The Antioxidant, Analgesic, Anti-Inflammatory, and Wound Healing Activities of Haplophyllum tuberculatum (Forsskal) A. Juss Aqueous and Ethanolic Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Aqueous and Hydroethanolic Extract
2.2. Determination of the Phenolic Composition of Extracts by LC-MS
2.3. In Vitro Antioxidant Activity
2.3.1. Determination of Total Antioxidant Capacity (TAC)
2.3.2. Reducing Power Test
2.3.3. Scavenging of the Free Radical DPPH
2.4. Pharmacological Activities
2.4.1. Animal Handling and Housing
2.4.2. Analgesic Activity
2.4.3. Carrageenan-Induced Rat Paw Inflammation
2.4.4. Wound Healing Test
Preparation of Ointments with Extracts of H. Tuberculatum
2.4.5. Burn Wound Induction
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Composition of HTEE and HTAE Extracts by LC-MS
3.2. Antioxidant Activity (TAC, DPPH an FRAP Tests)
3.3. Pharmacological Activities
3.3.1. Peripheral Analgesic Activity
3.3.2. Anti-Inflammatory Activity
3.3.3. Wound Healing Activity of H. tuberculatum Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Es-safi, I.; Mechchate, H. Elaboration of a Phytomedicine for Intestinal Comfort Based on the European Union Regulation on Traditional Use: Mixture Design Optimization. Foundations 2021, 1, 175–183. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of Marrubium Vulgare L. Sci. World J. 2021, 2021, 7011493. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An Updated Knowledge of Black Seed (Nigella Sativa Linn.): Review of Phytochemical Constituents and Pharmacological Properties. J. Herb. Med. 2021, 25, 100404. [Google Scholar] [CrossRef] [PubMed]
- El Abdali, Y.; Agour, A.; Allali, A.; Bourhia, M.; El Moussaoui, A.; Eloutassi, N.; Mohammed Salamatullah, A.; Alzahrani, A.; Ouahmane, L.; Aboul-Soud, M.A.M.; et al. Lavandula Dentata L.: Phytochemical Analysis, Antioxidant, Antifungal and Insecticidal Activities of Its Essential Oil. Plants 2022, 11, 311. [Google Scholar] [CrossRef]
- Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. Anacyclus Pyrethrum (L.): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020, 25, 5469. [Google Scholar] [CrossRef]
- Al-snafi, A.E. Pharmacological Importance of Haplophyllum Species Grown in Iraq—A Review. IOSR J. Pharm. 2018, 8, 54–62. [Google Scholar]
- Raissi, A.; Arbabi, M.; Roustakhiz, J.; Hosseini, M. Haplophyllum Tuberculatum: An Overview. J. HerbMed Pharmacol. 2016, 5, 125–130. [Google Scholar]
- Hadjadj, S.; Bayoussef, Z.; El Hadj-Khelil, A.O.; Beggat, H.; Bouhafs, Z.; Boukaka, Y.; Khaldi, I.A.; Mimouni, S.; Sayah, F.; Tey, M. Ethnobotanical Study and Phytochemical Screening of Six Medicinal Plants Used in Traditional Medicine in the Northeastern Sahara of Algeria (Area of Ouargla). J. Med. Plants Res. 2015, 9, 1049–1059. [Google Scholar]
- Agour, A.; Mssillou, I.; Saghrouchni, H.; Bari, A.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Potential and Antimicrobial Properties of the Essential Oils of Haplophyllum Tuberculatum (Forsskal) A. Juss from Morocco. Trop. J. Nat. Prod. Res. 2020, 4, 1108–1115. [Google Scholar] [CrossRef]
- Hamdi, A.; Majouli, K.; Flamini, G.; Marzouk, B.; Marzouk, Z.; Heyden, Y.V. Antioxidant and Anticandidal Activities of the Tunisian Haplophyllum Tuberculatum (Forssk.) A. Juss. Essential Oils. South Afr. J. Bot. 2017, 112, 210–214. [Google Scholar] [CrossRef]
- Al-Rehaily, A.J.; Alqasoumi, S.I.; Yusufoglu, H.S.; Al-Yahya, M.A.; Demirci, B.; Tabanca, N.; Wedge, D.E.; Demirci, F.; Bernier, U.R.; Becnel, J.-J. Chemical Composition and Biological Activity of Haplophyllum Tuberculatum Juss. Essential Oil. J. Essent. Oil Bear. Plants 2014, 17, 452–459. [Google Scholar] [CrossRef]
- Mohamed, A.H.; Ali, M.B.; Bashir, A.K.; Salih, A.M. Influence of Haplophyllum Tuberculatum on the Cardiovascular System. Int. J. Pharmacogn. 1996, 34, 213–217. [Google Scholar] [CrossRef]
