Statistical Analysis of Deviations from the Correct Shape of Surface Depending on Product Orientation in Workspace of Additive Machine
Abstract
:1. Introduction
2. Literature Review
- -
- -
- -
- -
- -
- -
- relative difference in the areas of adjacent sections [63];
- -
- -
- error consisting of two components of deviation of product surfaces from the CAD model (vertical or horizontal deviations determined by steps size on the surface) [66];
- -
- volumetric error of product [67]; and
- -
- octree structure on the distribution of product material in space [68].
3. Research Methods
- -
- creating a set of layers with 2D sections based on a polygonal 3D model of the product (STL-file) according to a given building strategy (with a constant or variable step);
- -
- visualization of product section contour for the current layer;
- -
- statistical analysis and construction of histograms of studied features distribution;
- -
- determination of the main statistical characteristics of studied features, which are displayed in a single table for all layers;
- -
- output of a visualization form of analysis results in the form of density, integral probability function or dependence on the coordinates of layers along the Z-axis.
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baumers, M. Economic Aspects of Additive Manufacturing: Benefits, Costs and Energy Consumption. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2012; 266p. Available online: https://dspace.lboro.ac.uk/2134/10768 (accessed on 25 October 2022).
- Zhang, Y.; Bernard, A. AM Feature and Knowledge Based Process Planning for Additive Manufacturing in Multiple Parts Production Context. In Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 4–6 August 2014; pp. 1259–1276. [Google Scholar]
- Byun, H.S.; Lee, K.H. Determination of optimal build direction in rapid prototyping with variable slicing. Byun, H.S.; Lee, K.H. Determination of optimal build direction in rapid prototyping with variable slicing. Int. J. Adv. Manuf. Technol. 2006, 28, 307–313. [Google Scholar] [CrossRef]
- Canellidis, V.; Giannatsis, J.; Dedoussis, V. Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int. J. Adv. Manuf. Technol. 2009, 45, 714–730. [Google Scholar] [CrossRef]
- Alagha, A.N.; Hussain, S.; Zaki, W. Additive manufacturing of shape memory alloys: A review with emphasis on powder bed systems. Mater. Des. 2021, 204, 109654. [Google Scholar] [CrossRef]
- Derekar, K.S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorsse, S.; Hutchinson, C.; Gouné, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hehr, A.; Norfolk, M. A comprehensive review of ultrasonic additive manufacturing. Rapid Prototyp. J. 2020, 26, 445–458. [Google Scholar] [CrossRef]
- Ko, G.-B.; Kim, W.-S.; Kwon, K.-J.; Lee, T.-K. The corrosion of stainless steel made by additive manufacturing: A review. Metals 2021, 11, 516. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process. 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Manonukul, A. A review on material extrusion additive manufacturing of metal and how it compares with metal injection moulding. Metals 2022, 12, 429. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Y.F. Additive manufacturing-enabled design theory and methodology: A critical review. Int. J. Adv. Manuf. Technol. 2015, 80, 327–342. [Google Scholar] [CrossRef]
- Zhu, Z.; Dhokia, V.G.; Nassehi, A.; Newman, S.T. A review of hybrid manufacturing processes—State of the art and future perspectives. Int. J. Comput. Integr. Manuf. 2013, 26, 596–615. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kar, A. A review of solid-state additive manufacturing processes. Trans. Indian Natl. Acad. Eng. 2021, 6, 955–973. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Guo, X.; Kane, S.; Deng, Y.; Jung, Y.-G.; Lee, J.-H.; Zhang, J. Additive manufacturing of metallic materials: A review. J. Mater. Eng. Perform. 2017, 27, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, M.A.; Bănică, A.; Ristoscu, C.; Becherescu, N.; Mihăilescu, I.N. Laser coatings via state-of-the-art additive manufacturing: A review. Coatings 2021, 11, 296. [Google Scholar] [CrossRef]
