The Impact of Cultivation Management and Weed Control Systems of Very Early Potato on Weed Infestation, Biodiversity, and Health Safety of Tubers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic of PE-Sheeting
2.2. Characteristic of Herbicides
2.3. Characteristic of Variety
2.4. Field Research
2.5. Sampling and Soil Assessment Methodology
2.6. Weed Infestation
2.7. Tuber and Soil Sampling
2.8. Research on Herbicide Residues
2.9. Soil Conditions
2.10. Meteorological Conditions
2.11. Statistical Analysis
3. Results
3.1. Weed Infestation
3.1.1. Soil Coverage by Arable Crops and Weeds
3.1.2. Reaction of Plants to Herbicides
3.1.3. Fresh and Air Dry Mass of Weeds
3.1.4. Number of Weeds
3.1.5. Floristic Composition of Weeds
3.2. Herbicide Residues in the Soil
3.3. Herbicide Residues in Potato Tubers
4. Discussion
4.1. Management of Potato Cultivation
4.2. Weed Infestation
4.3. Pesticide Residues
- -
- the use of herbicides in cultivation under the PE-sheeting reduced weed infestation and at the same time did not damage plants of the very early potato variety,
- -
- the pre-emergence application of herbicides contributed to the reduction of the residues of biologically active substances in potato tubers while maintaining their high efficiency.
5. Conclusions
- -
- Afalon Dispersion 450 S.C. showed a high efficiency in reducing Echinochloa crus-galli, Setaria glauca, Setaria viridis, Centaurea cyanus, and Stellaria media, and showed no or weak activity against Anthemis arvensis, Polygonum convolvulus, Vicia tetrasperma, and Veronica hederifolia.
- -
- Racer 250 EC was effective in reducing Polygonum convolvulus, Polygonum lapathifolium, and Viola arvensis and ineffective against Echinochloa crus-galli, Setaria glauca, Setaria viridis, Chenopodium album, Cirsium arvense, Spergula arvensis, and Myosotis arvensis.
- -
- the use of a mixture of Afalon Dispersion 450 SC + Command 480 EC has shown high efficiency in reducing Chenopodium album, Raphanus raphanistrum, Vicia tetrasperma, Cirsium arvense, Galeopsis tetrahit, Spergula arvensis, Veronica hederaefolia, Myosotis arvensis: lapathifolium, Galium aparine, Viola arvensis, and Stellaria media.
- -
- no trace amounts of linuron were found,
- -
- the detected residues of the herbicide Racer 250 EC (fluorochloridon) were at least 400 times lower than the EU standard,
- -
- the amount of active clomazone detected was 250 times lower than the MRL.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ADI | Acceptable Daily Intake |
ArfD | Acute Reference Dose |
BBCH scale | Biologische Bundesanstalt, Bundessortenamt, Chemische Industrie |
DHP | dihydropteroate synthase inhibitor |
EWRC | European Weed Research Council |
EPSP | EPSP synthase inhibitors–5-enolpyruvate shikimic 3-phosphate synthase |
HLD | High-density lipoprotein |
LDL | Low-density lipoprotein |
LHC | light energy collecting complex |
MRL | Maximum Residue Level |
PE-sheeting | Polyethylene sheeting |
References
- Barbaś, P. Effectiveness of Potato Cultivation Methods and Their Impact on the Yield and Quality of Tubers. Ph.D. Thesis, Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, Lublin, Poland, 2015; p. 157. (In Polish). [Google Scholar]
- Crestani, M.; Menezes, C.; Gusczak, L.; Santos Miron, D. Effects of clomazone herbicide on biochemical and histological aspects of silver catfish (Rhamadia quelen) and recovery pattern. Chemosphere 2007, 67, 2305–2311. [Google Scholar] [CrossRef]
- Möckel, M.; Salman, A.; Vollert, J.O.; Ebmeyer, S.; Wiemer, J.C.; Searle, J.; Giannitsis, E.; Kellum, J.A.; Maisel, A. Rationale, and design of the IMPACT EU-trial: Improve management of heart failure with procalcitonin biomarkers in cardiology (BIC)-18. Biomarkers 2018, 23, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Montani, F.; Bianchi, F. Circulating Cancer Biomarkers: The Macro-revolution of the Micro-RNA. EBioMedicine 2016, 5, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Maruvada, P.; Lampe, J.W.; Wishart, D.S.; Barupal, D.; Chester, D.N.; Dodd, D.; Feunang, Y.D.; Dorrestein, P.C.; Dragsted, O.L.; Dragsted, L.; et al. Perspective: Dietary biomarkers of intake and exposure—Exploration with omics approaches. Adv. Nutr. 2020, 11, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Dusińska, M.; Collins, A.R. The comet assay in human biomonitoring: Gene—Environment interactions. Mutagenesis 2008, 3, 191–205. [Google Scholar] [CrossRef]
- Bortoli, G.M.; Azevedo, M.B.; Silva, L.B. Cytogenetic biomonitoring of Brazilian workers exposed to pesticides. Micronucleus analysis in buccal epithelial cells of soybean growers. Mutat. Res. 2009, 675, 1–4. [Google Scholar] [CrossRef]
- Lovreglio, P.; De Palma, G.; Barbieri, A.; Andreoli, R.; Drago, I.; Greco, I.; Gallo, E.; Diomede, L.; Scaramuzzo, P.; Ricossa, M.C.; et al. Biological monitoring of exposure to low concentrations of benzene in workers at a metallurgical coke production plant: New insights into S-phenylmercapturic acid and urinary benzene. Biomarkers 2018, 23, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, J. Environmental Effects of Herbicide Residues; Publisher Institute of Cultivation of Fertilization and Soil Science—National Research Institute: Puławy, Poland, 2009; p. 94. (In Polish) [Google Scholar]
- Grygiel, K.; Sadowski, J.; Snopczyński, T.; Wysocki, A. Herbicide residues in agricultural products and in the soil. J. Ecol. Health 2012, 16, 159–163. [Google Scholar]
- Sondhia, S. Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: An Indian perspective. Indian J. Weed Sci. 2014, 46, 66–85. [Google Scholar]
