1296 | 0.0133 |
0.90 | 10.7622 | 1.8489 | 1.2480 | 0.0176 | |
0.95 | 18.9248 | 2.5871 | 1.4515 | 0.0309 | |
0.99 | 80.5334 | 6.9978 | 2.8172 | 0.0558 | |
50 | 0.80 | 5.3949 | 1.3988 | 1.1867 | 0.0102 |
0.90 | 8.3746 | 1.7093 | 1.2997 | 0.0114 | |
0.95 | 15.8659 | 2.4445 | 1.5502 | 0.0171 | |
0.99 | 72.1370 | 7.6020 | 3.5494 | 0.0754 | |
100 | 0.80 | 4.7050 | 1.3869 | 1.1943 | 0.0105 |
0.90 | 7.2863 | 1.6856 | 1.3161 | 0.0127 | |
0.95 | 13.4238 | 2.3021 | 1.5348 | 0.0232 | |
0.99 | 62.8020 | 6.6832 | 3.3142 | 0.0614 | |
200 | 0.80 | 4.6520 | 1.4179 | 1.2159 | 0.0097 |
0.90 | 7.4753 | 1.7021 | 1.3140 | 0.0132 | |
0.95 | 13.1924 | 2.2385 | 1.5303 | 0.0163 | |
0.99 | 59.9683 | 6.3953 | 3.1602 | 0.0421 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 6.2490 | 1.5284 | 1.8145 | 0.0064 |
0.90 | 9.4013 | 1.7942 | 1.8423 | 0.0068 | |
0.95 | 15.5545 | 2.0603 | 1.8816 | 0.0069 | |
0.99 | 70.1703 | 3.0807 | 2.0481 | 0.0166 | |
50 | 0.80 | 5.6431 | 1.9438 | 2.0962 | 0.0066 |
0.90 | 8.2453 | 2.1329 | 2.1448 | 0.0066 | |
0.95 | 13.5659 | 2.3679 | 2.1994 | 0.0070 | |
0.99 | 53.3069 | 2.8795 | 2.2477 | 0.0113 | |
100 | 0.80 | 5.1760 | 2.1259 | 2.2223 | 0.0064 |
0.90 | 7.3100 | 2.2707 | 2.2698 | 0.0067 | |
0.95 | 11.3598 | 2.3785 | 2.2594 | 0.0067 | |
0.99 | 45.4312 | 2.8511 | 2.3588 | 0.0095 | |
200 | 0.80 | 5.0151 | 2.2288 | 2.2571 | 0.0067 |
0.90 | 7.3051 | 2.3307 | 2.3098 | 0.0066 | |
0.95 | 11.3282 | 2.4420 | 2.3336 | 0.0073 | |
0.99 | 45.0837 | 2.8612 | 2.4236 | 0.0104 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 14.4602 | 10.2698 | 7.0766 | 0.1385 |
0.90 | 27.5441 | 19.2596 | 12.0479 | 0.2453 | |
0.95 | 54.3278 | 38.3086 | 23.2843 | 0.4821 | |
0.99 | 267.7602 | 189.9188 | 103.5674 | 2.4785 | |
50 | 0.80 | 12.0083 | 9.5397 | 7.1170 | 0.1480 |
0.90 | 21.7311 | 17.1241 | 12.1802 | 0.2245 | |
0.95 | 46.5936 | 36.8466 | 25.6372 | 0.5748 | |
0.99 | 229.2447 | 181.7785 | 120.6328 | 2.7580 | |
100 | 0.80 | 9.4963 | 7.9802 | 6.2299 | 0.1224 |
0.90 | 18.5056 | 15.5946 | 11.9021 | 0.2080 | |
0.95 | 36.4193 | 30.3996 | 22.0716 | 0.4994 | |
0.99 | 171.0047 | 143.1465 | 101.6485 | 2.2256 | |
200 | 0.80 | 7.8956 | 6.6087 | 5.1605 | 0.0876 |
0.90 | 15.1933 | 12.7549 | 9.8112 | 0.1711 | |
0.95 | 28.6629 | 24.1113 | 18.3379 | 0.3373 | |
0.99 | 140.9234 | 118.2390 | 87.3198 | 1.6646 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 7.9364 | 1.6766 | 0.9151 | 0.0063 |
0.90 | 14.2907 | 2.4639 | 0.9736 | 0.0068 | |
0.95 | 26.0463 | 3.8414 | 0.9782 | 0.0073 | |
0.99 | 122.6603 | 16.0591 | 1.7971 | 0.0138 | |
50 | 0.80 | 7.6179 | 1.8736 | 1.1142 | 0.0068 |
0.90 | 12.8157 | 2.5630 | 1.1970 | 0.0072 | |
0.95 | 26.0388 | 4.5593 | 1.5642 | 0.0070 | |
0.99 | 121.9319 | 18.8122 | 3.9769 | 0.0139 | |
