Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health
Abstract
:1. Introduction
2. Phenotypic Outcomes Described in ART Children
Cases | Controls | No. Cases | No. Ctrls | YOB/Age | Outcomes | References | |
---|---|---|---|---|---|---|---|
Obstetric and perinatal | IVF | GP | 3305 | 1,505,724 | 1982–1995 | Very low birth weight (<1500 g) (4.39; 95% CI, 3.62–5.32) Very preterm birth (<32 weeks) (3.54; 95% CI, 2.90–4.32) | Bergh et al., 1999 |
IVF/ICSI | SC | 237 | 338 | 1998–2003 | Preterm birth (P < 0.01) | Buckett et al., 2007 | |
IVF/ICSI | SC | 742 | 16,525 | 1989–2006 | Stillbirth (4.08; 95% CI, 2.11–7.93) | Wisborg et al., 2010 | |
IVF/ICSI | SC | 2876 | 4882 | 1994–2006 | Low birth weight (1.4; 95% CI, 1.1–1.7) and preterm birth (1.3; 95% CI, 1.1–1.6) | Henningsen et al., 2011 | |
IVF | SC | 11,347 | 571,914 | 2002–2006 | Low birth weight (1.13; 95% CI, 1.02–1.25) and preterm birth (1.15; 95% CI, 1.06–1.25) | Sazonova et al., 2011 | |
ART | SC | 4333 | 295,220 | 1986–2002 | Low birth weight (P < 0.001) and preterm birth (P < 0.001) | Davies et al., 2012 | |
IVF/ICSI | SC | 1813 | 1813 | 1999–2007 | Association between maternal characteristics and lower birth weight | Seggers et al., 2016 | |
IVF | SC | 1778 | 33,555 | 2005–2014 | Low birth weight (RR 1.47; 95% CI 1.20–1.80) and preterm birth (RR 1.51; 95% CI 1.28–1.78) | Rahu et al., 2019 | |
Postnatal growth and development | IVF | SC | 66 | 66 | 12–45 months | No significant differences in developmental indices | Brandes et al., 1992 |
IVF | GP | 258 | 6–13 years | No significant differences in surgical procedures, malformation, height and weight, and school performance | Olivennes et al., 1997 | ||
IVF + CE | SC | 158/160 | 156 | 0–18 months | No significant differences in growth features, major malformations and the prevalence of chronic diseases | Wennerholm et al., 1998 | |
IVF/ICSI | SC | 935 | 488 | 4–6 years | No significant differences in motor and cognitive development | Porjaert-Kristoffersen et al., 2005 | |
ICSI | SC | 150 | 147 | 8 years | No significant differences in pubertal staging, neurological examination, remedial therapy or surgery or hospitalization | Belva et al., 2007 | |
IVF | SC-SFP | 193 | 199 | 0–4 years | Increased risk of lower weight, height and BMI at 3 months. Greater gain in weight (P < 0.001), height (P = 0.013) and BMI (P = 0.029) during late infancy (3 mo-1y) | Ceelen et al., 2009 | |
IVF/ICSI | SC | 309 | 173 | 0–12 years | No significant differences in head circumference, height and weight | Basatemur et al., 2010 | |
ART | SC | 3617 | 35,848 | >4 years | An increased risk of cerebral palsy (2.30; 95% CI, 1.12–4.73) | Zhu et al., 2010 | |
ART | SC | 33,139 | 555,728 | 4–13 years | No increased risk of autism spectrum disorders | Hvidtjorn et al., 2011 | |
ART | SC | 4333 | 295,220 | <5 years | An increased risk of cerebral palsy (2.22; 95%CI, 1.35–3.63) | Davies et al., 2012 | |
ART | SC | 349 | 1847 | >2 years | No increased risk of autism spectrum disorders | Grether et al., 2013 | |
ART | SC | 4164 | 16,582 | 2–16 years | No increased risk of autism spectrum disorders | Lehti et al., 2013 | |
ART/OI/II | SC | 968 | 2471 | 0–3 years | No significant differences in growth, motor and cognitive development | Yeung et al., 2016 | |
IVF/ICSI | SC | 2914 | 208,746 | 1994–2002 | An increased risk of cerebral palsy (2.60; 95% CI, 1.60–4.00) | Goldsmith et al., 2017 | |
ART | SC | 46,249 | 10,702,377 | Meta-analysis 11 studies. An increased risk of autism spectrum disorders (RR1.35; 95% CI, 1.09–1.68) | Li et al., 2017 | ||
Cancer risk | IVF | GP | 3305 | 1,505,724 | 0–14 years | No increased risk for childhood cancer | Bergh et al., 1999 |
IVF | GP | 332 | 5–8 years | No increased risk for childhood cancer | Lerner-Geva et al., 2000 | ||
ART | GP | 5249 | 0–15 years | Increased risk of childhood cancer (SIR, 1.39; 95% CI, 0.62–3.09) | Bruisma et al., 2000 | ||
ART | SC-SFP | 9484 | 7532 | 1–14 years | No increased risk for childhood cancer | Klip et al., 2001 | |
IVF | GP | 26,692 | >2 years | Increased risk of childhood cancer (SIR,1.42; 95% CI,1.09–1.87) | Kallen et al., 2010 | ||
IVF | GP | 106,013 | 0–15 years | Increased risk of hepatoblastoma (SIR, 3.64; 95% CI, 1.34–7.93) and rhabdomyosarcoma (SIR, 2.62; 95% CI, 1.26–4.82) | Williams et al., 2013 | ||
ART | SC | 61,693 | 351,536 | 9–14 years | Increased risk for central nervous system tumours (1.44; 95% CI, 1.01–2.05) malignant epithelial neoplasms (2.03; 95% CI, 1.06–3.89) | Sundh et al., 2014 | |
IVF/ICSI/FET | SC | 2549/81,450/25,563 | 1,393,284 | Meta-analysis 27 studies. Increased risk to childhood cancer after FET (1.37; 95% C, 1.04–1.81). | Zhang et al., 2020 | ||
Metabolic effects | IVF/ICSI + CE | GP | 69 | 71 | 4–10 years | ↑HDL, ↓triglycerides, ↑IGF-2, ↑height. Normal body fat and fasting glucose | Miles et al., 2007 |
IVF | SC-SFP | 233 | 233 | 8–18 years | ↑ Body fat, ↑ blood pressure, ↑ fasting glucose | Ceelen et al., 2007 & 2008 | |
IVF | SC | 106 | 68 | 4–14 years | ↑Blood pressure, ↑triglycerides, ↑TSH. Normal fasting glucose | Sakka et al., 2009 & 2010 | |
ICSI | GP | 217 | 223 | 14 years | ↑ Body fat normal blood pressure | Belva et al., 2012b | |
ART | SC | 65 | 57 | 7–18 years | Systemic and pulmonary vascular dysfunction | Scherrer et al., 2012 | |
IVF | SC | 10 | 10 | 2–4 weeks | Subclinical hypothyroidism | Onal et al., 2012 | |
ART | SC | 50 | 50 | 6 months | Cardiac and vascular remodelling at both time points | Valenzuela-Alcaraz et al., 2013 | |
IVF | SC-SFP | 63 | 79 | 4 years | ↑ Blood pressure, ↑body fat | La Bastide-Van Gemert et al., 2013 | |
