The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. NGS of the Five Microtia/OAVS Candidate Genes
2.3. Statistical and Gene Interaction Analyses
3. Results
3.1. Association Analysis
3.2. MDR Interaction Analysis
4. Discussion
4.1. Association Analysis
4.2. MDR Interaction Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alasti, F.; Van Camp, G. Genetics of Microtia and Associated Syndromes. J. Med. Genet. 2009, 46, 361–369. [Google Scholar] [CrossRef]
- Barisic, I.; Odak, L.; Loane, M.; Garne, E.; Wellesley, D.; Calzolari, E.; Dolk, H.; Addor, M.C.; Arriola, L.; Bergman, J.; et al. Prevalence, Prenatal Diagnosis and Clinical Features of Oculo-Auriculo-Vertebral Spectrum: A Registry-Based Study in Europe. Eur. J. Hum. Genet. 2014, 22, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Beleza-Meireles, A.; Clayton-Smith, J.; Saraiva, J.M.; Tassabehji, M. Oculo-Auriculo-Vertebral Spectrum: A Review of the Literature and Genetic Update. J. Med. Genet. 2014, 51, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Luquetti, D.V.; Heike, C.L.; Hing, A.V.; Cunningham, M.L.; Cox, T.C. Microtia: Epidemiology and Genetics. Am. J. Med. Genet. Part A 2012, 158A, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Gendron, C.; Schwentker, A.; van Aalst, J. Genetic Advances in the Understanding of Microtia. J. Pediatr. Genet. 2016, 5, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragagnolo, S.; Colovati, M.E.S.; Souza, M.Z.; Dantas, A.G.; de Soares, M.F.F.; Melaragno, M.I.; Perez, A.B. Clinical and Cytogenomic Findings in OAV Spectrum. Am. J. Med. Genet. Part A 2018, 176, 638–648. [Google Scholar] [CrossRef]
- Glaeser, A.B.; Diniz, B.L.; Deconte, D.; Santos, A.S.; Rosa, R.F.M.; Zen, P.R.G. Microarray-Based Comparative Genomic Hybridization, Multiplex Ligation-Dependent Probe Amplification, and High-Resolution Karyotype for Differential Diagnosis Oculoauriculovertebral Spectrum: A Systematic Review. J. Pediatr. Genet. 2020, 09, 149–157. [Google Scholar] [CrossRef]
- Guida, V.; Calzari, L.; Fadda, M.T.; Piceci-Sparascio, F.; Digilio, M.C.; Bernardini, L.; Brancati, F.; Mattina, T.; Melis, D.; Forzano, F.; et al. Genome-Wide DNA Methylation Analysis of a Cohort of 41 Patients Affected by Oculo-Auriculo-Vertebral Spectrum (OAVS). Int. J. Mol. Sci. 2021, 22, 1190. [Google Scholar] [CrossRef]
- Rollnick, B.R.; Kaye, C.I. Hemifacial Microsomia and Variants: Pedigree Data. Am. J. Med. Genet. 1983, 15, 233–253. [Google Scholar] [CrossRef]
- Llano-Rivas, I.; González-del Angel, A.; del Castillo, V.; Reyes, R.; Carnevale, A. Microtia: A Clinical and Genetic Study at the National Institute of Pediatrics in Mexico City. Arch. Med. Res. 1999, 30, 120–124. [Google Scholar] [CrossRef]
- Tasse, C.; Majewski, F.; Böhringer, S.; Fischer, S.; Lüdecke, H.J.; Gillessen-Kaesbach, G.; Wieczorek, D. A Family with Autosomal Dominant Oculo-Auriculo-Vertebral Spectrum. Clin. Dysmorphol. 2007, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Foroud, T.; Wetherill, L.; Vinci-booher, S.; Elizabeth, S.; Ward, R.E.; Hoyme, H.E.; Robinson, L.K.; Rogers, J.; Meintjes, E.M.; Molteno, C.D.; et al. Relation Over Time Between Facial Measurements and Cognitive Outcomes in Fetal Alcohol Exposed. Alcohol. Clin. Exp. Res. 2013, 36, 1634–1646. [Google Scholar] [CrossRef] [Green Version]