- Jin, Z.; Geissler, D.; Qiu, X.; Wegner, K.D.; Hildebrandt, N.; Rapid, A. Amplification free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Agnew. Chem. Int. Ed. Engl. 2015, 54, 10024–10029. [Google Scholar] [CrossRef]
- Yefsah-Idres, A.; Benazzoug, Y.; Otman, A.; Latour, A.; Middendorp, S.; Janel, N. Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats. Food Funct. 2016, 7, 2862–2869. [Google Scholar] [CrossRef]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.G.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Sozzi, G.; Boeri, M.; Rossi, M.; Verri, C.; Suatoni, P.; Bravi, F.; Roz, L.; Conte, D.; Grassi, M.; Sverzellati, N.; et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: A correlative MILD trial study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 768–773. [Google Scholar] [CrossRef]
- Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.O.; van der Horst, G.T.; Batschauer, A.; Ahmad, M. The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 2011, 62, 335–364. [Google Scholar] [CrossRef] [PubMed]
- Van Gemerden, J.F.; De Goey, J.W.F.M.; Rotteveel, A.J.W. Guidance on resistance risk evaluation. OEPP EPPO Bull. 1999, 29, 111–116. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Sawicka, B.; Michałek, W.; Skiba, D. Sensitivity of Helianthus tuberosus L. plants to clomazone. Prog. Plant Prot. 2007, 47, 363–370. (In Polish) [Google Scholar]
- Hall, L. How Herbicides Work: Biology to Application. Alberta Agriculture, Food, and Rural Development; Alberta Agriculture and Rural Development: Edmonton, AB, Canada, 2014; ISBN 0773261311. [Google Scholar] [CrossRef]
- Crestani, M.; Menezes, C.; Glusczak, L.; Santos, M.D. Effects of clomazone herbicide on haematological and some parameters of protein and carbohydrate metabolism of silver catfish Rhamadia quelled. Ecotoxicol. Environ. Saf. 2006, 65, 48–55. [Google Scholar] [CrossRef]
- European and Mediterranean Plant Protection Organization. PP 1/213 (4). Resistance Risk Analysis. Efficacy Evaluation of Plant Protection Products. OEPP EPPO Bull. 2015, 45, 371–387, ISSN 0250-8052. [Google Scholar] [CrossRef] [Green Version]
- Agostinetto, D.; Perboni, L.T.; Langaro, A.C.; Gomes, J.; Fraga, D.S.; Franco, J.J. Changes in photosynthesis and oxidative stress in wheat plants submitted to herbicides application. Planta Daninha. 2016, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-C.; Lai, C.-S.; Tsai, M.-L.; Ho, C.-T.; Wang, Y.-J.; Pan, M.-H. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity. J. Food Drug Anal. 2017, 25, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Adamczewski, K.; Dobrzański, A. Future for weed sciences in changing agriculture. Prog. Plant Prot. Post. Ochr. Roślin 2012, 52, 867–878. [Google Scholar]
- Franek, M.; Rola, H. Application of herbicides to weed control in winter oilseed rape in dependence on economic condition of farm. Oil Plants 2002, 23, 365–374. [Google Scholar]
- WRB World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; p. 2013. Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 May 2021).
- Webster, T.M.U.; Perry, M.H.; Santos, E.M. The herbicide linuron inhibits cholesterol biosynthesis and induces cellular stress responses in brown trout. Environ. Sci. Technol. 2015, 49, 3110–3118. [Google Scholar] [CrossRef]
- Li, W.; Shen, S.; Chen, H.; Zhang, Y.; Deng, L.; Liu, Y.; Shangguan, Z. Effects of fluorochloridone application on rhizosphere soil fungal community and composition in potato growing areas of the Qinghai-Tibet plateau. J. Fungi 2021, 7, 420. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Diao, X.; Hu, J. Hydrolysis, and photolysis of herbicide clomazone in aqueous solutions and natural water under abiotic conditions. J. Integr. Agric. 2013, 12, 2074–2082. [Google Scholar] [CrossRef] [Green Version]
- Gacek, E. Descriptive List of Varieties of Agricultural Plant in 2020: Potato; COBORU: Słupia Wielka, Poland, 2020; ISSN 1641-7003. [Google Scholar]
- Code of Good Practice for Protection of Plants, 2nd ed.; Institute of Plant Protection—National Research Institute: Poznań, Poland, 2020; pp. 30–54.
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Für Kult. 2009, 61, 41–52. [Google Scholar]
- Ryzak, M.; Bartmiński, P.; Bieganowski, A. Methods of determination of granulometric distribution of mineral soils. Acta Agrophys. Theses Monogr. 2009, 175, 97. ISSN 1234-4125(In Polish) [Google Scholar]
- PN-ISO 10390:1997. Soil Quality—Determination of pH.; Polish Committee for Standardization: Warsaw, Poland, 1997. (In Polish)
- KQ/PB-34 Version 04. 07.10.2011: Scope of Accreditation for Testing Laboratory Nr/No AB 1186; Polskie Centrum Akredytacji: Warszawa, Poland, 2011; Issue 12, p. 11. (In Polish)
- Mocek, A. Soil Science; State Scientific Publisher, Polish Scientific Publishers (PWN): Warsaw, Poland, 2020; p. 464. (In Polish) [Google Scholar]
- PN-R-04023. Chemical and Agricultural Analysis of Soil. Determination of Available Phosphorus Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 1996. (In Polish)
- PN-R-04022, 1996+AZ1. Chemical and Agricultural Analysis of Soil. Determination of Available Potassium Content in Mineral Soils; Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- PN-R-04020, 1994+AZ1. Chemical and Agricultural Analysis of Soil; Polish Committee for Standardization: Warsaw, Poland, 2004. (In Polish)
- Senapathy, J.G.; Jayanthi, S.; Viswanathan, P.; Umadevi, P.; Nalini, N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar ratsda chemopreventive approach. Food Chem. Toxicol. 2011, 49, 887–892. [Google Scholar] [CrossRef]
- Fertilization Recommendations, Part I. Limit Numbers for the Evaluation of the Content of Macro—And Micro-Elements in Soils; IUNG: Puławy, Poland, 1990; Volume 44, pp. 1–26.
