SiCp/Al composites (Silicon Carbide Particle-Reinforced Aluminum Matrix Composites), due to their light weight, high strength, and superior wear resistance, are extensively utilized in aerospace and other sectors; nonetheless, they are susceptible to tool wear and surface imperfections during machining, which negatively impact overall
[...] Read more.
SiCp/Al composites (Silicon Carbide Particle-Reinforced Aluminum Matrix Composites), due to their light weight, high strength, and superior wear resistance, are extensively utilized in aerospace and other sectors; nonetheless, they are susceptible to tool wear and surface imperfections during machining, which negatively impact overall machining performance. Supercritical carbon dioxide minimal quantity lubrication (SCCO
2-MQL) is an environmentally friendly and efficient lubrication method that significantly improves interfacial lubricity and thermal stability. Nonetheless, current lubrication models are predominantly constrained to gas–liquid two-phase scenarios, hindering the characterization of the three-phase lubrication mechanism influenced by the combined impacts of SCCO
2 phase transition and ultrasonic vibration. This study formulates a lubricant film thickness model that incorporates droplet atomization, capillary permeation, shear spreading, and three-phase modulation while introducing a pseudophase enhancement factor
βps(
p,
T) to characterize the phase fluctuation effect of CO
2 in the critical region. Simulation analysis indicates that, with an ultrasonic vibration factor
Af = 1200 μm·kHz, a lubricant flow rate
Qf = 16 mL/h, and a pressure gradient Δ
ptot = 6.0 × 10
5 Pa/m, the lubricant film thickness attains its optimal value, with Δ
ptot having the most pronounced effect on the film thickness (normalized sensitivity
S = 0.488). The model results align with the experimental trends, validating its accuracy and further elucidating the nonlinear regulation of the film-forming process by various parameters within the three-phase synergistic lubrication mechanism. This research offers theoretical backing for the enhancement of performance and the expansion of modeling in SCCO
2-MQL lubrication systems.
Full article