- Berenguer, M.; Darnaudery, M.; Claverol, S.; Bonneu, M.; Lacombe, D.; Rooryck, C. Prenatal Retinoic Acid Exposure Reveals Candidate Genes for Craniofacial Disorders. Sci. Rep. 2018, 8, 17492. [Google Scholar] [CrossRef] [Green Version]
- Artunduaga, M.A.; Quintanilla-Dieck, M.D.L.; Greenway, S.; Betensky, R.; Nicolau, Y.; Hamdan, U.; Jarrin, P.; Osorno, G.; Brent, B.; Eavey, R.; et al. A Classic Twin Study of External Ear Malformations, Including Microtia. N. Engl. J. Med. 2009, 361, 1216–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, G.M.; Carmichael, S.L.; Kaidarova, Z.; Harris, J.A. Epidemiologic Characteristics of Anotia and Microtia in California, 1989–1997. Birth Defects Res. Part A-Clin. Mol. Teratol. 2004, 70, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Forrester, M.B.; Merz, R.D. Descriptive Epidemiology of Anotia and Microtia, Hawaii, 1986–2002. Congenit. Anom. 2005, 45, 119–124. [Google Scholar] [CrossRef]
- Alasti, F.; Sadeghi, A.; Sanati, M.H.; Farhadi, M.; Stollar, E.; Somers, T.; Van Camp, G. A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family. Am. J. Hum. Genet. 2008, 82, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.K.; Viana, L.M.; Helwig, C.C.; Artunduaga, M.A.; Quintanilla-Dieck, L.; Jarrin, P.; Osorno, G.; Mcdonough, B.; Depalma, S.R.; Eavey, R.D.; et al. HOXA2 Haploinsufficiency in Dominant Bilateral Microtia and Hearing Loss. Hum. Mutat. 2013, 34, 1347–1351. [Google Scholar] [CrossRef] [Green Version]
- Piceci, F.; Morlino, S.; Castori, M.; Buffone, E.; De Luca, A.; Grammatico, P.; Guida, V. Identification of a Second HOXA2 Nonsense Mutation in a Family with Autosomal Dominant Non-Syndromic Microtia and Distinctive Ear Morphology. Clin. Genet. 2017, 91, 774–779. [Google Scholar] [CrossRef]
- Meddaugh, H.R.; Zambrano, R.M. Novel HOXA2 Variant Presenting with Microtia and Variable Hearing Impairment in Four-Generation Pedigree. Clin. Dysmorphol. 2020, 29, 104–106. [Google Scholar] [CrossRef]
- Si, N.; Meng, X.; Lu, X.; Zhao, X.; Li, C.; Yang, M.; Zhang, Y.; Wang, C.; Guo, P.; Zhang, X.; et al. Identification of Loss-of-Function HOXA2 Mutations in Chinese Families with Dominant Bilateral Microtia. Gene 2020, 757, 144945. [Google Scholar] [CrossRef]
- Bartel-Friedrich, S. Congenital Auricular Malformations: Description of Anomalies and Syndromes. Fac. Plast. Surg. 2015, 31, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Lopez, E.; Berenguer, M.; Tingaud-Sequeira, A.; Marlin, S.; Toutain, A.; Denoyelle, F.; Picard, A.; Charron, S.; Mathieu, G.; de Belvalet, H.; et al. Mutations in MYT1, Encoding the Myelin Transcription Factor 1, Are a Rare Cause of OAVS. J. Med. Genet. 2016, 53, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, M.; Tingaud-Sequeira, A.; Colovati, M.; Melaragno, M.I.; Bragagnolo, S.; Perez, A.B.A.; Arveiler, B.; Lacombe, D.; Rooryck, C. A Novel de Novo Mutation in MYT1, the Unique OAVS Gene Identified so Far. Eur. J. Hum. Genet. 