IVF | SC-FP | 14 | 20 | 17–26 years | ↓Peripheral insulin sensitivity | Chen et al., 2014 | |
IVF/ICSI | SC-FP | 28 | 220 | 5–6 years | ↑Fasting glucose | Pontesilli et al., 2015 | |
ART | SC | 54 | 54 | 7–18 years | Right ventricular dysfunction | von Arx et al., 2015 | |
IVF/ICSI | SC | 2112 | 4096 | 1 month–12 years | Meta-analysis 19 studies. ↑ blood pressure ↓ LDL ↑fasting insulin levels. Suboptimal cardiac diastolic function and ↑ vessel thickness. | Guo et al., 2017 |
3. ART Can Induce Stress in the Embryo
4. ART, Epigenetic Reprogramming, and Genomic Imprinting
5. Genomic Imprinting Alterations after ART
6. Epigenome Studies in Children Conceived by ART
7. Implications in Long-Term Health
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys. PLoS Med. 2012, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. Reply: International Estimates on Infertility Prevalence and Treatment Seeking: Potential Need and Demand for Medical Care. Hum. Reprod. 2009, 24, 2380–2383. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle Factors and Reproductive Health: Taking Control of Your Fertility. Reprod. Biol. Endocrinol. 2013, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegers-Hochschild, F.; Adamson, G.D.; Dyer, S.; Racowsky, C.; de Mouzon, J.; Sokol, R.; Rienzi, L.; Sunde, A.; Schmidt, L.; Cooke, I.D.; et al. The International Glossary on Infertility and Fertility Care, 2017. Fertil. Steril. 2017, 108, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal Trends in Sperm Count: A Systematic Review and Meta-Regression Analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Buck Louis, G.M.; Toppari, J.; Andersson, A.M.; Eisenberg, M.L.; Jensen, T.K.; Jørgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2015, 96, 55–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.H.; Gaskins, A.J.; Williams, P.L.; Mendiola, J.; Jørgensen, N.; Levine, H.; Hauser, R.; Swan, S.H.; Chavarro, J.E. Intake of Fruits and Vegetables with Lowto- Moderate Pesticide Residues Is Positively Associated with Semen-Quality Parameters among Young Healthy Men. J. Nutr. 2016, 146, 1084–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afeiche, M.; Williams, P.L.; Mendiola, J.; Gaskins, A.J.; Jørgensen, N.; Swan, S.H.; Chavarro, J.E. Dairy Food Intake in Relation to Semen Quality and Reproductive Hormone Levels among Physically Active Young Men. Hum. Reprod. 2013, 28, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Jensen, T.K.; Heitmann, B.L.; Jensen, M.B.; Halldorsson, T.I.; Andersson, A.M.; Skakkebœk, N.E.; Joensen, U.N.; Lauritsen, M.P.; Christiansen, P.; Dalgård, C.; et al. High Dietary Intake of Saturated Fat Is Associated with Reduced Semen Quality among 701 Young Danish Men from the General Population. Am. J. Clin. Nutr. 2013, 97, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.; Harlev, A.; Agarwal, A.; Esteves, S.C. Cigarette Smoking and Semen Quality: A New Meta-Analysis Examining the Effect of the 2010 World Health Organization Laboratory Methods for the Examination of Human Semen. Eur. Urol. 2016, 70, 635–645. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A.G.; Bonde, J.P.; Jensen, T.K.; Van Wely, M.; Cao, J.; Martini, A.C.; Eskandar, M.; et al. BMI in Relation to Sperm Count: An Updated Systematic Review and Collaborative Meta-Analysis. Hum. Reprod. Update 2013, 19, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bretveld, R.W.; Thomas, C.M.G.; Scheepers, P.T.J.; Zielhuis, G.A.; Roeleveld, N. Pesticide Exposure: The Hormonal Function of the Female Reproductive System Disrupted? Reprod. Biol. Endocrinol. 2006, 4, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canipari, R.; De Santis, L.; Cecconi, S. Female Fertility and Environmental Pollution. Int. J. Environ. Res. Public Health 2020, 17, 8802. [Google Scholar] [CrossRef]
- Penzias, A.; Bendikson, K.; Butts, S.; Coutifaris, C.; Falcone, T.; Gitlin, S.; Gracia, C.; Hansen, K.; Jindal, S.; Kalra, S.; et al. Smoking and Infertility: A Committee Opinion. Fertil. Steril. 2018, 110, 611–618. [Google Scholar] [CrossRef]
- Kupka, M.S.; D’hooghe, T.; Ferraretti, A.P.; de Mouzon, J.; Erb, K.; Castilla Alcalá, J.A.; Calhaz-Jorge, C.; De Geyter, C.; Goossens, V.; Strohmer, H.; et al. Assisted Reproductive Technology in Europe, 2011: Results Generated from European Registers by ESHRE. Hum. Reprod. 2016, 31, 233–248. [Google Scholar]
- Dyer, S.; Chambers, G.M.; De Mouzon, J.; Nygren, K.G.; Zegers-Hochschild, F.; Mansour, R.; Ishihara, O.; Banker, M.; Adamson, G.D. International Committee for Monitoring Assisted Reproductive Technologies World Report: Assisted Reproductive Technology 2008, 2009 and 2010. Hum. Reprod. 2016, 31, 1588–1609. [Google Scholar] [CrossRef] [Green Version]
- Hann, M.; Roberts, S.A.; D’Souza, S.W.; Clayton, P.; Macklon, N.; Brison, D.R. The Growth of Assisted Reproductive Treatment-Conceived Children from Birth to 5 Years: A National Cohort Study. BMC Med. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Schieve, L.A.; Meikle, S.F.; Ferre, C.; Peterson, H.B.; Jeng, G.; Wilcox, L.S. Low and Very Low Birth Weight in Infants Conceived with Use of Assisted Reproductive Technology. N. Engl. J. Med. 2002, 346, 731–737. [Google Scholar] [CrossRef] [PubMed]