- Badowski, M.; Domaradzki, K.; Filipiak, K.; Franek, M.; Gołębiowska, H.; Kieloch, R.; Kucharski, M.; Rola, H.; Rola, J.; Sadowski, J.; et al. Methodology of Experiments for Biological Evaluation of Herbicides, Bioregulators and Adjuvants. Part I. Field Experiments; IUNG—PIB: Puławy, Poland, 2001; p. 167. [Google Scholar]
- PN-78/R-04011. Plant Material and Soil. Sampling For the Quantitative Determination of Pesticide Residues; Polish Standardization Publishing House: Warsaw, Poland, 1978. (In Polish)
- PN-83/R-04012. Plant Material. Sampling for Chemical Analyzes; Polish Committee for Standardization: Warsaw, Poland, 1983. (In Polish)
- PN-R-04111. Determination of Herbicide Residues. Active Substance—Derivatives of Phenoxy Alkane-Carboxylic Acids; Polish Committee for Stand SAS Publishing House: Warsaw, Poland, 1997; p. 452. ISBN 9781607642657. (In Polish)
- Regulation EC No 396/2005396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending council directive 91/414/EEC, Annex II i III (SANTE/10367/2015). Off. J. EU 2005, 70, 1–16.
- PN-EN ISO/IEC 17025:2018–02. General Requirements for the Competence of Testing and Calibration Laboratories; Polish Committee for Standardization: Warsaw, Poland, 2018. (In Polish)
- Gawdzik, J. Methods of Sample Preparation for Chromatographic Analysis, Exercise Schedule 2008–2009: Preparation of Samples for the Analysis of Herbicides by HPLC; UMCS: Lublin, Poland, 2008. [Google Scholar]
- Document SANCO/12495/2011. Method Validation and Quality Control Procedures for Pesticide Residues Analysis in Food and Feed; Document No. SANCO/12495/2011, Supersedes Document No. SANCO/10684/2009. Available online: https://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2011_12495.pdf (accessed on 12 August 2021).
- Commission Regulation (EU) 2019/50 of 11 January 2019 amending Annexes II, III, IV and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chlorantraniliprole, clomazone, cyclaniliprole, fenazaquin, fenpicoxamide, fluoxastrobin, lambda-cyhalothrin, mepiquat, onion oil, thiacloprid and valiphenalate in or on certain products. Offic. J. EU L 2019, 10, 8–59.
- Commission Regulation (EU) 2019/58 of 14 January 2019 amending Annexes II, III and V to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for linuron in or on certain products. Off. J. EU 2019, 12, 1–12.
- Skowera, B.; Kopcińska, J.; Kopeć, B. Changes of thermal and precipitation conditions in Poland in 1971–2010. Ann. Wars. Univ. Life Sci. Land Reclam. 2014, 46, 153–162. [Google Scholar] [CrossRef]
- SAS/STAT®9.2: Users Guide; SAS Publishing House: Cary, NC, USA, 2008; ISBN 9781607642657.
- Wadas, S.H.; Tanner, D.C.; Polom, U.; Krawczyk, C.M. Structural analysis of S-wave seismic around an urban sinkhole; evidence of enhanced dissolution in a strike-slip fault zone. Nat. Hazards Earth Syst. 2017, 17, 2335–2350. [Google Scholar] [CrossRef] [Green Version]
- Pałys, E. Studies on Potato Weed Control in Rendzinas, with Particular Emphasis on Couch Grass Agropyron repens (L.) P.B. Habilitation Thesis, Academy of Agriculture, Lublin, Poland, 1990. [Google Scholar]
- Bojarszczuk, J.; Podleśny, J.; Nowak, J. The assessment of the diversity of weed flora communities in crops cultivated in selected farms in Lubelskie voivodeship. Prog. Plant Prot. 2018, 58, 216–223. [Google Scholar]
- Villa, P.M.; Rodrigues, A.C.; Márquez, N.; Rodrigues, A.L.; Martins, S.V. Phytosociology de malezas después de un cultivo de papa (Solanum tuberosum L.) en los andes venezolanos: Un enfoque agro ecological. Trop. Subtrop. Agroecosyst. 2017, 20, 329–339. [Google Scholar]
- Pszczółkowski, P.; Sawicka, B. Productivity of very early potato cultivars cultivated under coverage. Part, I. Yield, and its structure. Acta Sci. Pol. Technol. Aliment. 2003, 2, 61–72. [Google Scholar]
- Boydston, R.A. Potato and weed response to postemergence—Applied Halosulfuron, Rimsulfuron, and EPTC. Weed Technol. 2007, 21, 465–469. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K. Relationship between potato yield and the degree of weed infestation. Afr. J. Agric. Res. 2013, 8, 5752–5758. [Google Scholar]