2017, 25, 1083–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luquetti, D.V.; Heike, C.L.; Zarante, I.; Timms, A.E.; Gustafson, J.; Pachajoa, H.; Porras-Hurtado, G.L.; Ayala-Ramirez, P.; Duenas-Roque, M.M.; Jimenez, N.; et al. MYT1 Role in the Microtia-Craniofacial Microsomia Spectrum. Mol. Genet. Genom. Med. 2020, 8, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy Venugopalan, S.; Farrow, E.; Sanchez–Lara, P.A.; Yen, S.; Lypka, M.; Jiang, S.; Allareddy, V. A Novel Nonsense Substitution Identified in the AMIGO2 Gene in an Occulo-Auriculo-Vertebral Spectrum Patient. Orthod. Craniofacial Res. 2019, 22, 163–167. [Google Scholar] [CrossRef]
- Tingaud-Sequeira, A.; Trimouille, A.; Marlin, S.; Lopez, E.; Berenguer, M.; Gherbi, S.; Arveiler, B.; Lacombe, D.; Rooryck, C. Functional and Genetic Analyses of ZYG11B Provide Evidences for Its Involvement in OAVS. Mol. Genet. Genom. Med. 2020, 8, e1375. [Google Scholar] [CrossRef]
- Trimouille, A.; Tingaud-Sequeira, A.; Lacombe, D.; Duelund Hjortshøj, T.; Kreiborg, S.; Buciek Hove, H.; Rooryck, C. Description of a Family with X-Linked Oculo-Auriculo-Vertebral Spectrum Associated with Polyalanine Tract Expansion in ZIC3. Clin. Genet. 2020, 98, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ping, L.; Luan, X.; Chen, Y.; Fan, X.; Li, L.; Liu, Y.; Wang, P.; Zhang, S.; Zhang, B.; et al. A Mutation in VWA1, Encoding von Willebrand Factor A Domain-Containing Protein 1, Is Associated With Hemifacial Microsomia. Front. Cell Dev. Biol. 2020, 8, 571004. [Google Scholar] [CrossRef]
- Timberlake, A.T.; Griffin, C.; Heike, C.L.; Hing, A.V.; Cunningham, M.L.; Chitayat, D.; Davis, M.R.; Doust, S.J.; Drake, A.F.; Duenas-Roque, M.M.; et al. Haploinsufficiency of SF3B2 Causes Craniofacial Microsomia. Nat. Commun. 2021, 12, 4680. [Google Scholar] [CrossRef]
- Tingaud-Sequeira, A.; Trimouille, A.; Salaria, M.; Stapleton, R.; Claverol, S.; Plaisant, C.; Bonneu, M.; Lopez, E.; Arveiler, B.; Lacombe, D.; et al. A Recurrent Missense Variant in EYA3 Gene Is Associated with Oculo-Auriculo-Vertebral Spectrum. Hum. Genet. 2021, 140, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Tingaud-Sequeira, A.; Trimouille, A.; Sagardoy, T.; Lacombe, D.; Rooryck, C. Oculo-Auriculo-Vertebral Spectrum: New Genes and Literature Review on a Complex Disease. J. Med. Genet. 2022, 59, 417–427. [Google Scholar] [CrossRef]
- Velázquez-Aragón, J.A.; Alcántara-Ortigoza, M.A.; Estandia-Ortega, B.; Reyna-Fabián, M.E.; Méndez-Adame, C.D.; González-Del Angel, A. Gene Interactions Provide Evidence for Signaling Pathways Involved in Cleft Lip/Palate in Humans. J. Dent. Res. 2016, 95. [Google Scholar] [CrossRef]