- DeBaun, M.R.; Niemitz, E.L.; Feinberg, A.P. Association of in Vitro Fertilization with Beckwith-Wiedemann Syndrome and Epigenetic Alterations of LIT1 and H19. Am. J. Hum. Genet. 2003, 72, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Hattori, H.; Hiura, H.; Kitamura, A.; Miyauchi, N.; Kobayashi, N.; Takahashi, S.; Okae, H.; Kyono, K.; Kagami, M.; Ogata, T.; et al. Association of Four Imprinting Disorders and ART. Clin. Epigenet. 2019, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fauque, P.; Jouannet, P.; Lesaffre, C.; Ripoche, M.A.; Dandolo, L.; Vaiman, D.; Jammes, H. Assisted Reproductive Technology Affects Developmental Kinetics, H19 Imprinting Control Region Methylation and H19 Gene Expression in Individual Mouse Embryos. BMC Dev. Biol. 2007, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Feuer, S.K.; Liu, X.; Donjacour, A.; Simbulan, R.; Maltepe, E.; Rinaudo, P. Transcriptional Signatures throughout Development: The Effects of Mouse Embryo Manipulation In Vitro. Reproduction 2017, 153, 107–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazonova, A.; Kllen, K.; Thurin-Kjellberg, A.; Wennerholm, U.B.; Bergh, C. Factors Affecting Obstetric Outcome of Singletons Born after IVF. Hum. Reprod. 2011, 26, 2878–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gliozheni, O.; Hambartsoumian, E.; Strohmer, H.; Petrovskaya, E.; Tishkevich, O.; Bogaerts, K.; Wyns, C.; Balic, D.; Antonova, I.; Pelekanos, M.; et al. ART in Europe, 2016: Results Generated from European Registries by ESHRE. Hum. Reprod. Open 2020, 2020, 1–17. [Google Scholar]
- Davies, M.J.; Moore, V.M.; Willson, K.J.; Van Essen, P.; Priest, K.; Scott, H.; Haan, E.A.; Chan, A. Reproductive Technologies and the Risk of Birth Defects. Obstet. Gynecol. Surv. 2012, 67, 527–528. [Google Scholar] [CrossRef] [Green Version]
- Hvidtjørn, D.; Grove, J.; Schendel, D.; Schieve, L.A.; Sværke, C.; Ernst, E.; Thorsen, P. Risk of Autism Spectrum Disorders in Children Born after Assisted Conception: A Population-Based Follow-up Study. J. Epidemiol. Community Health 2011, 65, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, S.; Mcintyre, S.; Badawi, N.; Hansen, M. Cerebral Palsy after Assisted Reproductive Technology: A Cohort Study. Dev. Med. Child Neurol. 2018, 60, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Gao, J.; He, X.; Cai, Y.; Wang, L.; Fan, X. Association between Assisted Reproductive Technology and the Risk of Autism Spectrum Disorders in the Offspring: A Meta-Analysis. Sci. Rep. 2017, 7, 46207. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.L.; Hvidtjørn, D.; Basso, O.; Obel, C.; Thorsen, P.; Uldall, P.; Olsen, J. Parental Infertility and Cerebral Palsy in Children. Hum. Reprod. 2010, 25, 3142–3145. [Google Scholar] [CrossRef]
- Lehti, V.; Brown, A.S.; Gissler, M.; Rihko, M.; Suominen, A.; Sourander, A. Autism Spectrum Disorders in IVF Children: A National Case-Control Study in Finland. Hum. Reprod. 2013, 28, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Brandes, J.M.; Scher, A.; Itzkovits, J.; Thaler, I.; Sarid, M.; Gershoni-Baruch, R. Growth and Development of Children Conceived by in Vitro Fertilization. Pediatrics 1992, 90, 424–429. [Google Scholar]
- Olivennes, F.; Blanchet, V.; Kerbrat, V.; Fanchin, R.; Rufat, P.; Frydman, R. Follow-up of a Cohort of 422 Children Aged 6 to 13 Years Conceived by in Vitro Fertilization. Fertil. Steril. 1997, 67, 284–289. [Google Scholar] [CrossRef]
- Wennerholm, U.B.; Albertsson-Wikland, K.; Bergh, C.; Hamberger, L.; Niklasson, A.; Nilsson, L.; Thiringer, K.; Wennergren, M.; Wikland, M.; Borres, M.P. Postnatal Growth and Health in Children Born after Cryopreservation as Embryos. Lancet 1998, 351, 1085–1090. [Google Scholar] [CrossRef]
- Ponjaert-Kristoffersen, I.; Bonduelle, M.; Barnes, J.; Nekkebroeck, J.; Loft, A.; Wennerholm, U.B.; Tarlatzis, B.C.; Peters, C.; Hagberg, B.S.; Berner, A.; et al. International Collaborative Study of Intracytoplasmic Sperm Injection-Conceived, In Vitro Fertilization-Conceived, and Naturally Conceived 5-Year-Old Child Outcomes: Cognitive and Motor Assessments. Pediatrics 2005, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belva, F.; Henriet, S.; Liebaers, I.; Van Steirteghem, A.; Celestin-Westreich, S.; Bonduelle, M. Medical Outcome of 8-Year-Old Singleton ICSI Children (Born ≥ 32 Weeks’ Gestation) and a Spontaneously Conceived Comparison Group. Hum. Reprod. 2007, 22, 506–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basatemur, E.; Shevlin, M.; Sutcliffe, A. Growth of Children Conceived by IVF and ICSI up to 12 Years of Age. Reprod. Biomed. Online 2010, 20, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, E.H.; Sundaram, R.; Bell, E.M.; Druschel, C.; Kus, C.; Xie, Y.; Louis, G.M.B. Infertility Treatment and Children’s Longitudinal Growth between Birth and 3 Years of Age. Hum. Reprod. 2016, 31, 1621–1628. [Google Scholar] [CrossRef] [Green Version]
- Ceelen, M.; Van Weissenbruch, M.M.; Prein, J.; Smit, J.J.; Vermeiden, J.P.W.; Spreeuwenberg, M.; Van Leeuwen, F.E.; Delemarre-Van De Waal, H.A. Growth during Infancy and Early Childhood in Relation to Blood Pressure and Body Fat Measures at Age 8–18 Years of IVF Children and Spontaneously Conceived Controls Born to Subfertile Parents. Hum. Reprod. 2009, 24, 2788–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.L.; Bunch, K.J.; Stiller, C.A.; Murphy, M.F.G.; Botting, B.J.; Wallace, W.H.; Davies, M.; Sutcliffe, A.G. Cancer Risk among Children Born after Assisted Conception. N. Engl. J. Med. 2013, 369, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Sundh, K.J.; Henningsen, A.K.A.; Källen, K.; Bergh, C.; Romundstad, L.B.; Gissler, M.; Pinborg, A.; Skjaerven, R.; Tiitinen, A.; Vassard, D.; et al. Cancer in Children and Young Adults Born after Assisted Reproductive Technology: A Nordic Cohort Study from the Committee of Nordic ART and Safety (CoNARTaS). Hum. Reprod. 2014, 29, 2050–2057. [Google Scholar] [CrossRef]