- Ilić, O.; Nikolić, L.; Ilin, Ž.; Mišković, A.; Vujasinović, V.; Kukić, B. Effect of cultural practices on weeds community in function of potato yield. Acta Sci. Pol. Hortorum Cultus 2016, 15, 31–43. [Google Scholar]
- Zarzecka, K.; Gugała, M.; Sikorska, A.; Grzywacz, K.; Niewęgłowski, M. Marketable yield of potato, and its quantitative parameters after application of herbicides and biostimulants. Agriculture 2020, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Kołodziejczyk, M.; Antonkiewicz, J.; Kulig, B. Effect of living mulches and conventional methods of weed control on weed occurrence and nutrient uptake in potato. Int. J. Plant Prod. 2017, 11, 275–284. [Google Scholar]
- Pszczółkowski, P.; Barbaś, P.; Sawicka, B.; Krochmal-Marczak, B. Biological and agrotechnical aspects of weed control in the cultivation of early potato cultivars under cover. Agriculture 2020, 10, 373. [Google Scholar] [CrossRef]
- Gugała, M.; Zarzecka, K.; Sikorska, A. The weed infestation and yielding of potato depending on the mechanical and chemical treatments. Fragm. Agron. 2014, 31, 50–57. [Google Scholar]
- Kapsa, J.; Mrówczyński, M.; Erlichowski, T.; Gawińska-Urbanowicz, H.; Matysek, K.; Osowski, J.; Pawińska, M.; Urbanowicz, J.; Wróbel, S. Potato protection in accordance with the principles of integrated pest management. Th. II. A method of sustainable chemical protection of potatoes. Bull. IHAR 2014, 273, 145–159. [Google Scholar]
- Urbanowicz, J. Weeding of potato plantations in Poland in 2000–2015. Ziemn. Pol. 2016, 3, 42–46. [Google Scholar]
- Urbanowicz, J. Weed control in potatoes with herbicides. Pol. Potato 2021, 2, 13–21. [Google Scholar]
- Michel, M. Linuron residues in vegetables determined by HPLC. Prog. Plant Prot. Postępy W Ochr. Roślin 2000, 40, 860–863. [Google Scholar]
- Hu, J.; Cao, D.; Deng, Z. Determination of clomazone residues in soybean and soil by high performance liquid chromatography with DAD detection. Bull Environ. Contam. Toxicol. 2011, 86, 444–448. [Google Scholar] [CrossRef]
- Kapka-Skrzypczak, L.; Cyranka, M.; Kruszewski, M.; Turski, W.A. Plant protection products and farmers’ health—Biomarkers and the possibilities of their use to assess pesticide exposure. Gen. Med. Health Sci. 2011, 17, 28–32. (In Polish) [Google Scholar]
- Almeida, M.O.; Oloris, S.C.S.; Faria, V.H.F.; Ribeiro, M.C.M.; Cantini, D.M.; Soto-Blanco, B. Optimization of method for pesticide detection in honey by using liquid and gas chromatography coupled with mass spectrometric detection. Foods 2020, 9, 1368. [Google Scholar] [CrossRef] [PubMed]
- Jaźwa, A. Study on the Behavior of Selected Herbicides in the Field of Arable Land. Ph.D. Thesis, University of Rzeszów, Department of Ecotoxicology, Non-Resident Institute of Applied Biotechnology and Basic Sciences, Rzeszów, Poland, 2013; p. 156. [Google Scholar]
- Słowik-Borowiec, M.; Szpyrka, E.; Podbielska, M.; Kurdziel, A.; Matyaszek, M. Pesticide residues in root vegetables and potatoes in South-Eastern Poland (2009–2011). Pol. J. Agron. 2012, 11, 47–51. [Google Scholar]
- Nowacka, A.; Gnusowski, B.; Dąbrowski, J. Residues of protection measures in agricultural crops (2006). Prog. Plant Prot. Postępy W. Ochr. Roślin 2007, 47, 79–90. (In Polish) [Google Scholar]
- Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directive 79/117/EEC and 91/414/EEC. Offic. J. EU 2009, 309, 1–50.
- Kucharski, M.; Urbanowicz, J. Determination of linuron and MCPA residues in soil and potato plants. Bull. Inst. Plant Breed. Acclim. 2008, 248, 61–66. (In Polish) [Google Scholar]
- Farahat, F.M.; Ellison, C.A.; Bonner, M.R. Biomarkers of chlorpyrifos exposure and effect in Egyptian cotton field workers. Environ. Health Perspect. 2011, 119, 801–806. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; He, J.; Lin, J.; Sun, X.; Sun, F.; Ou, C.; Jiang, C. Distinct response of the hepatic transcriptome to Aflatoxin B1 induced hepatocellular carcinogenesis and resistance in rats. Sci. Rep. 2016, 6, 31898. [Google Scholar] [CrossRef]
- Last publications of the Court of Justice of the European Union in the Official Journal of the European Union. Offic. J. EU 2018, 22, 1.
