Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements
Abstract
:1. Introduction
2. Conventional Seismic Damping Devices
2.1. Active Control Systems
2.1.1. Active Mass Drivers (AMDs)
2.1.2. Active Tendon Systems
2.2. Passive Control Systems
2.2.1. Base Isolators
2.2.2. Tuned Mass Dampers
2.2.3. Hysteretic Dampers
3. Fundamentals of Shape Memory Alloys
4. Mechanical Properties and Damping Characteristics of SMAs
4.1. Recovery Strain, Strength and Stiffness
4.2. Damping Characteristics
- is the energy dissipated per cycle
- is the equivalent stiffness
- is the maximum strain
- is the total strain energy;
- is the loss tangent.
4.3. Experimental Tests for Evaluating Material Damping Capacity
5. SMA-Based Damping Systems
5.1. SMA Braces and Dampers
5.2. SMA-Based Base Isolation Systems
5.3. Self-Centering Friction Damper (SCFD)
6. Testing and Validation of SMA-Based Seismic Devices
7. Influence of Various Factors on SMA Performance in Seismic Applications
7.1. Effect of Alloy Composition
7.2. Influence of Thermomechanical Treatment
7.3. Loading Parameters
7.4. Temperature Effects
7.5. Size Effects
8. Future Research Directions and Unexplored Areas
9. Conclusions
- SMA-based devices, such as braces, dampers and isolation systems, have demonstrated significant potential in improving the seismic performance of structures by providing both energy dissipation and self-centering capabilities.
- The self-centering friction damper (SCFD), which combines SMAs with friction elements, shows promising performance in terms of energy dissipation and residual displacement reduction.
- The behavior of SMAs in seismic applications is influenced by various factors, including alloy composition, thermomechanical treatment, loading parameters and environmental conditions. Understanding these influences is crucial for optimizing SMA-based devices.
- NiTi-based alloys remain the most widely used SMAs for seismic applications, but ternary and quaternary alloys offer opportunities for property customization.
- The proper design and conditioning of SMA elements can mitigate issues related to cyclic degradation and temperature sensitivity, enhancing their long-term reliability in seismic applications.
Author Contributions
Funding
Conflicts of Interest
References
- Billah, A.H.M.M.; Alam, M.S. Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber reinforced polymer (FRP) bars. Constr. Build. Mater. 2012, 28, 730–742. [Google Scholar] [CrossRef]
- Koutsoloukas, L.; Nikitas, N.; Aristidou, P. Passive, semi-active, active and hybrid mass dampers: A literature review with associated applications on building-like structures. Dev. Built Environ. 2022, 12, 100094. [Google Scholar] [CrossRef]
- Lu, X.; Sun, W.; Xu, L. Experimental investigation on seismic behavior of damaged self-centering friction beam-column joints after repair. Eng. Struct. 2024, 310, 118135. [Google Scholar] [CrossRef]
- Karmakar, S.; Kumar, A.; Kolay, C. Development, characterization, and seismic application of a shape memory alloy-based self-centering damper. Soil Dyn. Earthq. Eng. 2024, 183, 108797. [Google Scholar] [CrossRef]
- Norouzi Ojaey, F.; Dashti Naserabadi, H.; Jamshidi, M. Seismic assessment of tall RC frames with hybrid friction damper and SMA designed by PBPD method. Rev. Int. Métod. Numér. Cálc. Diseño Ing. 2021, 37, 46. [Google Scholar] [CrossRef]
- Rahmzadeh, A.; Alam, M.S. Feasibility of using superelastic shape memory alloy in plastic hinge regions of steel bridge columns for seismic applications. Earthq. Eng. Struct. Dyn. 2024, 53, 2988–3008. [Google Scholar] [CrossRef]
- Ferrotto, M.F.; Di Paola, M.; Cavaleri, L. Seismic behavior of structures equipped with variable friction dissipative (VFD) systems. Bull. Earthq. Eng. 2021, 19, 4623–4639. [Google Scholar] [CrossRef]
- Vanshaj, K.; Shukla, A.K.; Shukla, M.; Mishra, A. Jellyfish search optimization for tuned mass dumpers for earthquake oscillation of elevated structures including soil–structure interaction. Asian J. Civ. Eng. 2023, 24, 779–792. [Google Scholar] [CrossRef]