- Spaan, M.; Van Den Belt-Dusebout, A.W.; Van Den Heuvel-Eibrink, M.M.; Hauptmann, M.; Lambalk, C.B.; Burger, C.W.; Van Leeuwen, F.E.; Schats, R.; Kortman, M.; Laven, J.S.E.; et al. Risk of Cancer in Children and Young Adults Conceived by Assisted Reproductive Technology. Hum. Reprod. 2019, 34, 740–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onal, H.; Ercan, O.; Adal, E.; Ersen, A.; Onal, Z. Subclinical Hypothyroidism in in Vitro Fertilization Babies. Acta Paediatr. Int. J. Paediatr. 2012, 101, 248–252. [Google Scholar] [CrossRef]
- Valenzuela-Alcaraz, B.; Crispi, F.; Bijnens, B.; Cruz-Lemini, M.; Creus, M.; Sitges, M.; Bartrons, J.; Civico, S.; Balasch, J.; Gratacós, E. Assisted Reproductive Technologies Are Associated with Cardiovascular Remodeling in Utero That Persists Postnatally. Circulation 2013, 128, 1442–1450. [Google Scholar] [CrossRef] [Green Version]
- La Bastide-Van Gemert, S.; Seggers, J.; Haadsma, M.L.; Heineman, M.J.; Middelburg, K.J.; Roseboom, T.J.; Schendelaar, P.; Hadders-Algra, M.; Van Den Heuvel, E.R. Is Ovarian Hyperstimulation Associated with Higher Blood Pressure in 4-Year-Old IVF Offspring? Part II: An Explorative Causal Inference Approach. Hum. Reprod. 2014, 29, 510–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontesilli, M.; Painter, R.C.; Grooten, I.J.; Van Der Post, J.A.; Mol, B.W.; Vrijkotte, T.G.M.; Repping, S.; Roseboom, T.J. Subfertility and Assisted Reproduction Techniques Are Associated with Poorer Cardiometabolic Profiles in Childhood. Reprod. Biomed. Online 2015, 30, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Miles, H.L.; Hofman, P.L.; Peek, J.; Harris, M.; Wilson, D.; Robinson, E.M.; Gluckman, P.D.; Cutfield, W.S. In Vitro Fertilization Improves Childhood Growth and Metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 3441–3445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakka, S.D.; Malamitsi-Puchner, A.; Loutradis, D.; Chrousos, G.P.; Kanaka-Gantenbein, C. Euthyroid Hyperthyrotropinemia in Children Born after in Vitro Fertilization. J. Clin. Endocrinol. Metab. 2009, 94, 1338–1341. [Google Scholar] [CrossRef]
- Belva, F.; Painter, R.; Bonduelle, M.; Roelants, M.; Devroey, P.; De Schepper, J. Are ICSI Adolescents at Risk for Increased Adiposity? Hum. Reprod. 2012, 27, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, U.; Rimoldi, S.F.; Rexhaj, E.; Stuber, T.; Duplain, H.; Garcin, S.; De Marchi, S.F.; Nicod, P.; Germond, M.; Allemann, Y.; et al. Systemic and Pulmonary Vascular Dysfunction in Children Conceived by Assisted Reproductive Technologies. Circulation 2012, 125, 1890–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Arx, R.; Allemann, Y.; Sartori, C.; Rexhaj, E.; Cerny, D.; De Marchi, S.F.; Soria, R.; Germond, M.; Scherrer, U.; Rimoldi, S.F. Right Ventricular Dysfunction in Children and Adolescents Conceived by Assisted Reproductive Technologies. J. Appl. Physiol. 2015, 118, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Ceelen, M.; Van Weissenbruch, M.M.; Vermeiden, J.P.W.; Van Leeuwen, F.E.; Delemarre-Van De Waal, H.A. Cardiometabolic Differences in Children Born after In Vitro Fertilization: Follow-up Study. J. Clin. Endocrinol. Metab. 2008, 93, 1682–1688. [Google Scholar] [CrossRef] [Green Version]
- Ceelen, M.; Van Weissenbruch, M.M.; Roos, J.C.; Vermeiden, J.P.W.; Van Leeuwen, F.E.; Delemarre-van De Waal, H.A. Body Composition in Children and Adolescents Born after in Vitro Fertilization or Spontaneous Conception. J. Clin. Endocrinol. Metab. 2007, 92, 3417–3423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Wu, L.; Zhao, J.; Wu, F.; Davies, M.J.; Wittert, G.A. Altered Glucose Metabolism in Mouse and Humans Conceived by IVF. Diabetes 2014, 63, 3189–3198. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.Y.; Liu, X.M.; Jin, L.; Wang, T.T.; Ullah, K.; Sheng, J.Z.; Huang, H.F. Cardiovascular and Metabolic Profiles of Offspring Conceived by Assisted Reproductive Technologies: A Systematic Review and Meta-Analysis. Fertil. Steril. 2017, 107, 622–631.e5. [Google Scholar] [CrossRef] [Green Version]
- Steinberger, J.; Daniels, S.R. Obesity, Insulin Resistance, Diabetes, and Cardiovascular Risk in Children: An American Heart Association Scientific Statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) And the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation 2003, 107, 1448–1453. [Google Scholar]
- Magge, S.N.; Goodman, E.; Armstrong, S.C. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering CLINICAL REPORT Guidance for the Clinician in Rendering Pediatric Care. Am. Acad. Pediatr. Pediatr. 2017, 140, 20171603. [Google Scholar]
- Xie, Y.; Wang, F.; Puscheck, E.; Rappolee, D. Pipetting Causes Shear Stress and Elevation of Phosphorylated Stress-Activated Protein Kinase/Jun Kinase in Preimplantation Embryos. Mol. Autism. 2007, 74, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Awonuga, A.O.; Yang, Y.; Rappolee, D.A. When Stresses Collide. Biol. Reprod. 2013, 89, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrooman, L.A.; Bartolomei, M.S. Can Assisted Reproductive Technologies Cause Adult-Onset Disease? Evidence from Human and Mouse. Reprod. Toxicol. 2017, 68, 72–84. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Cruz, M.; Humaidan, P.; Garrido, N.; Pérez-Cano, I.; Meseguer, M. The Type of GnRH Analogue Used during Controlled Ovarian Stimulation Influences Early Embryo Developmental Kinetics: A Time-Lapse Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 168, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Z.P. Micromanipulation of the Human Oocyte. Reprod. Biomed. Online 2003, 7, 634–640. [Google Scholar] [CrossRef]
- Bouniol-Baly, C.; Hamraoui, L.; Guibert, J.; Beaujean, N.; Szöllösi, M.S.; Debey, P. Differential Transcriptional Activity Associated with Chromatin Configuration in Fully Grown Mouse Germinal Vesicle Oocytes. Biol. Reprod. 1999, 60, 580–587. [Google Scholar] [CrossRef] [Green Version]