- Rotteveel, T.; Jorgensen, L.N.; Heimbach, U. Resistance management in Europe: A preliminary proposal for the determination of a minimum number of active substances necessary to manage resistance. OEPP EPPO Bull. 2011, 41, 432–438. [Google Scholar] [CrossRef]
Name of IUPAC | Characteristic |
---|---|
Linuron | |
3-(3,4-Dichlorophenyl)-1-methoxy-1-methylurea N′-(3,4-Dichlorophenyl)-N-methoxy-N-methyl urea Methoxydiuron | Formula: C9H10Cl2N2O2 Molecular weight: t [MWpar, MWmet] (g/mol) 249.1 Melting point: 93–94 °C Water solubility, g/100 mL: <0.1 (does not dissolve) Vapor pressure, Pa at 24 °C: 0.002 Octanol/water partition coefficient as log Pow: 3.2 |
Fluorochloridon | |
3-chloro-4-(chlorometylo)-1-[3-(trifluorometylo)fenylo]pirolidyn-2-on | Formula: C12H10Cl2F3NO Molecular weight: t [MWpar, MWmet] (g/mol) 311.0091538 Melting point: 67, 65 °C Water solubility: 1.12 × 10−4 M (does not dissolve) Vapor pressure, Pa at 24 °C: 3,301.12 × 10−6 mmHg Octanol/water partition coefficient as log Pow: 3.2 |
Clomazone | |
2-(2-chlorobenzyl)-4,4-dimethyl-oxazolidine-5-one | Formula: C12H14ClNO2 Molecular weight: t [MWpar, MWmet] (g/mol) 239.7 Melting point: Solid at 20 °C with low melting temp. Water solubility, 1.212 g/L at 20 °C (pH 7) (Purity 99.0%) Water solubility is not pH-dependent Sum of evaporated radiolabeled clomazone was 6.9% |
Features | Characteristics |
---|---|
Maturity time | very early |
Flesh color | yellow |
Skin color | yellow |
Mesh depth on a 9° scale | 6.7 |
The size of the tubers on a 9° scale | 8 |
Tuber shape | round oval |
Cooking type * | AB |
Resistance to late blight on a 9° scale | 3 |
Resistance to PVYNTN on a 9° scale | 7 |
Resistance to PLRV on a 9° scale | 5.5 |
Resistance to common scab on a 9° scale | 5 |
Storage resistance on a 9° scale | 8 |
Resistance to storage diseases on a 9° scale | 6 |
2016 | 2017 | 2018 |
---|---|---|
Fungicides | ||
Infinito 687.5 SC (propamocarb hydrochloride + fluopicolide) (625 g × dm−3 + 62.5 g × dm−3)–1.5 dm3 × ha−1 Ridomil Gold MZ 67.8 (mancozeb + metalaxyl) (640 g × dm−3 + 38.3 g × dm−3)–2 kg × ha−1 | Acrobat MZ 69 WG (dimethomorph + mancozeb) (90 g × dm−3 + 600 g × dm−3)–2.0 kg × ha−1 Infinito 687.5 SC (propamocarb hydrochloride + fluopicolide) (625 g × dm−3 +62.5 g × dm−3)–1.5 dm3 × ha−1 | Acrobat MZ 69 WG (dimethomorph + mancozeb) (90 g × dm−3 +600 g × dm−3)–2.0 kg × ha−1 Infinito 687.5 SC (propamocarb hydrochloride–625 g × dm−3, fluopicolide–62.5 g × m−3)–1.6 dm3 × ha−1 |
Insecticides | ||
Apacz 50 WG (clothianidin 500)–0.04 kg × ha−1 Proteus OD 110 (thiacloprid + deltamethrin) (100 g × dm−3+ 10 g × dm−3)–0.4 dm3 × ha−1 | Actara 25 WG (thiamethoxam 250 g × dm−3)–0.08 kg × ha−1 Nuprid 200 SC (imidacloprid 200 g × dm−3) (0.15 dm3 × ha−1) | Actara 25 WG (thiamethoxam 250)–0.08 kg × ha−1 Proteus OD 110 (thiacloprid + deltamethrin) (100 g × dm−3 + 10 g × dm−3)–0.4 dm3 × ha−1 |
Trait | Unit | Years | Average | ||
---|---|---|---|---|---|
2016 | 2017 | 2018 | |||
Granulometric composition | |||||
Sand (mm) | % | 66.85 | 67.23 | 66.81 | 66.96 |
Silt (mm) | % | 30.52 | 30.10 | 31.13 | 30.58 |
Loam (mm) | % | 2.63 | 2.67 | 2.06 | 2.45 |
Soil classification | Sandy loam (SL) | ||||
Macronutrients | |||||
P2O5 | g 100 × g−1 of soil | 20.1 | 18.9 | 24.0 | 21.0 |
K2O | g 100 × g−1 of soil | 13.1 | 10.9 | 11.8 | 11.9 |
MgO | g 100 × g−1 of soil | 7.8 | 7.0 | 6.3 | 7.0 |
Micronutrients | |||||
Cu | mg × kg−1 of soil | 7.51 | 4.92 | 8.99 | 7.02 |
Mn | mg × kg−1 of soil | 318 | 337 | 166 | 274 |
Zn | mg × kg−1 of soil | 40.1 | 56.7 | 41.1 | 46.0 |
Fe | mg × kg−1 of soil | 3760 | 3925 | 3600 | 3762 |