- Moore, J.H.; Williams, S.M. Epistasis and Its Implications for Personal Genetics. Am. J. Hum. Genet. 2009, 85, 309–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, A.R.; Hsiao, C.L.; Chang, S.W.; Wang, H.M.; Fann, C.S.J. On the Use of Multifactor Dimensionality Reduction (MDR) and Classification and Regression Tree (CART) to Identify Haplotype-Haplotype Interactions in Genetic Studies. Genomics 2011, 97, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.H.; Gilbert, J.C.; Tsai, C.-T.; Chiang, F.-T.; Holden, T.; Barney, N.; White, B.C. A Flexible Computational Framework for Detecting, Characterizing, and Interpreting Statistical Patterns of Epistasis in Genetic Studies of Human Disease Susceptibility. J. Theor. Biol. 2006, 241, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Kosaki, R.; Fujimaru, R.; Samejima, H.; Yamada, H.; Izumi, K.; Iijima, K.; Kosaki, K. Wide Phenotypic Variations within a Family WithSALL1 Mutations: Isolated External Ear Abnormalities to Goldenhar Syndrome. Am. J. Med. Genet. Part A 2007, 143, 1087–1090. [Google Scholar] [CrossRef]
- Vitelli, F.; Viola, A.; Morishima, M.; Pramparo, T.; Baldini, A.; Lindsay, E. TBX1 Is Required for Inner Ear Morphogenesis. Hum. Mol. Genet. 2003, 12, 2041–2048. [Google Scholar] [CrossRef] [Green Version]
- Dixon, J.; Jones, N.C.; Sandell, L.L.; Jayasinghe, S.M.; Crane, J.; Rey, J.P.; Dixon, M.J.; Trainor, P.A. Tcof1/Treacle Is Required for Neural Crest Cell Formation and Proliferation Deficiencies That Cause Craniofacial Abnormalities. Proc. Natl. Acad. Sci. USA 2006, 103, 13403–13408. [Google Scholar] [CrossRef] [Green Version]
- Cox, T.C.; Camci, E.D.; Vora, S.; Luquetti, D.V.; Turner, E.E. The Genetics of Auricular Development and Malformation: New Findings in Model Systems Driving Future Directions for Microtia Research. Eur. J. Med. Genet. 2014, 57, 394–401. [Google Scholar] [CrossRef]
- Estandia-Ortega, B.; Fernández-Hernández, L.; Alcántara-Ortigoza, M.A.; González-del Angel, A. Proposed Clinical Approach and Imaging Studies in Families with Oculo-Auriculo-Vertebral Spectrum to Assess Variable Expressivity. Am. J. Med. Genet. Part A 2022, 188, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Sue. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.; Yang, J.; Di, C.; Cui, W.; Kawakami, K.; Lai, R.; Ma, Y. Transcriptional Activation of the SALL1 by the Human SIX1 Homeodomain during Kidney Development. J. Biol. Chem. 2006, 281, 18918–18926. [Google Scholar] [CrossRef] [Green Version]
- Izzedine, H.; Tankere, F.; Launay-Vacher, V.; Deray, G. Ear and Kidney Syndromes: Molecular versus Clinical Approach. Kidney Int. 2004, 65, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Torban, E.; Goodyer, P. The Kidney and Ear: Emerging Parallel Functions. Annu. Rev. Med. 2009, 60, 339–353. [Google Scholar] [CrossRef]
- Kawakami, Y.; Uchiyama, Y.; Esteban, C.R.; Inenaga, T.; Koyano-Nakagawa, N.; Kawakami, H.; Marti, M.; Kmita, M.; Monaghan-Nichols, P.; Nishinakamura, R.; et al. Sall Genes Regulate Region-Specific Morphogenesis in the Mouse Limb by Modulating Hox Activities. Development 2009, 136, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Karantzali, E.; Lekakis, V.; Ioannou, M.; Hadjimichael, C.; Papamatheakis, J.; Kretsovali, A. Sall1 Regulates Embryonic Stem Cell Differentiation in Association with Nanog. J. Biol. Chem. 2011, 286, 1037–1045. [Google Scholar] [CrossRef] [Green Version]