- De La Fuente, R.; Eppig, J.J. Transcriptional Activity of the Mouse Oocyte Genome: Companion Granulosa Cells Modulate Transcription and Chromatin Remodeling. Dev. Biol. 2001, 229, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Ertzeid, G.; Storeng, R. Adverse effects of gonadotrophin treatment on pre- and postimplantation development in mice. Reproduction 1992, 96, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Van Der Auwera, I.; D’Hooghe, T. Superovulation of Female Mice Delays Embryonic and Fetal Development. Hum. Reprod. 2001, 16, 1237–1243. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, S.; Yaba-Ucar, A.; Sozen, B.; Mutlu, D.; Demir, N. Superovulation Alters Embryonic Poly (A)-Binding Protein (Epab) and Poly (A)-Binding Protein, Cytoplasmic 1 (Pabpc1) Gene Expression in Mouse Oocytes and Early Embryos. Reprod. Fertil. Dev. 2016, 28, 375–383. [Google Scholar] [CrossRef]
- Piane, L.D.; Lin, W.; Liu, X.; Donjacour, A.; Minasi, P.; Revelli, A.; Maltepe, E.; Rinaudo, P.F. Effect of the Method of Conception and Embryo Transfer Procedure on Mid-Gestation Placenta and Fetal Development in an IVF Mouse Model. Hum. Reprod. 2010, 25, 2039–2046. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gonzalez, R.; Nuno Moreira, P.; Pérez-Crespo, M.; Sánchez-Martín, M.; Ramirez, M.A.; Pericuesta, E.; Bilbao, A.; Bermejo-Alvarez, P.; de Dios Hourcade, J.; Rodriguez de Fonseca, J.; et al. Long-Term Effects of Mouse Intracytoplasmic Sperm Injection with DNA-Fragmented Sperm on Health and Behavior of Adult Offspring. Biol. Reprod. 2008, 78, 761–772. [Google Scholar] [CrossRef] [Green Version]
- Sergerie, M.; Laforest, G.; Bujan, L.; Bissonnette, F.; Bleau, G. Sperm DNA Fragmentation: Threshold Value in Male Fertility. Hum. Reprod. 2005, 20, 3446–3451. [Google Scholar] [CrossRef]
- Schwarzer, C.; Esteves, T.C.; Araúzo-Bravo, M.J.; Le Gac, S.; Nordhoff, V.; Schlatt, S.; Boiani, M. ART Culture Conditions Change the Probability of Mouse Embryo Gestation through Defined Cellular and Molecular Responses. Hum. Reprod. 2012, 27, 2627–2640. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gonzalez, R.; Moreira, P.; Bilbao, A.; Jiménez, A.; Pérez-Crespo, M.; Ramírez, M.A.; De Fonseca, F.R.; Pintado, B.; Gutiérrez-Adán, A. Long-Term Effect of in Vitro Culture of Mouse Embryos with Serum on MRNA Expression of Imprinting Genes, Development, and Behavior. Proc. Natl. Acad. Sci. USA 2004, 101, 5880–5885. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, P.; Schultz, R.M. Effects of Embryo Culture on Global Pattern of Gene Expression in Preimplantation Mouse Embryos. Reproduction 2004, 128, 301–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizos, D.; Clemente, M.; Bermejo-Alvarez, P.; De La Fuente, J.; Lonergan, P.; Gutiérrez-Adán, A. Consequences of In Vitro Culture Conditions on Embryo Development and Quality. Reprod. Domest. Anim. 2008, 43, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.; Coutifaris, C.; Sapienza, C.; Mainigi, M. Global DNA Methylation Levels Are Altered by Modifiable Clinical Manipulations in Assisted Reproductive Technologies. Clin. Epigenet. 2017, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerschmidt, D.M.; Knowles, B.B.; Solter, D. DNA Methylation Dynamics during Epigenetic Reprogramming in the Germline and Preimplantation Embryos. Genes Dev. 2014, 28, 812–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reik, W.; Dean, W.; Walter, J. Epigenetic Reprogramming in Mammalian Development. Science 2001, 293, 1089–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isles, A.R.; Holland, A.J. Imprinted Genes and Mother-Offspring Interactions. Early Hum. Dev. 2005, 81, 73–77. [Google Scholar] [CrossRef]
- Tycko, B.; Morison, I.M. Physiological Functions of Imprinted Genes. J. Cell Physiol. 2002, 192, 245–258. [Google Scholar] [CrossRef]
- Constância, M.; Pickard, B.; Kelsey, G.; Reik, W. Imprinting Mechanisms. Genome Res. 1998, 8, 881–900. [Google Scholar] [CrossRef] [Green Version]
- Tucci, V.; Isles, A.R.; Kelsey, G.; Ferguson-Smith, A.C.; Bartolomei, M.S.; Benvenisty, N.; Bourc’his, D.; Charalambous, M.; Dulac, C.; Feil, R.; et al. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019, 176, 952–965. [Google Scholar] [CrossRef] [Green Version]
- Peters, J. The Role of Genomic Imprinting in Biology and Disease: An Expanding View. Nat. Rev. Genet. 2014, 15, 517–530. [Google Scholar] [CrossRef]
- Coorens, T.H.H.; Treger, T.D.; Al-Saadi, R.; Moore, L.; Tran, M.G.B.; Mitchell, T.J.; Tugnait, S.; Thevanesan, C.; Young, M.D.; Oliver, T.R.W.; et al. Embryonal Precursors of Wilms Tumor. Science 2019, 366, 1247–1251. [Google Scholar] [CrossRef]
- Li, J.; Lin, X.; Wang, M.; Hu, Y.; Xue, K.; Gu, S.; Lv, L.; Huang, S.; Xie, W. Potential Role of Genomic Imprinted Genes and Brain Developmental Related Genes in Autism. BMC Med. Genom. 2020, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Monk, D.; Mackay, D.J.G.G.; Eggermann, T.; Maher, E.R.; Riccio, A. Genomic Imprinting Disorders: Lessons on How Genome, Epigenome and Environment Interact. Nat. Rev. Genet. 2019, 20, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Djuric, U.; El-Maarri, O.; Lamb, B.; Kuick, R.; Seoud, M.; Coullin, P.; Oldenburg, J.; Hanash, S.; Slim, R. Familial Molar Tissues Due to Mutations in the Inflammatory Gene, NALP7, Have Normal Postzygotic DNA Methylation. Hum. Genet. 2006, 120, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.C.; Shao, L.; Peng, H.H.; Rosetta, R.; Del Gaudio, D.; Wagner, A.F.; Al-Hussaini, T.K.; Van den Veyver, I.B. A Recurrent Intragenic Genomic Duplication, Other Novel Mutations in NLRP7 and Imprinting Defects in Recurrent Biparental Hydatidiform Moles. Mol. Hum. Reprod. 