- Ubertini, F.; Venanzi, I.; Comanducci, G. Considerations on the implementation and modeling of an active mass driver with electric torsional servomotor. Mech. Syst. Signal Process. 2015, 58–59, 53–69. [Google Scholar] [CrossRef]
- Mei, G.; Kareem, A.; Kantor, J.C. Model Predictive Control of Structures under Earthquakes using Acceleration Feedback. J. Eng. Mech. 2002, 128, 574–585. [Google Scholar] [CrossRef]
- Venanzi, I.; Ubertini, F. Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System. Adv. Civ. Eng. 2014, 2014, 745814. [Google Scholar] [CrossRef]
- Zheng, H.; Miao, L.; Xiao, P.; Lei, K.; Wang, Q. Novel metamaterial foundation with multi low-frequency bandgaps for isolating earthquakes and train vibrations. Structures 2024, 61, 106070. [Google Scholar] [CrossRef]
- Preumont, A. Active Damping, Vibration Isolation, and Shape Control of Space Structures: A Tutorial. Actuators 2023, 12, 122. [Google Scholar] [CrossRef]
- Xu, X.; Yuan, Y.; Zhang, T.; Li, K.; Wang, S.; Liang, C.; Zhu, H. A silanized MCNT/TPU-based flexible strain sensor with high stretchability for deformation monitoring of elastomeric isolators for bridges. Constr. Build. Mater. 2022, 338, 127664. [Google Scholar] [CrossRef]
- Li, C.; Pan, H.; Cao, L. Pendulum-type tuned tandem mass dampers-inerters for crosswind response control of super-tall buildings. J. Wind. Eng. Ind. Aerodyn. 2024, 247, 105706. [Google Scholar] [CrossRef]
- Xu, G.; Guo, T.; Li, A.; Wang, S.; Zhang, R.; Zhu, R.; Xu, J. Review on self-centering damper for seismic resilient building structures. Structures 2023, 54, 58–77. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; Liu, Y.; Zhang, T.; Lu, Y. Experimental and numerical study of a metal-friction hybrid damper. Structures 2024, 62, 106256. [Google Scholar] [CrossRef]
- Tolani, S.; Sharma, A. Effectiveness of Base Isolation Technique and Influence of Isolator Characteristics on Response of a Base Isolated Building. Am. J. Eng. Res. (AJER) 2016, 5, 198–209. [Google Scholar]
- Guo, W.; Wang, X.; Yu, Y.; Chen, X.; Li, S.; Fang, W.; Zeng, C.; Wang, Y.; Bu, D. Experimental study of a steel damper with X-shaped welded pipe halves. J. Constr. Steel Res. 2020, 170, 106087. [Google Scholar] [CrossRef]
- Tophøj, L.; Grathwol, N.; Hansen, S.O. Effective Mass of Tuned Mass Dampers. Vibration 2018, 1, 193–206. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Tagawa, H. Beam-to-column connection with double-stage yield buckling-restrained steel bar dampers. J. Constr. Steel Res. 2024, 212, 108278. [Google Scholar] [CrossRef]
- Zoccolini, L.; Bruschi, E.; Cattaneo, S.; Quaglini, V. Current Trends in Fluid Viscous Dampers with Semi-Active and Adaptive Behavior. Appl. Sci. 2023, 13, 10358. [Google Scholar] [CrossRef]
- Toker, G.P.; Saedi, S.; Acar, E.; Ozbulut, O.E.; Karaca, H.E. Loading frequency and temperature-dependent damping capacity of NiTiHfPd shape memory alloy. Mech. Mater. 2020, 150, 103565. [Google Scholar] [CrossRef]
- Sidharth, R.; Mohammed, A.S.K.; Abuzaid, W.; Sehitoglu, H. Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi. Shape Mem. Superelast. 2021, 7, 235–249. [Google Scholar] [CrossRef]
- Gong, Z.H.; Zhang, J.; Song, S.T.; Wang, C.L. Hysteretic behavior and recoverability research on the shape memory effect of SMA bars under cyclic loading. Constr. Build. Mater. 2023, 387, 131553. [Google Scholar] [CrossRef]
- Rashidi, K.; Sulong, A.B.; Muhamad, N.; Fayyaz, A.; Foudzi, F.M.; Basir, A. Martensitic transformation characteristics, mechanical properties and damping behavior of Cu–Al–Ni shape memory alloys: A review of their modifications and improvements. J. Mater. Res. Technol. 2024, 29, 2732–2749. [Google Scholar] [CrossRef]
- Acar, E.; Karaca, H.E.; Tobe, H.; Noebe, R.D.; Chumlyakov, Y.I. Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy. J. Alloys Compd. 2013, 578, 297–302. [Google Scholar] [CrossRef]