- Grammatopoulos, G.A.; Bell, E.; Toole, L.; Lumsden, A.; Tucker, A.S. Homeotic Transformation of Branchial Arch Identity after Hoxa2 Overexpression. Development 2000, 127, 5355–5365. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.T.; Yelon, D.; Stainier, D.Y.R.; Kimmel, C.B. Two Endothelin 1 Effectors, Hand2 and Bapx1, Pattern Ventral Pharyngeal Cartilage and the Jaw Joint. Development 2003, 130, 1353–1365. [Google Scholar] [CrossRef]
- Fischer, S.; Lüdecke, H.J.; Wieczorek, D.; Böhringer, S.; Gillessen-Kaesbach, G.; Horsthemke, B. Histone Acetylation Dependent Allelic Expression Imbalance of BAPX1 in Patients with the Oculo-Auriculo-Vertebral Spectrum. Hum. Mol. Genet. 2006, 15, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liu, F.; Mar Aung, Z.; Zhang, Y.; Chai, G. Whole-Exome Sequencing Reveals Rare Germline Mutations in Patients With Hemifacial Microsomia. Front. Genet. 2021, 12, 580761. [Google Scholar] [CrossRef]
- Wang, P.; Fan, X.; Wang, Y.; Fan, Y.; Liu, Y.; Zhang, S.; Chen, X. Target Sequencing of 307 Deafness Genes Identifies Candidate Genes Implicated in Microtia. Oncotarget 2017, 8, 63324–63332. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Y.; Fan, X.; Liu, Y.; Fan, Y.; Liu, T.; Chen, C.; Zhang, S.; Chen, X. Identification of Sequence Variants Associated with Severe Microtia-Astresia by Targeted Sequencing. BMC Med. Genom. 2019, 12, 28. [Google Scholar] [CrossRef] [Green Version]
- Zamariolli, M.; Colovati, M.; Moysés-Oliveira, M.; Nunes, N.; Caires dos Santos, L.; Alvarez Perez, A.B.; Bragagnolo, S.; Melaragno, M.I. Rare Single-Nucleotide Variants in Oculo-Auriculo-Vertebral Spectrum (OAVS). Mol. Genet. Genom. Med. 2019, 7, e00959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Lu, X.; Zhang, Y.; Wang, C.; Cai, Z.; Li, Z.; Pan, B.; Jiang, H. Whole-Exome Sequencing Analysis in 10 Families of Sporadic Microtia with Thoracic Deformities. Mol. Genet. Genom. Med. 2021, 9, e1657. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Mitchell, L.E.; Jenkins, M.M. Genome-Wide Association Studies of Structural Birth Defects: A Review and Commentary. Birth Defects Res. 2019, 111, 1329–1342. [Google Scholar] [CrossRef] [PubMed]
- Kelberman, D.; Tyson, J.; Chandler, D.; McInerney, A.; Slee, J.; Albert, D.; Aymat, A.; Botma, M.; Calvert, M.; Goldblatt, J.; et al. Hemifacial Microsomia: Progress in Understanding the Genetic Basis of a Complex Malformation Syndrome. Hum. Genet. 2001, 109, 638–645. [Google Scholar] [CrossRef]
- Hunt, R.C.; Simhadri, V.L.; Iandoli, M.; Sauna, Z.E.; Kimchi-Sarfaty, C. Exposing Synonymous Mutations. Trends Genet. 2014, 30, 308–321. [Google Scholar] [CrossRef]
- Dixit, R.; Kumar, A.; Mohapatra, B. Implication of GATA4 Synonymous Variants in Congenital Heart Disease: A Comprehensive in-Silico Approach. Mutat. Res. 2019, 813, 31–38. [Google Scholar] [CrossRef]