B | mg × kg−1 of soil | 7.24 | 5.28 | 6.04 | 6.17 |
Physico-chemical characteristics | |||||
Humus content | % | 0.94 | 1.06 | 1.03 | 1.02 |
pH | 1M KCl | 5.92 | 5.77 | 6.60 |
Month | Precipitation (mm) | Average Air Temperature (°C) | The Value of the Sielianinov Hydrothermal Coefficient * | ||||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2018 | 2016 | 2017 | 2018 | 2016 | 2017 | 2018 | |
April | 43.3 | 127.5 | 163.3 | 7.1 | 4.6 | 9.9 | 0.7 | 3.3 | 2.0 |
May | 160.8 | 244.8 | 125.0 | 15.8 | 13.9 | 13.9 | 1.6 | 2.8 | 1.4 |
June | 51.2 | 67.9 | 114.5 | 16.6 | 17.0 | 17.6 | 0.7 | 0.9 | 1.4 |
July | 109.4 | 305.9 | 102.8 | 17.1 | 18.0 | 18.0 | 1.4 | 3.7 | 1.2 |
August | 83.5 | 69.0 | 160.7 | 17.5 | 17.7 | 15.8 | 1.1 | 0.9 | 2.2 |
Total | 261.0 | 468.0 | 376.1 | - | - | - | - | - | - |
Experimental Factors | Dicotyledonous Weeds | Monocotyledonous Weeds | Crop Plants | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Terms of Observations * | ||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | X | 1 | 2 | 3 | 4 | 5 | 6 | X | 1 | 2 | 3 | 4 | 5 | 6 | x | ||
Cultivation Management ** | A | 5.1 a | 5.5 a | 8.2 a | 8.7 a | 8.8 a | 8.9 a | 7.5 a | 5.1 a | 5.5 a | 8.8 a | 8.7 a | 8.7 a | 9.0 a | 7.6 a | 1.0 a | 1.0 a | 1.0 a | 1.0 | 1.0 a | 1.0 a | 1.0 a |
B | 4.9 a | 5.1 a | 8.3 a | 8.6 a | 8.9 a | 9.0 a | 7.5 a | 4.9 a | 5.2 a | 5.3 a | 9.0 a | 9.0 a | 9.0 a | 7.0 b | 1.8 a | 2.4 a | 1.8 a | 1.4 a | 1.2 a | 1.0 a | 1.6 a | |
HSD0.05 | ns **** | ns | ns | 0.4 | ns | ns | ||||||||||||||||
Weed control systems *** | M | 9.0 a | 8.8 a | 9.0 a | 9.0 a | 9.0 a | 9.0 a | 9.0 a | 9.0 a | 9.0 a | 8.0 a | 8.5 a | 9.0 a | 9.0 a | 8.8 a | 1.0 a | 1.0b | 1.0 a | 1.0 a | 1.0 a | 1.0 a | 1.0 b |
Af | 4.8 a | 4.6 a | 9.0 a | 9.0 a | 9.0 a | 9.0 a | 7.6 b | 4.8 a | 4.6 a | 5.0 a | 8.7 a | 9.0 a | 9.0 a | 6.9 b | 1.6 a | 1.7a | 1.4 a | 1.2 a | 1.1 a | 1.0 a | 1.2 a | |
R | 2.9 a | 3.9 a | 8.0 a | 8.5 a | 8.9 a | 9.0 a | 6.9 b c | 2.9 a | 3.9 a | 8.0 a | 8.5 a | 8.9 a | 9.0 a | 6.9 b | 1.8 a | 2.3 a | 1.8 a | 1.4 a | 1.2 a | 1.0 a | 1.5 a | |
Af + C | 3.3 a | 4.0 a | 7.3 a | 8.1 a | 8.6 a | 9.0 a | 6.7 b c | 3.3 a | 4.0 a | 7.3 a | 8.4 a | 8.6 a | 9.0 a | 6.8 b | 1.4 a | 1.6 a | 1.4 a | 1.2 a | 1.1 a | 1.0 a | 1.3 a | |
HSD0.05 | ns | 1.0 | ns | 0.8 | ns | 0.3 | ||||||||||||||||
Years | 2016 | 3.0 a | 3.7 a | 8.7 a | 9.0 a | 9.0 a | 9.0 a | 7.1b | 3.2 a | 4.0 a | 7.0 a | 9.0 a | 9.0 a | 9.0 a | 6.9 b | 1.6 a | 2.2 a | 1.6 a | 1.2 a | 1.1 a | 1.0 a | 1.4 a |
2017 | 4.7 a | 4.5 a | 8.5 a | 8.6 a | 8.6 a | 9.0 a | 7.3 b | 4.6 a | 4.8 a | 7.2 a | 8.6 a | 8.7 a | 9.0 a | 7.2 b | 1.4 a | 1.7 a | 1.5 a | 1.2 a | 1.1 a | 1.0 a | 1.3 a | |
2018 | 7.2 a | 7.7 a | 7.8 a | 8.6 a | 9.0 a | 9.0 a | 8.2 a | 7.3 a | 7.4 a | 7.1 a | 8.0 a | 9.0 a | 9.0 a | 8.0 a | 1.3 a | 1.2 a | 1.1 a | 1.1 a | 1.0 a | 1.0 a | 1.1 b | |
HSD0.05 | ns | 0.8 | ns | 0.6 | ns | 0.2 | ||||||||||||||||
Average | 5.0 c | 5.3 c | 8.3 b | 8.6 a | 8.9 a | 9.0 a | 7.5 | 5.0 c | 5.4 c | 7.1 b | 8.5 a | 8.9 a | 9.0 a | 7.3 | 1.4 b | 1.7 a | 1.4 b | 1.2 b | 1.1 c | 1.0 c | 1.3 | |
HSD0.05 | 1.5 | 1.2 | 0.3 |
Experimental Factors * | A Fresh Mass of Weeds | Dry Mass of Weeds | |||||||
---|---|---|---|---|---|---|---|---|---|
Observation Dates ** | |||||||||
1 | 2 | 3 | Average | 1 | 2 | 3 | Average | ||
Cultivation management | Traditional | 37 a *** | 63 a | 203 a | 101 a | 7 a | 9 a | 92 a | 36 a |
PE-sheeting | 24 a | 66 a | 211 a | 100 a | 5 a | 11 a | 89 a | 35 a | |
HSD0.05 | ns **** | ns | ns | ns | |||||
Weed control Systems | Mechanical | 21 a | 55 a | 201 a | 92 b | 4 a | 9 a | 89 b | 34 b |