- Juan, J.M.S.; Gómez-Cortés, J.F.; Nó, M.L. Ultra-high mechanical damping during superelastic bending of micro pillars and micro beams in Cu-Al-Ni shape memory alloys. J. Alloys Compd. 2022, 929, 167307. [Google Scholar] [CrossRef]
- Acar, E. Dynamic mechanical response of a Ni 45.7 Ti 29.3 Hf 20 Pd 5 alloy. Mater. Sci. Eng. A 2015, 633, 169–175. [Google Scholar] [CrossRef]
- Ozbulut, O.E.; Hurlebaus, S.; Desroches, R. Seismic response control using shape memory alloys: A review. J. Intell. Mater. Syst. Struct. 2011, 22, 1531–1549. [Google Scholar] [CrossRef]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Cismaşiu, C.; Amarante dos Santos, F.P. Numerical simulation of superelastic shape memory alloys subjected to dynamic loads. Smart Mater. Struct. 2008, 17, 025036. [Google Scholar] [CrossRef]
- Janke, L.; Czaderski, C.; Motavalli, M.; Ruth, J. Applications of shape memory alloys in civil engineering structures—Overview, limits and new ideas. Mater. Struct. 2005, 38, 578–592. [Google Scholar] [CrossRef]
- Saedi, S.; Acar, E.; Raji, H.; Saghaian, S.E.; Mirsayar, M. Energy damping in shape memory alloys: A review. J. Alloys Compd. 2023, 956, 170286. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, S. A shape memory alloy-based reusable hysteretic damper for seismic hazard mitigation. Smart Mater. Struct. 2007, 16, 1603–1613. [Google Scholar] [CrossRef]
- Ozbulut, O.E.; Hurlebaus, S. Evaluation of the performance of a sliding-type base isolation system with a NiTi shape memory alloy device considering temperature effects. Eng. Struct. 2010, 32, 238–249. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, B.; Zeng, S.; Tang, F.; Hu, S.; Chen, W. Effect of Loading Rate and Initial Strain on Seismic Performance of an Innovative Self-Centering SMA Brace. Materials 2022, 15, 1234. [Google Scholar] [CrossRef]
- Speicher, M.; DesRoches, R.; Leon, R.T. Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection. Eng. Struct. 2011, 33, 2448–2457. [Google Scholar] [CrossRef]
- Qian, H.; Li, H.; Song, G.; Guo, W. Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control. Math. Probl. Eng. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Ghassemieh, M.; Mostafazadeh, M.; Sadeh, M.S. Seismic control of concrete shear wall using shape memory alloys. J. Intell. Mater. Syst. Struct. 2012, 23, 535–543. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Wang, J.; Yu, H.; Ma, K.; Zhang, X.; Ji, W.; Li, R. Experimental investigation on the seismic behavior of a novel self-centering friction damper. J. Build. Eng. 2023, 76, 107384. [Google Scholar] [CrossRef]
- Han, M.; Chang, Z.; Xing, G.; Peng, P.; Liu, B. Cyclic behavior and seismic control performance of SMA friction damper. Smart Mater. Struct. 2023, 32, 075010. [Google Scholar] [CrossRef]
- DesRoches, R.; McCormick, J.; Delemont, M. Cyclic properties of superelastic shape memory alloy wires and bars. J. Struct. Eng. 2004, 130, 38–46. [Google Scholar] [CrossRef]
- Tobushi, H.; Shimeno, Y.; Hachisuka, T.; Tanaka, K. Thermomechanical properties of shape memory alloys. J. Intell. Mater. Syst. Struct. 2000, 11, 682–692. [Google Scholar] [CrossRef]
- Lagoudas, D.C. Shape Memory Alloys: Modeling and Engineering Applications; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Auricchio, F.; Bonetti, E.; Scalet, G.; Ubertini, F. Shape memory alloys: From constitutive modeling to finite element analysis. Comput. Methods Appl. Mech. Eng. 2014, 281, 1–19. [Google Scholar]
- Taflanidis, A.A.; Beck, J.L. Life-cycle cost optimal design of passive dissipative devices. Struct. Saf. 2009, 31, 508–522. [Google Scholar] [CrossRef]
- Ozbulut, O.E.; Hurlebaus, S.; Desroches, R. Application of vibration control systems in civil engineering structures: Recent developments and advanced implementation issues. J. Vib. Control 2011, 17, 2001–2015. [Google Scholar]
- Song, G.; Ma, N.; Li, H.J. Application of shape memory alloy wire actuators for control of a flexible beam. Smart Mater. Struct. 2006, 15, 1332. [Google Scholar]