- Gui, J.; Moore, J.H.; Williams, S.M.; Andrews, P.; Hillege, H.L.; van der Harst, P.; Navis, G.; Van Gilst, W.H.; Asselbergs, F.W.; Gilbert-Diamond, D. A Simple and Computationally Efficient Approach to Multifactor Dimensionality Reduction Analysis of Gene-Gene Interactions for Quantitative Traits. PLoS ONE 2013, 8, e66545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Ankala, A.; Wilcox, W.R.; Hegde, M.R. Solving the Molecular Diagnostic Testing Conundrum for Mendelian Disorders in the Era of Next-Generation Sequencing: Single-Gene, Gene Panel, or Exome/Genome Sequencing. Genet. Med. 2015, 17, 444–451. [Google Scholar] [CrossRef] [PubMed]
Gene | Murine Knockout Models for Orthologous Genes with Microtia [5] | PV Have Been Identified in Familial Cases (AD or AR Inheritance) [17,18,19,20,21,37] | PV at These Loci Are Causative of Monogenic Syndromes That Present Microtia [4,5] | Expression during Ear Embryogenesis [38,39,40] | Participation in Retinoic Acid Pathway [23] |
---|---|---|---|---|---|
EYA1 | + | NR | + | + | NR |
HOXA2 | + | + | + | + | + |
SALL1 | + | + | + | + | NR |
TBX1 | + | NR | + | + | NR |
TCOF1 | + | NR | + | + | NR |
ACMG/AMP Classification: [Criteria] * | Cases in Our Study | Reference Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases (n=) | cDNA | Protein | Reference SNP | HoRA | Hetero | HoMA | AF | HoRA | Hetero | HoMA | AF | p-Value | |
TCOF1 NM_000356.3 | |||||||||||||
LB: [ BS1, BS2, BP1, BP4, BP6] | 1 | c.503C>T | p.(Thr168Met) | rs181203524 | 48 | 1 | 0 | 0.01 | 63 | 0 | 0 | 0 | 0.99 |
B: [BA1, BP1, BP4] | 4 | c.1762G>C | p.(Ala588Pro) | rs2071240 | 45 | 4 | 0 | 0.96 | 65 | 1 | 1 | 0.98 | 0.47 |
B: [BA1, BP1, BP4, BP6] | 6 | c.2429T>C | p.(Val810Ala) | rs7713638 | 43 | 6 | 0 | 0.94 | 57 | 9 | 1 | 0.92 | 0.55 |
B: [BA1, BP1, BP4, BP6] | 4 | c.3296C>G | p.(Pro1099Arg) | rs1136103 | 45 | 3 | 1 | 0.95 | 51 | 16 | 0 | 0.88 | 0.07 |
B: [BA1, BP1, BP4, BP6] | 21 | c.3938C>T | p.(Ala1313Val) | rs15251 | 28 | 20 | 1 | 0.78 | 38 | 22 | 7 | 0.73 | 0.45 |
B: [BP6, BS1, BS2, BP1, BP4] | 1 | c.4061G>C | p.(Gly1354Ala) | rs45491898 | 48 | 1 | 0 | 0.99 | 63 | 0 | 0 | 1 | 0.25 |
SALL1 NM_002968.2 | |||||||||||||
B: [BS1, BS2, PP3] | 1 | c.400_411dup | p.(Lys134_Ser137dup) | rs750817837 | 48 | 1 | 0 | 0.01 | 64 | 0 | 0 | 0 | 0.99 |
B: [BA1, BP1, BP4, BP6] | 4 | c.475A>G | p.(Ser159Gly) | rs13336129 | 45 | 4 | 0 | 0.96 | 56 | 9 | 2 | 0.9 | 0.13 |
B: [BS1, BS2, PP3] | 5 | c.475_477del | p.(Ser159del) | rs113614842 | 44 | 5 | 0 | 0.95 | 65 | 0 | 0 | 1 | 0.008 |
LB: [BS1, BS2, BP1, BP4] | 1 | c.2804C>T | p.(Thr935Met) | rs755926434 | 48 | 1 | 0 | 0.01 | 63 | 0 | 0 | 0 | 0.99 |
B: [BS1, BS2, BP1, BP6, PP3] | 1 | c.3794G>A | p.Gly1265Glu) | rs149302006 | 48 | 1 | 0 | 0.01 | 63 | 1 | 0 | 0.007 | 0.84 |
B: [BA1] | 49 | c.3823G>A | p.(Val1275Ile) | rs4614723 | 0 | 0 | 49 | 0 | 0 | 0 | 67 | 0 | NR |
B: [BS1, BS2, BP1, BP4, BP6] | 1 | c.3872A>G | p.(Asn1291Ser) | rs74499562 | 48 | 1 | 0 | 0.01 | 62 | 2 | 0 | 0.015 | 0.72 |
TBX1 NM_080647.1 | |||||||||||||
LB: [BP1, BP4, PP3] | 1 | c.68C>T | p.(Ala23Val) | rs1415687525 | 48 | 1 | 0 | 0.01 | 64 | 0 | 0 | 0 | 0.99 |
B: [BA1, BP1, BP4, BP6] | 31 | c.1189A>C | p.(Asn397His) | rs72646967 | 18 | 22 | 9 | 0.59 | 29 | 28 | 10 | 0.64 | 0.45 |
LB: [PM2, BS2, BP1] | 1 | c.1397C>T | p.(Ala466Val) | rs753613632 | 48 | 1 | 0 | 0.01 | 64 | 0 | 0 | 0 | 0.99 |