2008, 14, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, S.; Djuric, U.; Mazhar, B.; Seoud, M.; Khan, R.; Kuick, R.; Bagga, R.; Kircheisen, R.; Ao, A.; Ratti, B.; et al. Mutations in NALP7 Cause Recurrent Hydatidiform Moles and Reproductive Wastage in Humans. Nat. Genet. 2006, 38, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Docherty, L.E.; Rezwan, F.I.; Poole, R.L.; Turner, C.L.S.; Kivuva, E.; Maher, E.R.; Smithson, S.F.; Hamilton-Shield, J.P.; Patalan, M.; Gizewska, M.; et al. Mutations in NLRP5 Are Associated with Reproductive Wastage and Multilocus Imprinting Disorders in Humans. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackay, D.J.G.; Callaway, J.L.A.; Marks, S.M.; White, H.E.; Acerini, C.L.; Boonen, S.E.; Dayanikli, P.; Firth, H.V.; Goodship, J.A.; Haemers, A.P.; et al. Hypomethylation of Multiple Imprinted Loci in Individuals with Transient Neonatal Diabetes Is Associated with Mutations in ZFP57. Nat. Genet. 2008, 40, 949–951. [Google Scholar] [CrossRef]
- Begemann, M.; Rezwan, F.I.; Beygo, J.; Docherty, L.E.; Kolarova, J.; Schroeder, C.; Buiting, K.; Chokkalingam, K.; Degenhardt, F.; Wakeling, E.L.; et al. Maternal Variants in NLRP and Other Maternal Effect Proteins Are Associated with Multilocus Imprinting Disturbance in Offspring. J. Med. Genet. 2018, 55, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Monk, D.; Sanchez-Delgado, M.; Fisher, R. NLRPS, the Subcortical Maternal Complex and Genomic Imprinting. Reproduction 2017, 154, R161–R170. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Baibakov, B.; Dean, J. A Subcortical Maternal Complex Essential for Preimplantation Mouse Embryogenesis. Dev. Cell 2008, 15, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Quenneville, S.; Verde, G.; Corsinotti, A.; Kapopoulou, A.; Jakobsson, J.; Offner, S.; Baglivo, I.; Pedone, P.V.; Grimaldi, G.; Riccio, A.; et al. In Embryonic Stem Cells, ZFP57/KAP1 Recognize a Methylated Hexanucleotide to Affect Chromatin and DNA Methylation of Imprinting Control Regions. Mol. Cell 2011, 44, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ito, M.; Zhou, F.; Youngson, N.; Zuo, X.; Leder, P.; Ferguson-Smith, A.C. A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal Imprints. Dev. Cell 2008, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Monteagudo-Sánchez, A.; Hernandez Mora, J.R.; Simon, C.; Burton, A.; Tenorio, J.; Lapunzina, P.; Clark, S.; Esteller, M.; Kelsey, G.; López-Siguero, J.P.; et al. The Role of ZFP57 and Additional KRAB-Zinc Finger Proteins in the Maintenance of Human Imprinted Methylation and Multi-Locus Imprinting Disturbances. Nucleic Acids Res. 2020, 48, 11394–11407. [Google Scholar] [CrossRef]
- Hiura, H.; Okae, H.; Miyauchi, N.; Sato, F.; Sato, A.; Van De Pette, M.; John, R.M.; Kagami, M.; Nakai, K.; Soejima, H.; et al. Characterization of DNA Methylation Errors in Patients with Imprinting Disorders Conceived by Assisted Reproduction Technologies. Hum. Reprod. 2012, 27, 2541–2548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiura, H.; Okae, H.; Chiba, H.; Miyauchi, N.; Sato, F.; Sato, A.; Arima, T. Imprinting Methylation Errors in ART. Reprod. Med. Biol. 2014, 13, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, G.F.; Bürger, J.; Lip, V.; Mau, U.A.; Sperling, K.; Wu, B.L.; Horsthemke, B. Intracytoplasmic Sperm Injection May Increase, the Risk of Imprinting Defects. Am. J. Hum. Genet. 2002, 71, 162–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, E.R.; Brueton, L.A.; Bowdin, S.C.; Luharia, A.; Cooper, W.; Cole, T.R.; Macdonald, F.; Sampson, J.R.; Barratt, C.L.; Reik, W.; et al. Beckwith-Wiedemann Syndrome and Assisted Reproduction Technology (ART). J. Med. Genet. 2003, 40, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Gicquel, C.; Gaston, V.; Mandelbaum, J.; Siffroi, J.-P.; Flahault, A.; Bouc, Y.L. In Vitro Fertilization May Increase the Risk of Beckwith-Wiedemann Syndrome Related to the Abnormal Imprinting of the KCNQ1OT Gene. Am. J. Hum. Genet. 2003, 72, 1338–1341. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, A.G.; Peters, C.J.; Bowdin, S.; Temple, K.; Reardon, W.; Wilson, L.; Clayton-Smith, J.; Brueton, L.A.; Bannister, W.; Maher, E.R. Assisted Reproductive Therapies and Imprinting Disorders-A Preliminary British Survey. Hum. Reprod. 2006, 21, 1009–1011. [Google Scholar] [CrossRef] [PubMed]
- Young, L.E.; Fernandes, K.; McEvoy, T.G.; Butterwith, S.C.; Gutierrez, C.G.; Carolan, C.; Broadbent, P.J.; Robinson, J.J.; Wilmut, I.; Sinclair, K.D. Epigenetic Change in IGF2R Is Associated with Fetal Overgrowth after Sheep Embryo Culture. Nat. Genet. 2001, 27, 153–154. [Google Scholar] [CrossRef]
- Lim, D.; Bowdin, S.C.; Tee, L.; Kirby, G.A.; Blair, E.; Fryer, A.; Lam, W.; Oley, C.; Cole, T.; Brueton, L.A.; et al. Clinical and Molecular Genetic Features of Beckwith-Wiedemann Syndrome Associated with Assisted Reproductive Technologies. Hum. Reprod. 2009, 24, 741–747. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.S.; Mann, M.R.W.; Tremblay, K.D.; Bartolomei, M.S.; Schultz, R.M. Differential Effects of Culture on Imprinted H19 Expression in the Preimplantation Mouse Embryo. Biol. Reprod. 2000, 62, 1526–1535. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Dean, W.; Brown, D.; Reik, W.; Feil, R. Culture of Preimplantation Mouse Embryos Affects Fetal Development and the Expression of Imprinted Genes. Biol. Reprod. 2001, 64, 918–926. [Google Scholar] [CrossRef]