- Hamdi, A.; Majouli, K.; Abdelhamid, A.; Marzouk, B.; Belghith, H.; Chraief, I.; Bouraoui, A.; Marzouk, Z.; Heyden, Y.V. Pharmacological Activities of the Organic Extracts and Fatty Acid Composition of the Petroleum Ether Extract from Haplophyllum Tuberculatum Leaves. J. Ethnopharmacol. 2018, 216, 97–103. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Conte, R.; Hano, C.; Amaghnouje, A.; Jawhari, F.Z.; Radouane, N.; Bencheikh, N.; Grafov, A.; Bousta, D. In Vivo and In Vitro Antidiabetic and Anti-Inflammatory Properties of Flax (Linum Usitatissimum L.) Seed Polyphenols. Nutrients 2021, 13, 2759. [Google Scholar] [CrossRef] [PubMed]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal Plants and Their Components for Wound Healing Applications. Future J. Pharm. Sci. 2021, 7, 53. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Oyaizy, M. Studies on Product of Browning Reaction Prepared from Glucose Amine. Japan Journal of Nutrition. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Sahin, F.; Gulluce, M.; Daferera, D.; Sokmen, A.; Sokmen, M.; Polissiou, M.; Agar, G.; Ozer, H. Biological Activities of the Essential Oils and Methanol Extract of Origanum Vulgare Ssp. Vulgare in the Eastern Anatolia Region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Sabry, O.M.; EI-Sayed, A.M.; Slee, A.A. Potential Anti-Microbial, Anti-Inflammatory and Anti-Oxidant Activities of Haplophyllum Tuberculatum Growing in Libya. J. Pharmacogn. Nat. Prod. 2016, 2, 116. [Google Scholar] [CrossRef] [Green Version]
- Karbab, A.; Mokhnache, K.; Ouhida, S.; Charef, N.; Djabi, F.; Arrar, L.; Mubarak, M.S. Anti-Inflammatory, Analgesic Activity, and Toxicity of Pituranthos Scoparius Stem Extract: An Ethnopharmacological Study in Rat and Mouse Models. J. Ethnopharmacol. 2020, 258, 112936. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Proc. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Bahramsoltani, R.; Abdolghaffari, A.H.; Rahimi, R.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M.; Farzaei, M.H. Efficacy of Topical Application of Standardized Extract of Tragopogon Graminifolius in the Healing Process of Experimental Burn Wounds. J. Tradit. Complement. Med. 2019, 9, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Diar, A.; Ekbal, A.; Ali, A. Qualitative and Quantitative Investigations of Furocoumarin Derivatives (Psoralens) of Haplophyllum Tuberculatum (Rutaceae). Al Mustansiriyah J. Pharm. Sci. 2005, 2, 24–36. [Google Scholar] [CrossRef]
- Diar, A.; Enas, J.; Ekbal, A.K.; Ali, A.S. Qualitative and quantitative investigations of furocoumarin derivatives (psoralens) of H. tuberculatum (Rutaceae). pdfter Alkaloid, Lignan and Flavonoid Constituents of Haplophyllum Tuberculatum from Sudan. Planta Med. 1981, 43, 148–152. [Google Scholar]
- Youssef, D. Lignans From the Aerial Parts of Haplophyllum Tuberculatum (Forssk) a. Juss. Bull. Pharm. Sci. Assiut 2005, 28, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Al-Qathama, A.; Gibbons, S.; Prieto, J.M. Differential Modulation of Bax/Bcl-2 Ratio and Onset of Caspase-3/7 Activation Induced by Derivatives of Justicidin B in Human Melanoma Cells A375. Oncotarget 2017, 8, 95999–96012. [Google Scholar] [CrossRef] [Green Version]
- Prieto, J.M.; Recio, M.C.; Giner, R.M.; Máñez, S.; Massmanian, A.; Waterman, P.G.; Ríos, J.L. Topical Anti-Inflammatory Lignans from Haplophyllum Hispanicum Haplophyllum Hispanicum. Z. Nat. C 1996, 51, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Mohammadhosseini, M.; Venditti, A.; Frezza, C.; Serafini, M.; Bianco, A.; Mahdavi, B. The Genus Haplophyllum Juss.: Phytochemistry and Bioactivities—A Review. Molecules 2021, 26, 4664. [Google Scholar] [CrossRef]
- Hamdi, A.; Viane, J.; Mahjoub, M.A.; Majouli, K.; Gad, M.H.H.; Kharbach, M.; Demeyer, K.; Marzouk, Z.; Heyden, Y. Vander Polyphenolic Contents, Antioxidant Activities and UPLC–ESI–MS Analysis of Haplophyllum Tuberculatum A. Juss Leaves Extracts. Int. J. Biol. Macromol. 2018, 106, 1071–1079. [Google Scholar] [CrossRef]