Afalon | 27 a | 53 a | 170 a | 83 b | 5 a | 9 a | 82 b | 32 b | |
Racer | 36 a | 43 b | 270 a | 116 a | 7 a | 9 a | 112 a | 43 a | |
Afalon + Command | 21 a | 72 a | 185 a | 93 b | 4 a | 15 a | 83 b | 34 b | |
HSD0.05 | 34 | 15 | 19 | 9 | |||||
Years | 2016 | 13 b | 58 b | 482 a | 184 a | 2 a | 11 a | 101 a | 38 b |
2017 | 5 b | 15 c | 105 b | 42 c | 1 a | 2 a | 31 a | 11 c | |
2018 | 61 a | 95 a | 36 c | 64 b | 12 a | 18 a | 143 a | 58 a | |
HSD0.05 | 28 | 12 | ns | 7 | |||||
Average | 27 c | 56 b | 207 a | 96 | 6 b | 10 b | 92 a | 36 | |
HSD0.05 | 12 | 7 |
Experimental Factors * | Monocotyledonous | Dicotyledonous | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observation Dates ** | |||||||||||||
1 | 2 | 3 | X | 1 | 2 | 3 | X | 1 | 2 | 3 | X | ||
Cultivation management | Traditional | 47 a *** | 20 a | 20 a | 29 a | 27 a | 22 a | 20 a | 23 a | 74 a | 42 a | 40 a | 52 a |
PE-sheeting | 35 a | 15 a | 16 a | 22 b | 22 a | 10 a | 20 a | 17 a | 57 a | 25 a | 36 a | 39 a | |
HSD0.05 | ns ** | 3 | ns | ns | ns | ns | |||||||
Weed control systems | Mechanical | 45 a | 20 a | 19 a | 28 b | 26 a | 12 a | 18 a | 18 b | 71 a | 32 b | 36 b | 46 b |
Afalon | 36 a | 11 b | 10 b | 19 c | 32 a | 22 a | 19 a | 24 a | 68 a | 33 b | 29 b | 43 b | |
Racer | 43 a | 31 a | 30 a | 35 a | 25 a | 20 a | 26 a | 24 a | 68 a | 51 a | 56 a | 58 a | |
Afalon + Command | 41 a | 12 b | 13 b | 22 c | 18 a | 12 a | 14 a | 15 b | 59 a | 23 b | 27 b | 36 c | |
HSD0.05 | 13 | 6 | ns | 5 | 19 | 9 | |||||||
Years | 2016 | 23 b | 33 a | 43 a | 33 a | 9 c | 26 a | 38 a | 25 a | 33 b | 59 a | 81 a | 58 a |
2017 | 19 b | 18 b | 6 b | 14 b | 22 b | 14 b | 10 b | 16 c | 41 b | 32 b | 16 b | 30 c | |
2018 | 81 a | 4 c | 4 b | 30 a | 44 a | 8 b | 9 b | 20 b | 125 a | 12 c | 13 b | 50 b | |
HSD0.05 | 10 | 4 | 10 | 4 | 16 | 7 | |||||||
Average | 41 a | 18 b | 18 b | 26 | 25 a | 16 b | 19 b | 20 | 66 a | 35 b | 37 b | 46 | |
HSD0.05 | 4 | 4 | 7 |
Experimental Factors | Agropyron repens | Apera spica-venti | Avena fatua | Echinochloa crus-galli | Poa annua | Setaria glauca | Setaria viridis | Anagalis arvensis | Anthemis arvensis | Centaurea cyanus | Chenopodium album | Cirsium arvense | Galium aparine | Galeopsis tetrahit | Myosotis arvensis | Polygonum convolvulus | Polygonum lapathifolium | Poligonum aviculare | Stellaria media | Spergula arvensis | Veronica hederifolia | Vicia hirsuta | Vicia cracca | Vicia tetrasperma | Viola arvensis | Raphanus raphanistrum | Rumex acetosella | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultivation management ** | T | 0.6 | 0.2 | 0.1 | 25.4 | 0.1 | 1.6 | 1.2 | 0.1 | 5.3 | 0.8 | 5.5 | 0.3 | 0.0 | 0.0 | 0.3 | 1.7 | 0.2 | 0.1 | 0.5 | 0.5 | 0.8 | 0.1 | 0.1 | 0.2 | 1.1 | 3.0 | 0.3 |
PE | 0.8 | 0.2 | 0.1 | 19.4 | 0.1 | 0.8 | 1.1 | 0.1 | 5.9 | 0.8 | 4.5 | 1.1 | 0.0 | 0.0 | 0.3 | 1.8 | 0.2 | 0.3 | 0.6 | 0.5 | 0.6 | 0.1 | 0.0 | 0.3 | 0.7 | 3.3 | 0.1 | |
HSD0.05 | n * | n | n | 5.6 | n | 0.4 | n | n | 0.4 | n | n | 0.6 | n | n | n | n | n | n | n | n | n | n | n | n | 0.4 | n | n | |
Weed control system *** | A | 0.7 | 0.1 | 0.1 | 24.4 | 0.2 | 1.5 | 1.4 | 0.1 | 3.0 | 1.0 | 5.3 | 0.6 | 0.0 | 0.2 | 0.2 | 1.9 | 0.1 | 0.1 | 0.6 | 0.4 | 0.4 | 0.1 | 0.0 | 0.3 | 0.6 | 4.4 | 0.1 |
B | 0.5 | 0.1 | 0.0 | 16.5 | 0.0 | 0.6 | 0.7 | 0.1 | 8.8 | 0.6 | 4.0 | 0.6 | 0.0 | 0.1 | 0.4 | 2.4 | 0.3 | 0.2 | 0.4 | 0.6 | 1.4 | 0.1 | 0.1 | 0.6 | 1.1 | 2.9 | 0.3 | |
C | 0.5 | 0.3 | 0.1 | 29.8 | 0.1 | 1.9 | 1.6 | 0.2 | 6.7 | 0.8 | 9.0 | 1.2 | 0.0 | 0.0 | 0.4 | 1.0 | 0.0 | 0.1 | 0.6 | 0.9 | 0.6 | 0.0 | 0.0 | 0.3 | 0.6 | 2.9 | 0.2 | |