- de Waal, E.; Mak, W.; Calhoun, S.; Stein, P.; Ord, T.; Krapp, C.; Coutifaris, C.; Schultz, R.M.; Bartolomei, M.S. In Vitro Culture Increases the Frequency of Stochastic Epigenetic Errors at Imprinted Genes in Placental Tissues from Mouse Concepti Produced through Assisted Reproductive Technologies. Biol. Reprod. 2014, 90, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Market-Velker, B.A.; Fernandes, A.D.; Mann, M.R.W. Side-by-Side Comparison of Five Commercial Media Systems in a Mouse Model: Suboptimal In Vitro Culture Interferes with Imprint Maintenance 1. Biol. Reprod. 2010, 83, 938–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melamed, N.; Choufani, S.; Wilkins-Haug, L.E.; Koren, G.; Weksberg, R. Comparison of Genome-Wide and Gene-Specific DNA Methylation between ART and Naturally Conceived Pregnancies. Epigenetics 2015, 10, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Estill, M.S.; Bolnick, J.M.; Waterland, R.A.; Bolnick, A.D.; Diamond, M.P.; Krawetz, S.A. Assisted Reproductive Technology Alters Deoxyribonucleic Acid Methylation Profiles in Bloodspots of Newborn Infants. Fertil. Steril. 2016, 106, 629–639.e10. [Google Scholar] [CrossRef]
- El Hajj, N.; Haertle, L.; Dittrich, M.; Denk, S.; Lehnen, H.; Hahn, T.; Schorsch, M.; Haaf, T. DNA Methylation Signatures in Cord Blood of ICSI Children. Hum. Reprod. 2017, 32, 1761–1769. [Google Scholar] [CrossRef] [Green Version]
- Gentilini, D.; Somigliana, E.; Pagliardini, L.; Rabellotti, E.; Garagnani, P.; Bernardinelli, L.; Papaleo, E.; Candiani, M.; Di Blasio, A.M.; Viganò, P. Multifactorial Analysis of the Stochastic Epigenetic Variability in Cord Blood Confirmed an Impact of Common Behavioral and Environmental Factors but Not of in Vitro Conception. Clin. Epigenet. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Choufani, S.; Turinsky, A.L.; Melamed, N.; Greenblatt, E.; Brudno, M.; Bérard, A.; Fraser, W.D.; Weksberg, R.; Trasler, J.; Monnier, P.; et al. Impact of Assisted Reproduction, Infertility, Sex and Paternal Factors on the Placental DNA Methylome. Hum. Mol. Genet. 2019, 28, 372–385. [Google Scholar] [CrossRef]
- Tobi, E.W.; Almqvist, C.; Hedman, A.; Andolf, E.; Holte, J.; Olofsson, J.I.; Wramsby, H.; Wramsby, M.; Pershagen, G.; Heijmans, B.T.; et al. DNA Methylation Differences at Birth after Conception through ART. Hum. Reprod. 2021, 36, 248–259. [Google Scholar]
- Novakovic, B.; Lewis, S.; Halliday, J.; Kennedy, J.; Burgner, D.P.; Czajko, A.; Kim, B.; Sexton-Oates, A.; Juonala, M.; Hammarberg, K.; et al. Assisted Reproductive Technologies Are Associated with Limited Epigenetic Variation at Birth That Largely Resolves by Adulthood. Nat. Commun. 2019, 10, 3922. [Google Scholar] [CrossRef]
- Ochoa, E.; Lee, S.; Lan-Leung, B.; Dias, R.; Ong, K.K.; Radley, J.A.; Pérez de Nanclares, G.; Martinez, R.; Clark, G.; Martin, E.; et al. ImprintSeq, a Novel Tool to Interrogate DNA Methylation at Human Imprinted Regions and Diagnose Multilocus Imprinting Disturbance. Genet. Med. unpublish.
- Nelissen, E.C.M.; Dumoulin, J.C.M.; Daunay, A.; Evers, J.L.H.; Tost, J.; Van Montfoort, A.P.A. Placentas from Pregnancies Conceived by IVF/ICSI Have a Reduced DNA Methylation Level at the H19 and MEST Differentially Methylated Regions. Hum. Reprod. 2013, 28, 1117–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choux, C.; Binquet, C.; Carmignac, V.; Bruno, C.; Chapusot, C.; Barberet, J.; Lamotte, M.; Sagot, P.; Bourc’his, D.; Fauque, P. The Epigenetic Control of Transposable Elements and Imprinted Genes in Newborns Is Affected by the Mode of Conception: ART versus Spontaneous Conception without Underlying Infertility. Hum. Reprod. 2018, 33, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Klobucar, T.; Kreibich, E.; Krueger, F.; Arez, M.; Duarte, P.; Klobu, T.; Rocha, T.; Eckersley-maslin, M.; von Meyenn, F. IMPLICON: An Ultra-Deep Sequencing Method to Uncover DNA Methylation at Imprinted Regions. Nucleic Acids Res. 2020, 48, e92. [Google Scholar] [CrossRef] [PubMed]
- Bateson, P.; Barker, D.; Clutton-Brock, T.; Deb, D.; D’Udine, B.; Foley, R.A.; Gluckman, P.; Godfrey, K.; Kirkwood, T.; Lahr, M.M.; et al. Developmental Plasticity and Human Health. Nature 2004, 430, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P. The Developmental Origins of Well-Being. Philos. Trans. R. Soc. B Biol. Sci. 2004, 359, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Feuer, S.; Rinaudo, P. Preimplantation Stress and Development. Birth Defects Res. Part. C Embryo Today Rev. 2012, 96, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Crespi, B.J. Why and How Imprinted Genes Drive Fetal Programming. Front. Endocrinol. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Ecker, D.J.; Stein, P.; Xu, Z.; Williams, C.J.; Kopf, G.S.; Bilker, W.B.; Abel, T.; Schultz, R.M. Long-Term Effects of Culture of Preimplantation Mouse Embryos on Behavior. Proc. Natl. Acad. Sci. USA 2004, 101, 1595–1600. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, E.L.; Brioude, F.; Lokulo-sodipe, O.; Connell, S.M.O.; Salem, J.; Bliek, J.; Canton, A.P.M.; Chrzanowska, K.H.; Davies, J.H.; Dias, R.P.; et al. Diagnosis and Management of Silver–Russell Syndrome: First International Consensus Statement. Nat. Rev. Endocrinol. 2017, 13, 105–124. [Google Scholar] [CrossRef]
- Brioude, F.; Kalish, J.M.; Mussa, A.; Foster, A.C.; Bliek, J.; Ferrero, G.B.; Boonen, S.E.; Cole, T.; Baker, R.; Bertoletti, M.; et al. Clinical and Molecular Diagnosis, Screening and Management of Beckwith-Wiedemann Syndrome: An International Consensus Statement. Nat. Rev. Endocrinol. 2018, 14, 229–249. [Google Scholar] [CrossRef]