- Eissa, T.F.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Biological Activity of HPLC-Characterized Ethanol Extract from the Aerial Parts of Haplophyllum Tuberculatum. Pharm. Biol. 2014, 52, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Abou-zeid, H.M. Phytochemical Screening and Antimicrobial Activities of some Wild Medicinal Plants of the Western Mediterranean Coastal Region. Egypt. Int. J. Pharm. Sci. Res. 2014, 5, 3072–3080. [Google Scholar] [CrossRef]
- Al-Brashdi, A.S.; Al-Ariymi, H.; Al Hashmi, M.; Khan, S.A. Evaluation of Antioxidant Potential, Total Phenolic Content and Phytochemical Screening of Aerial Parts of a Folkloric Medicine, Haplophyllum Tuberculatum (Forssk) A. Juss. J. Coast. Life Med. 2016, 4, 315–319. [Google Scholar] [CrossRef]
- Bouyahya, A.; Mechchate, H.; Oumeslakht, L.; Zeouk, I.; Aboulaghras, S.; Balahbib, A.; Zengin, G.; Kamal, M.A.; Gallo, M.; Montesano, D.; et al. The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022, 12, 367. [Google Scholar] [CrossRef]
- Brodowska, K.M. Natural Flavonoids: Classification, Potential Role, and Application of Flavonoid Analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
HTEE | HTAE | |||
---|---|---|---|---|
AUC | % | AUC | % | |
p-Coumaric acid | 989,312 | 0.38% | - | - |
Quercetin-3-O-glucoside | 9,957,638 | 3.83% | - | - |
Quercetin-3-O-glucuronic acid | 32,205,427 | 12.04% | 4,165,106 | 4.18% |
Kaempferol-3-O-glucose | 41,966,154 | 16.16% | 6,337,995 | 6.37% |
Quercetin-3-O-hexose deoxyhexose | 41,926,648 | 16.14% | 6,214,174 | 6.24% |
Isorhamnetin-7-O-pentose | 10,513,919 | 4.05% | - | - |
Luteolin 7-O-glucoside | 10,652,328 | 4.05% | - | - |
Kaempferol-3-O-glucuronic acid | 10,988,309 | 4.05% | 2,887,322 | 2.90% |
Kaempferol-3-O-hexose deoxyhexose | 13,135,204 | 5.05% | 48,833,492 | 49.08% |
Protocatechuic acid | 5,194,517 | 2.00% | 190,045 | 0.19% |
p-Hydroxybenzoic\Salicylic acid | 1,105,533 | 0.42% | - | - |
Gentisic acid | 5,324,786 | 2.04% | - | - |
Synaptic acid | 1,977,146 | 0.76% | - | - |
Ferulic acid | 4,290,764 | 1.65% | - | - |
Gallocatechin\Epigallocatechin | 12,874,992 | 4.96% | - | - |
Procyanidins | 98,17,388 | 3.78% | 18,653,758 | 18.75% |
Rutin | 46,831,385 | 18.02% | 7,251,975 | 7.28% |
Naringin | - | - | 4,945,206 | 4.97% |
Total | 259,751,450 | 100% | 99,479,073 | 100% |
HTEE | HTAE | |
---|---|---|
Flavonol glycosides | 65.37% | 68.77% |
Flavanols | 22.98% | 7.28% |
Flavanone | - | 4.97% |
Condensed tannin | 3.78% | 18.75% |
Phenolic acids | 7.25% | 0.19% |
DPPH (IC50 mg/mL) | FRAP (EC50 mg/mL) | TAC (mg AAE/g Extract) | |||||
---|---|---|---|---|---|---|---|
HTEE | HTAE | A.As | HTEE | HTAE | A.As | HTEE | HTAE |
0.37104 | - | 0.00279 | 0.16944 | 0.15554 | 0.00297 | 280.98 ± 5.32 | 85.41 ± 1.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agour, A.; Mssillou, I.; Es-safi, I.; Conte, R.; Mechchate, H.; Slighoua, M.; Amrati, F.E.-Z.; Parvez, M.K.; Numan, O.; Bari, A.; et al. The Antioxidant, Analgesic, Anti-Inflammatory, and Wound Healing Activities of Haplophyllum tuberculatum (Forsskal) A. Juss Aqueous and Ethanolic Extract. Life 2022, 12, 1553. https://doi.org/10.3390/life12101553
Agour A, Mssillou I, Es-safi I, Conte R, Mechchate H, Slighoua M, Amrati FE-Z, Parvez MK, Numan O, Bari A, et al. The Antioxidant, Analgesic, Anti-Inflammatory, and Wound Healing Activities of Haplophyllum tuberculatum (Forsskal) A. Juss Aqueous and Ethanolic Extract. Life. 2022; 12(10):1553. https://doi.org/10.3390/life12101553
Chicago/Turabian StyleAgour, Abdelkrim, Ibrahim Mssillou, Imane Es-safi, Raffaele Conte, Hamza Mechchate, Meryem Slighoua, Fatima Ez-Zahra Amrati, Mohammad Khalid Parvez, Omer Numan, Amina Bari, and et al. 2022. "The Antioxidant, Analgesic, Anti-Inflammatory, and Wound Healing Activities of Haplophyllum tuberculatum (Forsskal) A. Juss Aqueous and Ethanolic Extract" Life 12, no. 10: 1553. https://doi.org/10.3390/life12101553