100 | 0.80 | 6.9840 | 1.9318 | 1.1872 | 0.0068 |
0.90 | 13.5102 | 3.0154 | 1.4046 | 0.0072 | |
0.95 | 24.7111 | 4.9733 | 1.8341 | 0.0088 | |
0.99 | 115.6346 | 19.3958 | 5.0523 | 0.0134 | |
200 | 0.80 | 6.4306 | 1.9172 | 1.2011 | 0.0067 |
0.90 | 11.5315 | 2.8416 | 1.4470 | 0.0071 | |
0.95 | 21.5192 | 4.7065 | 1.9236 | 0.0073 | |
0.99 | 101.4062 | 18.2504 | 5.1877 | 0.0130 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 13.2816 | 2.3022 | 1.7579 | 0.0060 |
0.90 | 25.0109 | 2.8321 | 1.7549 | 0.0061 | |
0.95 | 47.8323 | 3.5103 | 1.7259 | 0.0061 | |
0.99 | 242.7295 | 8.8577 | 1.8665 | 0.0083 | |
50 | 0.80 | 8.9790 | 2.3142 | 2.0626 | 0.0060 |
0.90 | 16.4034 | 2.5588 | 2.0357 | 0.0060 | |
0.95 | 30.5502 | 3.0320 | 2.0670 | 0.0060 | |
0.99 | 132.2195 | 5.2522 | 2.1638 | 0.0068 | |
100 | 0.80 | 7.5304 | 2.3190 | 2.1842 | 0.0060 |
0.90 | 11.8247 | 2.4652 | 2.2112 | 0.0060 | |
0.95 | 23.2899 | 2.7410 | 2.2456 | 0.0061 | |
0.99 | 101.3828 | 4.0067 | 2.3584 | 0.0062 | |
200 | 0.80 | 6.0690 | 2.3196 | 2.2345 | 0.0060 |
0.90 | 9.6305 | 2.5019 | 2.2806 | 0.0061 | |
0.95 | 16.4462 | 2.6550 | 2.3043 | 0.0061 | |
0.99 | 70.2664 | 4.0088 | 2.5135 | 0.0062 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 43.4944 | 20.1412 | 6.2921 | 0.0219 |
0.90 | 68.9946 | 30.5975 | 8.1108 | 0.0368 | |
0.95 | 122.1327 | 54.1582 | 12.0353 | 0.0627 | |
0.99 | 512.1863 | 227.8365 | 34.4323 | 0.3919 | |
50 | 0.80 | 11.5400 | 9.5442 | 5.6648 | 0.0206 |
0.90 | 20.7754 | 17.2050 | 9.1853 | 0.0325 | |
0.95 | 36.8046 | 30.2893 | 14.3016 | 0.0435 | |
0.99 | 185.5982 | 153.1086 | 58.5106 | 0.2491 | |
100 | 0.80 | 8.1218 | 7.3256 | 5.4739 | 0.0168 |
0.90 | 14.4091 | 12.9940 | 9.3324 | 0.0298 | |
0.95 | 25.7923 | 23.2135 | 15.8513 | 0.0437 | |
0.99 | 127.09 | 114.0686 | 70.6642 | 0.1653 | |
200 | 0.80 | 7.8645 | 7.2567 | 5.7357 | 0.0133 |
0.90 | 14.0656 | 12.9589 | 9.9166 | 0.0248 | |
0.95 | 25.9437 | 23.8470 | 17.5901 | 0.0406 | |
0.99 | 138.5874 | 127.3191 | 90.0634 | 0.2117 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 21.1242 | 3.4145 | 0.6161 | 0.0059 |
0.90 | 40.7154 | 6.3938 | 0.5819 | 0.0059 | |
0.95 | 78.2061 | 11.5353 | 0.5017 | 0.0060 | |
0.99 | 407.9165 | 57.3339 | 0.4968 | 0.0062 | |
50 | 0.80 | 9.9701 | 3.1735 | 1.0571 | 0.0060 |
0.90 | 19.6400 | 5.3931 | 1.0852 | 0.0060 | |
0.95 | 36.6894 | 9.9315 | 1.2121 | 0.0064 | |
0.99 | 180.6976 | 45.1333 | 2.8547 | 0.0064 | |
100 | 0.80 | 7.7951 | 3.0197 | 1.2312 | 0.0060 |
0.90 | 13.6867 | 4.8287 | 1.4071 | 0.0060 | |
0.95 | 25.4187 | 8.4758 | 1.6711 | 0.0061 | |
0.99 | 125.8874 | 38.7256 | 4.3898 | 0.0066 | |
200 | 0.80 | 7.1972 | 2.9197 | 1.2672 | 0.0060 |
0.90 | 13.6888 | 5.0768 | 1.6303 | 0.0060 | |