- Moghaddam, A.O.; Shaburova, N.A.; Samodurova, M.N.; Abdollahzadeh, A.; Trofimov, E.A. Additive manufacturing of high entropy alloys: A practical review. J. Mater. Sci. Technol. 2021, 77, 131–162. [Google Scholar] [CrossRef]
- Monfared, V.; Bakhsheshi-Rad, H.R.; Ramakrishna, S.; Razzaghi, M.; Berto, F. A brief review on additive manufacturing of polymeric composites and nanocomposites. Micromachines 2021, 12, 704. [Google Scholar] [CrossRef]
- Reichardt, A.; Shapiro, A.A.; Otis, R.; Dillon, R.P.; Borgonia, J.P.; McEnerney, B.W.; Hosemann, P.; Beese, A.M. Advances in additive manufacturing of metal-based functionally graded materials. Int. Mater. Rev. 2020, 66, 1–29. [Google Scholar] [CrossRef]
- Singh, S.; Ramakrishna, S.; Singh, R. Material issues in additive manufacturing: A review. J. Manuf. Process. 2017, 25, 185–200. [Google Scholar] [CrossRef]
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple material additive manufacturing—Part 1: A review. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Dašić, P. Response Surface Methodology: Selected Scientific-Professional Papers; SaTCIP Publisher Ltd.: Vrnjačka Banja, Serbia, 2019; 301p. [Google Scholar]
- Dašić, P. Comparative analysis of different regression models of the surface roughness in finishing turning of hardened steel with mixed ceramic cutting tools. J. Res. Dev. Mech. Ind. 2013, 5, 101–180. [Google Scholar]
- Pandey, P.M.; Thrimurtullu, K.; Reddy, N.V. Optimal part deposition orientation in FDM by using a multi-criteria Genetic Algorithm. Int. J. Prod. Res. 2004, 42, 4069–4089. [Google Scholar] [CrossRef]
- Das, P.; Chandran, R.; Samant, R.; Anand, S. Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures. Procedia Manuf. 2015, 1, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Lan, P.; Chou, S.; Chen, L.; Gemmill, D. Determining fabrication orientations for rapid prototyping with Stereolithography apparatus. Comput. -Aided Des. 1997, 29, 53–62. [Google Scholar] [CrossRef]
- Singhal, S.K.; Pandey, A.P.; Pandey, P.M.; Nagpal, A.K. Optimum part deposition orientation in stereolithography. Comput. -Aided Des. Appl. 2005, 2, 319–328. [Google Scholar] [CrossRef]
- Marsan, A.; Dutta, D. A Survey of Process Planning Techniques for Layered Manufacturing. In Proceedings of the DETC’97, 1997 ASME Design Engineering Technical Conferences, Sacramento, CA, USA, 14–17 September 1997. [Google Scholar]
- Bablani, M.; Bagchi, A. Quantification of errors in rapid prototyping processes, and determination of preferred orientation of parts. Trans. North American Manuf. Res. Inst. SME 1995, 23, 319–324. [Google Scholar]
- Thompson, D.C.; Crawford, R.H. Optimizing part quality with orientation. In Proceedings of the Solid Freeform Fabrication Symposium 1995, University of Texas, Austin, TX, USA, 7–9 August 1995; Volume 6, pp. 362–368. [Google Scholar]
- Vityazev, Y.B. Expansion of Technological Capabilities of Accelerated Shaping by Stereolithography. Cand. Tech. Sciences Thesis, Kharkiv, 2004; 228p. (In Russian). [Google Scholar]
- Abdurayimov, L.N.; Chernyshov, S.I.; Dobroskok, V.L.; Vityazev, Y.B. The Method of Layer-By-Layer Building of Products Based on the Original Triangulation 3D Model. Patent 54398U Ukraine; № u201004548, 10 November 2010. (In Ukrainian). [Google Scholar]
- Wodziak, J.R.; Fadel, G.M.; Kirschman, C. A Genetic Algorithm for Optimizing Multiple Part Placement to Reduce Build Time. In Proceedings of the 5th International Conference on Rapid Prototyping, University of Dayton, Dayton, OH, USA, 12–15 June 1994; pp. 201–210. [Google Scholar]
- Beascoechea, A.; Wozny, M.J. On Three-Dimensional Heuristic Packing for Solid Freeform Fabrication. In Proceedings of the Solid Freeform Fabrication Symposium 1995, University of Texas, Austin, TX, USA, 7–9 August 1995; pp. 326–341. Available online: https://repositories.lib.utexas.edu/handle/2152/69341 (accessed on 25 October 2022).
- Deckard, C.R. Method and Apparatus for Producing Parts by Selective Sintering. U.S. Patent 4,863,538; № 920580, 5 September 1989. Available online: https://www.google.com.ua/patents/US4863538 (accessed on 25 October 2022).