D | 0.5 | 0.2 | 0.1 | 18.9 | 0.0 | 0.8 | 1.0 | 0.1 | 3.9 | 0.9 | 1.9 | 0.5 | 0.1 | 0.0 | 0.2 | 1.9 | 0.4 | 0.2 | 0.9 | 0.1 | 0.3 | 0.0 | 0.1 | 0.1 | 1.3 | 2.6 | 0.1 | |
HSD0.05 | 0.5 | n | n | 5.6 | n | 0.4 | 0.7 | 0.1 | 2.3 | n | 3.1 | 0.6 | 0.1 | 0.1 | 0.2 | 1.1 | 0.2 | n | 0.4 | 0.7 | 0.5 | n | n | 0.3 | 0.5 | n | n | |
Years | 2016 | 0.3 | 0.5 | 0.3 | 25.8 | 0.3 | 3.1 | 2.9 | 0.2 | 13.5 | 1.2 | 3.4 | 0.1 | 0.0 | 0.0 | 0.6 | 1.1 | 0.0 | 0.0 | 1.2 | 0.3 | 2.0 | 0.0 | 0.0 | 1.0 | 1.3 | 0.0 | 0.0 |
2017 | 1.6 | 0.0 | 0.0 | 12.5 | 0.0 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 2.7 | 2.1 | 0.1 | 0.0 | 0.1 | 0.2 | 0.5 | 0.5 | 0.0 | 1.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 8.7 | 0.5 | |
2018 | 0.3 | 0.0 | 0.0 | 29.0 | 0.0 | 0.0 | 0.5 | 0.1 | 0.0 | 1.0 | 9.1 | 0.0 | 0.0 | 0.2 | 0.2 | 4.1 | 0.1 | 0.0 | 0.6 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 1.2 | 0.9 | 0.0 | |
HSD0.05 | 0.4 | 0.2 | 0.2 | 4.4 | 0.2 | 0.3 | 0.5 | 0.1 | 1.8 | 0.4 | 2.5 | 0.4 | 0.1 | 0.1 | 0.2 | 0.9 | 0.2 | 0.1 | 0.3 | 0.5 | 0.4 | 0.1 | 0.1 | 0.2 | 0.4 | 1.7 | 0.3 | |
Observation dates **** | I | 0.9 | 0.1 | 0.0 | 39.9 | 0.0 | 0.0 | 0.0 | 0.1 | 4.1 | 0.7 | 7.8 | 0.1 | 0.0 | 0.1 | 0.1 | 3.2 | 0.2 | 0.1 | 0.4 | 0.1 | 0.3 | 0.2 | 0.0 | 0.4 | 1.1 | 6.1 | 0.2 |
II | 0.6 | 0.1 | 0.1 | 17.1 | 0.3 | 0.0 | 0.8 | 0.0 | 6.3 | 0.8 | 3.8 | 1.3 | 0.0 | 0.0 | 0.0 | 0.5 | 0.1 | 0.3 | 0.2 | 0.1 | 0.8 | 0.0 | 0.1 | 0.2 | 0.4 | 2.9 | 0.0 | |
III | 0.7 | 0.3 | 0.2 | 10.2 | 0.1 | 3.7 | 2.7 | 0.2 | 6.4 | 0.9 | 3.5 | 0.8 | 0.1 | 0.0 | 0.7 | 1.7 | 0.2 | 0.2 | 1.3 | 1.4 | 0.9 | 0.0 | 0.0 | 0.4 | 1.2 | 0.6 | 0.3 | |
HSD0.05 | n | 0.2 | 0.2 | 4.4 | 0.2 | 0.3 | 0.5 | 0.1 | 1.8 | n | 2.5 | 0.4 | 0.1 | n | 0.2 | 0.9 | n | 0.1 | 0.3 | 0.5 | 0.4 | 0.1 | 0.1 | n | 0.4 | 1.7 | n | |
Average | 0.7 | 0.2 | 0.1 | 22.4 | 0.1 | 1.2 | 1.2 | 0.1 | 5.6 | 0.8 | 5.0 | 0.7 | 0.0 | 0.0 | 0.3 | 1.8 | 0.2 | 0.2 | 0.6 | 0.5 | 0.7 | 0.1 | 0.0 | 0.3 | 0.9 | 3.2 | 0.2 |
Active Substance | Years | Average | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
Linuron | 0.0160 ± 0.0031 a,* | 0.0140 ± 0.0032 a | 0.0101 ± 0.0025 a | 0.013 a |
Fluorochloridon | 0.0150 ± 0.0021 b | 0.0132 ± 0.0020 b | 0.0080 ± 0.0007 b | 0.012 a |
Clomazone | 0.0081 ± 0.0003 c | 0.0007 ± 0.0001 b | 0.0050 ± 0.0002 b | 0.004 b |
Average | 0.0130 a | 0.009 b | 0.0077 b | |
HSD0.05 | Herbicides (H)—0.006; years (Y)—0.006, H × Y—0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skiba, D.; Sawicka, B.; Pszczółkowski, P.; Barbaś, P.; Krochmal-Marczak, B. The Impact of Cultivation Management and Weed Control Systems of Very Early Potato on Weed Infestation, Biodiversity, and Health Safety of Tubers. Life 2021, 11, 826. https://doi.org/10.3390/life11080826
Skiba D, Sawicka B, Pszczółkowski P, Barbaś P, Krochmal-Marczak B. The Impact of Cultivation Management and Weed Control Systems of Very Early Potato on Weed Infestation, Biodiversity, and Health Safety of Tubers. Life. 2021; 11(8):826. https://doi.org/10.3390/life11080826
Chicago/Turabian StyleSkiba, Dominika, Barbara Sawicka, Piotr Pszczółkowski, Piotr Barbaś, and Barbara Krochmal-Marczak. 2021. "The Impact of Cultivation Management and Weed Control Systems of Very Early Potato on Weed Infestation, Biodiversity, and Health Safety of Tubers" Life 11, no. 8: 826. https://doi.org/10.3390/life11080826
APA StyleSkiba, D., Sawicka, B., Pszczółkowski, P., Barbaś, P., & Krochmal-Marczak, B. (2021). The Impact of Cultivation Management and Weed Control Systems of Very Early Potato on Weed Infestation, Biodiversity, and Health Safety of Tubers. Life, 11(8), 826. https://doi.org/10.3390/life11080826