0.95 | 25.7351 | 8.8829 | 2.1168 | 0.0061 | |
0.99 | 123.1280 | 41.1498 | 6.9120 | 0.0066 |
n | MLE | BRRE | BLE | BJSE | |
---|---|---|---|---|---|
25 | 0.80 | 40.3836 | 1.8424 | 1.1611 | 0.00587 |
0.90 | 69.3023 | 2.2815 | 1.0925 | 0.00587 | |
0.95 | 129.7419 | 2.7962 | 1.0744 | 0.00586 | |
0.99 | 597.6512 | 7.0223 | 1.1204 | 0.00586 | |
50 | 0.80 | 9.2863 | 2.2942 | 1.8401 | 0.00588 |
0.90 | 14.6709 | 2.6118 | 1.8407 | 0.00588 | |
0.95 | 26.0316 | 3.0045 | 1.8312 | 0.00588 | |
0.99 | 111.4912 | 6.6920 | 1.8686 | 0.00589 | |
100 | 0.80 | 6.1727 | 2.4344 | 2.1374 | 0.00589 |
0.90 | 9.1661 | 2.5938 | 2.1182 | 0.00590 | |
0.95 | 15.8667 | 3.0121 | 2.1030 | 0.00590 | |
0.99 | 60.4369 | 5.7592 | 2.1862 | 0.00590 | |
200 | 0.80 | 6.2040 | 2.5333 | 2.2356 | 0.00589 |
0.90 | 9.6210 | 2.7732 | 2.2366 | 0.00590 | |
0.95 | 15.6217 | 3.1793 | 2.2388 | 0.00590 | |
0.99 | 67.9239 | 6.8229 | 2.3653 | 0.00590 |
Intercept | −8.4172 | −0.0021 | −0.0102 | −1.4020 |
0.0023 | −0.0026 | −0.0025 | 0.0004 | |
0.0500 | 0.0634 | 0.0686 | 0.0083 | |
0.5213 | 0.0087 | −0.0192 | 0.0868 | |
0.4528 | 0.5091 | 0.4068 | 0.0754 | |
−0.2220 | −0.0485 | −0.1349 | −0.0370 | |
MSE | 1813.3358 | 29.6055 | 3.6792 | 0.4215 |
Intercept | 30.6659 | −0.0013 | 28.4802 | 2.0444 |
−30.6599 | −0.0023 | −28.5600 | −2.0440 | |
0.0018 | 0.0055 | 0.0020 | 0.0001 | |
0.0005 | 0.0043 | 0.0005 | 0.0000 | |
0.0048 | −0.0132 | 0.0038 | 0.0003 | |
−0.0040 | −0.0515 | −0.0069 | −0.0003 | |
−0.0010 | −0.0159 | −0.0018 | −0.0001 | |
−0.0036 | 0.0689 | 0.0014 | −0.0002 | |
−0.0056 | −0.0442 | −0.0079 | −0.0004 | |
0.0087 | 0.0212 | 0.0097 | 0.0006 | |
0.0058 | −0.0064 | 0.0052 | 0.0004 | |
−0.0074 | 0.0024 | −0.0066 | −0.0005 | |
0.0047 | 0.0207 | 0.0059 | 0.0003 | |
−0.0025 | 0.0270 | −0.0005 | −0.0002 | |
0.0085 | −0.1368 | −0.0008 | 0.0006 | |
MSE | 119.4920 | 106.9982 | 103.4527 | 0.2352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Ashraf, H.; Bakouch, H.S.; Qarmalah, N. James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets. Axioms 2023, 12, 526. https://doi.org/10.3390/axioms12060526
Amin M, Ashraf H, Bakouch HS, Qarmalah N. James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets. Axioms. 2023; 12(6):526. https://doi.org/10.3390/axioms12060526
Chicago/Turabian StyleAmin, Muhammad, Hajra Ashraf, Hassan S. Bakouch, and Najla Qarmalah. 2023. "James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets" Axioms 12, no. 6: 526. https://doi.org/10.3390/axioms12060526
APA StyleAmin, M., Ashraf, H., Bakouch, H. S., & Qarmalah, N. (2023). James Stein Estimator for the Beta Regression Model with Application to Heat-Treating Test and Body Fat Datasets. Axioms, 12(6), 526. https://doi.org/10.3390/axioms12060526