- Mackay, D.J.G.; Bliek, J.; Lombardi, M.P.; Russo, S.; Calzari, L.; Guzzetti, S.; Izzi, C.; Selicorni, A.; Melis, D.; Temple, K.; et al. Discrepant Molecular and Clinical Diagnoses in Beckwith-Wiedemann and Silver-Russell Syndromes. Genet. Res. 2019, 101, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D.J.P.; Osmond, C.; Simmonds, S.J.; Wield, G.A. The Relation of Small Head Circumference and Thinness at Birth to Death from Cardiovascular Disease in Adult Life. Br. Med. J. 1993, 306, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Forse, T.; Eriksson, J.; Tuomilehto, J.; Reunanen, A.; Osmond, C.; Barker, D. The Fetal and Childhood Growth of Persons Who Develop Type 2 Diabetes. Ann. Intern. Med. 2000, 133, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Waterland, R.A.; Garza, C. Potential Mechanisms of Metabolic Imprinting That Lead to Chronic Disease. Am. J. Clin. Nutr. 1999, 69, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cao, F.; Li, X. Epigenetic Programming and Fetal Metabolic Programming. Front. Endocrinol. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millership, S.J.; Van de Pette, M.; Withers, D.J. Genomic Imprinting and Its Effects on Postnatal Growth and Adult Metabolism. Cell Mol. Life Sci. 2019, 76, 4009–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijmans, B.T.; Tobi, E.W.; Stein, A.D.; Putter, H.; Blauw, G.J.; Susser, E.S.; Slagboom, P.E.; Lumey, L.H. Persistent Epigenetic Differences Associated with Prenatal Exposure to Famine in Humans. Proc. Natl. Acad. Sci. USA 2008, 105, 17046–17049. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Haghdoost, A.A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low Birthweight or Rapid Catch-up Growth: Which Is More Associated with Cardiovascular Disease and Its Risk Factors in Later Life? A Systematic Review and Cryptanalysis. Paediatr. Int. Child Health 2015, 35, 110–123. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | No. Cases | No. Ctrls | Sample Type | Platform | No. DMPs 1 | iDMRs Affected | Results | Reference |
---|---|---|---|---|---|---|---|---|---|
IVF | SC | 10 | 13 | cord blood/placenta | Illumina GoldenGate® Assay 2 | 82 | GNAS, NNAT, PEG3, IGF2AS/MEST, GRB10, PEG3 | ART-Placenta showed lower mean methylation and ART-cord blood higher. DNA methylation differences associated with gene expression differences at both imprinted and non-imprinted genes. | Katari et al., 2009 |
ART | SC | 10 | 8 | cord blood/placenta | Illumina® Infinium Human Methylation27 array 3 | 733 | GNAS, PLAGL1, DIRAS3, ZIM2 | Significant differences in DNA methylation were enriched in certain types of genomic locations and with greater variability and more hypomethylation. | Melamed et al., 2015 |
ART | SC | 94 | 43 | neonatal blood spot | Illumina® Infinium Human Methylation450 array 4 | n.s. | n.s. | Significant differences in DNA methylation associated with IVF/ICSI culture conditions and/or parental infertility were detected at metastable epialleles. Imprinted genes are differentially methylated more often than expected by chance. No differences between ICSI-frozen and intrauterine insemination. | Estill et al., 2016 |
IVF/ICSI | SC | 34/89 | 53 | cord blood | Illumina® Infinium Human Methylation450 array 4 | 4730 | NAP1L5, L3MBTL, GNAS, PEG10 | Significant differences in DNA methylation but with small (β < 10%) or very small (β < 1%) effect size. ICSI showed a significantly decreased DNA methylation age at birth. DMPs enriched in CpG islands with low methylation values and in ICRs. | El Hajj et al., 2017 |
ART | SC | 23 | 41 | cord blood | Illumina® Infinium Human Methylation450 array 4 | 0 $ | No significant difference in DNA methylation in ART. Significant differences found between stochastic epigenetic variability and four multiple factor analysis dimensions summarizing common phenotypic, behavioral or environmental factors. | Gentilini et al., 2018 | |
ART | SC | 44 | 44 | Placenta | Illumina® Infinium Human Methylation450 array 4 | 0 ¥/84,270 ¥¥ | GNAS, SGCE, KCNQT1OT1, BLCAP/NNAT ¥¥ | No significant difference in DNA methylation comparing ART with controls. The comparison of ART outlier group with controls showed significant differences in DNA methylation, enriched in loss of methylation of several imprinted genes. IVF/ICSI showed distinct epigenetic profiles. | Choufani et al., 2019 |
ART | SC | 193 | 86 | neonatal blood spot/ adult blood | Illumina® Infinium Human MethylationEPIC array 5 | 2340 | n.s. | Significant difference in DNA methylation around birth. No difference found with embryo culture. Epigenetic variation at birth mostly resolves by adulthood. No significant association with imprinting regions but using relaxed threshold, 4% of imprinting-related probes showed differential methylation at birth. | Novakovic et al., 2019 |
IVF/ICSI | SC | 87 | 70 | cord blood | Illumina® Infinium Human Methylation450 array 4 | 19 | No significant association of ART with global methylation levels, imprinted loci and meta-stable epialleles. No difference was found between IVF and ICSI. DMPs map to genes related to brain function/development or genes connected to conditions linked to subfertility. | Tobi et al., 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa, E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life 2021, 11, 728. https://doi.org/10.3390/life11080728
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life. 2021; 11(8):728. https://doi.org/10.3390/life11080728
Chicago/Turabian StyleOchoa, Eguzkine. 2021. "Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health" Life 11, no. 8: 728. https://doi.org/10.3390/life11080728
APA StyleOchoa, E. (2021). Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life, 11(8), 728. https://doi.org/10.3390/life11080728