- Dobroskok, V.L.; Chernyshov, S.I.; Vityazev, Y.B.; Abdurayimov, L.N. A Method of Layered Building of Products Based on Triangulation 3D Model. Patent 46418U Ukraine; № u200905500, 25 December 2009. (In Ukrainian). [Google Scholar]
- Chalasani, K.L.; Grogan, B.N.; Bagchi, A.; Jara-Almonte, C.C.; Ogale, A.A.; Dooley, R.L. An algorithm to slice 3D shapes for reconstruction in prototyping systems. In Proceedings of the 1991 ASME Computers in Engineering Conference, 18–22 August 1991; pp. 209–216. [Google Scholar]
- Kirschman, C.F.; Jara-Almonte, C.C. A Parallel Slicing Algorithm for Solid Freeform Fabrication Processes. In Proceedings of the Proceedings for the 1992 International Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, USA, 3–5 August 1992; pp. 26–33. [Google Scholar]
- Dolenc, A.; Makela, I. Slicing procedures for layered manufacturing techniques. Comput. -Aided Des. 1994, 26, 119–126. [Google Scholar] [CrossRef]
- Sabourin, E.; Houser, S.A.; Bohn, J.H. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp. J. 1996, 2, 20–26. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Ye, X. and other. Direct slicing from PowerSHAPE models for Rapid Prototyping. Int. J. Adv. Manuf. Technol. 2001, 17, 543–547. [Google Scholar] [CrossRef]
- Sun, S.H.; Chiang, H.W.; Lee, M.I. Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int. J. Adv. Manuf. Technol. 2007, 34, 689–701. [Google Scholar] [CrossRef]
- Jamieson, R.; Hacker, H. Direct slicing of CAD models for rapid prototyping. Rapid Prototyp. J. 1995, 1, 4–12. [Google Scholar] [CrossRef]
- Sikder, S.; Barari, A.; Kishawy, H.A. Global adaptive slicing of NURBS based sculptured surface for minimum texture error in rapid prototyping. Rapid Prototyp. J. 2015, 21, 649–661. [Google Scholar] [CrossRef]
- Kulkarni, P.; Dutta, D. Adaptive slicing of parametrizable algebraic surfaces for layered manufacturing. In Proceedings of the 1995 ASME Design Engineering Technical Conferences, Boston, MA, USA, 17–20 September 1995; Volume 1, pp. 211–217. [Google Scholar]
- Cao, W.; Miyamoto, Y. Direct slicing from AutoCAD solid models for rapid prototyping. Int. J. Adv. Manuf. Technol. 2003, 21, 739–742. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Xi, J.T.; Yan, J.Q. Adaptive direct slicing with non-uniform cusp heights for rapid prototyping. Int. J. Adv. Manuf. Technol. 2004, 23, 20–27. [Google Scholar] [CrossRef]
- Jin, G.Q.; Li, W.D.; Gao, L. An adaptive process planning approach of rapid prototyping and manufacturing. Robot. Comput. Manuf. 2013, 29, 23–38. [Google Scholar] [CrossRef]
- Wang, W.; Chao, H.; Tong, J.; Yang, Z.; Tong, X.; Li, H.; Liu, X.; Liu, L. Saliency-Preserving Slicing Optimization for Effective 3D Printing. Comput. Graph. Forum 2015, 34, 148–160. [Google Scholar] [CrossRef]
- Dobroskok, V.L.; Garashchenko, Y.M. Method of Layered Building of Products with Variable Layer Thickness Based on Triangulation 3D Model. Patent 117764 UA; № u201700070, 10 July 2017. [Google Scholar]
- Tyberg, J.; Bohn, J.H. Local adaptive slicing. Rapid Prototyp. J. 1998, 4, 118–127. [Google Scholar] [CrossRef]
- Cormier, D.; Unnanon, K.; Sanni, E. Specifying non-uniform cusp heights as a potential for adaptive slicing. Rapid Prototyp. J. 2000, 6, 204–212. [Google Scholar] [CrossRef]
- Panhalkar, N.; Paul, R.; Anand, S. Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering. J. Manuf. Sci. Eng. 2014, 136, 061017. [Google Scholar] [CrossRef]
- Nadiyapara, H.H.; Pande, S. A Review of Variable Slicing in Fused Deposition Modeling. J. Inst. Eng. (India) Ser. C 2016, 98, 387–393. [Google Scholar] [CrossRef]
- Li, Q.; Xu, X.Y. Self-adaptive slicing algorithm for 3D printing of FGM components. Mater. Res. Innov. 2015, 19 (Suppl. S5), S635–S641. [Google Scholar] [CrossRef]