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Frenzel, J.; George, E.P.; Dlouhy, A.; Somsen, C.; Wagner, M.F.X.; Eggeler, G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010, 58, 3444–3458. [Google Scholar] [CrossRef]
- Pelton, A.R.; DiCello, J.; Miyazaki, S. Optimisation of processing and properties of medical grade Nitinol wire. Minim. Invasive Ther. Allied Technol. 2000, 9, 107–118. [Google Scholar] [CrossRef]
- Kim, J.I.; Liu, Y.; Miyazaki, S. Ageing-induced two-stage R-phase transformation in Ti–50.9at.%Ni. Acta Mater. 2006, 52, 487–499. [Google Scholar] [CrossRef]
- Tadesse, Y.; Thayer, N.; Priya, S. Tailoring the Response Time of Shape Memory Alloy Wires through Active Cooling and Pre-stress. J. Intell. Mater. Syst. Struct. 2010, 21, 19–40. [Google Scholar] [CrossRef]
- Huang, W.M.; Su, J.F.; Hong, M.H.; Yang, B. Pile-up and sink-in in micro-indentation of a NiTi shape-memory alloy. Scr. Mater. 2003, 49, 261–266. [Google Scholar] [CrossRef]
- Dolce, M.; Cardone, D.; Marnetto, R. Implementation and testing of passive control devices based on shape memory alloys. Earthq. Eng. Struct. Dyn. 2000, 29, 945–968. [Google Scholar] [CrossRef]
- Dayananda, G.N.; Subba Rao, M. Effect of strain rate on properties of superelastic NiTi thin wires. Mater. Sci. Eng. A 2007, 486, 96–103. [Google Scholar] [CrossRef]
- Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 1963, 34, 1475–1477. [Google Scholar] [CrossRef]
- Ma, J.; Karaman, I.; Noebe, R.D. High temperature shape memory alloys. Int. Mater. Rev. 2010, 55, 257–315. [Google Scholar] [CrossRef]
- Fang, C.; Wang, W. Recent developments in design of plasticity-based dampers for seismic protection of steel structures. J. Constr. Steel Res. 2019, 154, 253–266. [Google Scholar]
- Huang, W.M.; Yang, B.; Zhao, Y.; Ding, Z. Multifunctional shape memory alloy composites for self-healing, self-sensing, and energy harvesting. Mater. Today 2017, 20, 159–163. [Google Scholar]
- Casciati, S.; Marzi, A. Experimental studies on the fatigue life of shape memory alloy bars. Smart Struct. Syst. 2008, 4, 317–331. [Google Scholar] [CrossRef]
- Moradi, S.; Alam, M.S. Seismic response of non-structural components in buildings. Front. Struct. Civ. Eng. 2014, 8, 224–234. [Google Scholar]
- Torra, V.; Tachoire, H.; Auguet, C. A complete thermomechanical description of shape memory alloys: Understanding large plates of NiTi. Int. J. Therm. Sci. 2013, 64, 168–178. [Google Scholar]
- McCormick, J.; DesRoches, R.; Zaurin, R.; Ziehl, P. Analytical and experimental studies of semi-active control strategies for seismic protection of structures. In Proceedings of the 8th US National Conference on Earthquake Engineering, San Francisco, CA, USA, 18–22 April 2006; pp. 18–22. [Google Scholar]
- Dolce, M.; Cardone, D.; Bixio, A. Passive seismic protection of buildings by shape memory alloy devices. In Proceedings of the Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Francisco, CA, USA, 7–10 March 2005; Volume 5765, pp. 651–662. [Google Scholar]
- Qian, S.; Zhang, Y.; Qian, J.; Qu, J. Shape memory alloy-based self-healing concrete for civil infrastructure: Investigation of crack healing using a novel splicing technique. Smart Mater. Struct. 2018, 27, 085023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanza, G.; Mercuri, S.; Porroni, I.; Tata, M.E. Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements. Machines 2024, 12, 628. https://doi.org/10.3390/machines12090628
Costanza G, Mercuri S, Porroni I, Tata ME. Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements. Machines. 2024; 12(9):628. https://doi.org/10.3390/machines12090628
Chicago/Turabian StyleCostanza, Girolamo, Samuel Mercuri, Ilaria Porroni, and Maria Elisa Tata. 2024. "Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements" Machines 12, no. 9: 628. https://doi.org/10.3390/machines12090628
APA StyleCostanza, G., Mercuri, S., Porroni, I., & Tata, M. E. (2024). Shape Memory Alloys for Self-Centering Seismic Applications: A Review on Recent Advancements. Machines, 12(9), 628. https://doi.org/10.3390/machines12090628