- Pandey, M.P.; Reddy, V.N.; Dhande, S.G. Slicing procedures in layered manufacturing: A review. Rapid Prototyp. J. 2003, 9, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Bajpai, V.; Tandon, P. Slice Generation and Data Retrieval Algorithm for Rapid Manufacturing of Heterogeneous Objects. Comput. -Aided Des. Appl. 2013, 11, 255–262. [Google Scholar] [CrossRef]
- Pan, X.D.; Chen, K.; Zhang, Z.Y.; Chen, D.F.; Li, T.T. Adaptive Slicing Algorithm Based on STL Model. Appl. Mech. Mater. 2013, 288, 241–245. [Google Scholar] [CrossRef]
- Pandey, P.M.; Reddy, N.V.; Dhande, S.G. Real time adaptive slicing for fused deposition modelling. Int. J. Mach. Tools Manuf. 2003, 43, 61–71. [Google Scholar] [CrossRef]
- Singhal, S.K.; Jain, P.K.; Pandey, P.M. Adaptive Slicing for SLS Prototyping. Comput. -Aided Des. Appl. 2013, 5, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Sikder, S.; Barari, A.; Kishawy, H.A. Control of NURBS-Based Surface Error Factor Using a Manufacturing Cost Optimization in Rapid Prototyping Process. IFAC Proc. Vol. 2013, 46, 1560–1565. [Google Scholar] [CrossRef]
- Taufik, M.; Jain, P.K. Volumetric Error Control in Layered Manufacturing. In Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, USA, 17–20 August 2014; Volume 4. [Google Scholar] [CrossRef]
- Siraskar, N.; Paul, R.; Anand, S. Adaptive Slicing in Additive Manufacturing Process Using a Modified Boundary Octree Data Structure. J. Manuf. Sci. Eng. 2014, 137, 011007. [Google Scholar] [CrossRef]
- Boschetto, A.; Giordano, V.; Veniali, F. 3D roughness profile model in fused deposition modelling. Rapid Prototyp. J. 2013, 19, 240–252. [Google Scholar] [CrossRef]
- Qin, Y.; Qi, Q.; Shi, P.; Scott, P.J.; Jiang, X. Status, issues, and future of computer-aided part orientation for additive manufacturing. Int. J. Adv. Manuf. Technol. 2021, 115, 1295–1328. [Google Scholar] [CrossRef]
Research Characteristics | 3D Model | ||||
---|---|---|---|---|---|
1 (Figure 2a) | 2 (Figure 2b) | 3 (Figure 2c) | 4 (Figure 2d) | ||
Building height HBuild, mm | Min Max Mean | 93.59 148.03 122.60 | 26.00 93.42 84.30 | 51.29 80.83 63.13 | 88,53 97,26 94,71 |
Height of gravity centre HC, mm | Min Max Mean | 46.80 76.67 61.19 | 8.66 46.80 42.00 | 10.78 53.82 31.69 | 44,27 48,63 47,36 |
Number of layers Nl (constant step), pcs | Min Max Mean | 937 1481 1226 | 260 935 843 | 513 809 632 | 886 973 948 |
Number of layers Nl (variable step), pcs | Min Max Mean | 584 1356 1042 | 152 883 779 | 463 715 555 | 882 972 944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garashchenko, Y.; Fedorovich, V.; Ostroverkh, Y.; Dašić, P.; Anđelković, M.; Onalla, H. Statistical Analysis of Deviations from the Correct Shape of Surface Depending on Product Orientation in Workspace of Additive Machine. Machines 2023, 11, 348. https://doi.org/10.3390/machines11030348
Garashchenko Y, Fedorovich V, Ostroverkh Y, Dašić P, Anđelković M, Onalla H. Statistical Analysis of Deviations from the Correct Shape of Surface Depending on Product Orientation in Workspace of Additive Machine. Machines. 2023; 11(3):348. https://doi.org/10.3390/machines11030348
Chicago/Turabian StyleGarashchenko, Yaroslav, Vladimir Fedorovich, Yevgeniy Ostroverkh, Predrag Dašić, Maja Anđelković, and Halima Onalla. 2023. "Statistical Analysis of Deviations from the Correct Shape of Surface Depending on Product Orientation in Workspace of Additive Machine" Machines 11, no. 3: 348. https://doi.org/10.3390/machines11030348
APA StyleGarashchenko, Y., Fedorovich, V., Ostroverkh, Y., Dašić, P., Anđelković, M., & Onalla, H. (2023). Statistical Analysis of Deviations from the Correct Shape of Surface Depending on Product Orientation in Workspace of Additive Machine. Machines, 11(3), 348. https://doi.org/10.3390/machines11030348