EYA1 NM_000503.5 | |||||||||||||
LB: [BS2, BP6, PP2] | 1 | c.107C>T | p.(Thr36Ile) | rs727503048 | 48 | 1 | 0 | 0.01 | 64 | 0 | 0 | 0 | 0.99 |
Cases in Our Study | Reference Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases (n=) | cDNA | Protein | Reference SNP | HoRA | Hetero | HoMA | AF | HoRA | Hetero | HoMA | AF | p-Value |
TCOF1 NM_001135243.1 | ||||||||||||
1 | c.630A>G | p.(Thr210=) | rs765654624 | 48 | 1 | 0 | 0.99 | NR | NR | NR | NR | NR |
5 | c.1578C>T | p.(Pro526=) | rs2071238 | 44 | 5 | 0 | 0.95 | 54 | 9 | 1 | 0.91 | 0.32 |
1 | c.1761G>T | p.(Gly587=) | rs7701163 | 48 | 1 | 0 | 0.99 | 56 | 8 | 0 | 0.94 | 0.04 |
5 | c.1842A>G | p.(Ser614=) | rs2071239 | 44 | 5 | 0 | 0.95 | 54 | 9 | 1 | 0.91 | 0.32 |
SALL1 NM_002968.2 | ||||||||||||
2 | c.390G>A | p.(Pro130=) | rs75156807 | 47 | 2 | 0 | 0.98 | 62 | 2 | 0 | 0.98 | 0.78 |
1 | c.570A>G | p.(Val190=) | rs1317946303 | 48 | 1 | 0 | 0.99 | NR | NR | NR | NR | NR |
1 | c.1674G>A | p.(Pro558=) | rs747355231 | 48 | 1 | 0 | 0.99 | NR | NR | NR | NR | NR |
3 | c.2178G>A | p.(Arg726=) | rs144019351 | 46 | 3 | 0 | 0.97 | 62 | 2 | 0 | 0.98 | 0.44 |
2 | c.2343G>A | p.(Leu781=) | rs60270998 | 47 | 2 | 0 | 0.98 | 64 | 0 | 0 | 1 | 0.1 |
41 | c.2574C>T | p.(Leu858=) | rs1965024 | 8 | 18 | 23 | 0.35 | 7 | 33 | 24 | 0.37 | 0.75 |
7 | c.3456C>T | p.(His1152=) | rs11645288 | 42 | 5 | 2 | 0.91 | 50 | 12 | 2 | 0.88 | 0.47 |
TBX1 NM_080647.1 | ||||||||||||
1 | c.75G>T | p.(Gly25=) | rs72646952 | 48 | 1 | 0 | 0.99 | 62 | 2 | 0 | 0.98 | 0.72 |
1 | c.135G>A | p.(Pro45=) | NR | 48 | 1 | 0 | 0.99 | NR | NR | NR | NR | NR |
2 | c.297G>A | p.(Ala99=) | rs72646953 | 47 | 2 | 0 | 0.98 | 62 | 2 | 0 | 0.98 | 0.78 |
31 | c.420T>C | p.(Phe140=) | rs41298814 | 18 | 22 | 9 | 0.59 | 29 | 27 | 8 | 0.66 | 0.27 |
26 | c.664C>T | p.(Leu222=) | rs2301558 | 23 | 24 | 2 | 0.71 | 37 | 22 | 5 | 0.75 | 0.53 |
31 | c.933A>G | p.(Ala311=) | rs41298840 | 18 | 22 | 9 | 0.59 | 29 | 27 | 8 | 0.66 | 0.27 |
4 | c.1059A>G | p.(Ala353=) | rs13054377 | 45 | 4 | 0 | 0.96 | 59 | 4 | 1 | 0.95 | 0.83 |
EYA1 NM_000503.5 | ||||||||||||
1 | c.585A>T | p.(Ile195=) | rs780672889 | 48 | 1 | 0 | 0.99 | NR | NR | NR | NR | NR |
22 | c.813A>G | p.(Thr271=) | rs1445398 | 27 | 19 | 3 | 0.74 | 34 | 28 | 2 | 0.75 | 0.92 |
33 | c.1278C>T | p.(Gly426=) | rs4738118 | 16 | 24 | 9 | 0.57 | 31 | 26 | 7 | 0.69 | 0.078 |
40 | c.1755T>C | p.(His585=) | rs10103397 | 9 | 28 | 12 | 0.47 | 15 | 35 | 14 | 0.51 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estandia-Ortega, B.; Reyna-Fabián, M.E.; Velázquez-Aragón, J.A.; González-del Angel, A.; Fernández-Hernández, L.; Alcántara-Ortigoza, M.A. The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life 2022, 12, 1723. https://doi.org/10.3390/life12111723
Estandia-Ortega B, Reyna-Fabián ME, Velázquez-Aragón JA, González-del Angel A, Fernández-Hernández L, Alcántara-Ortigoza MA. The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life. 2022; 12(11):1723. https://doi.org/10.3390/life12111723
Chicago/Turabian StyleEstandia-Ortega, Bernardette, Miriam Erandi Reyna-Fabián, José Antonio Velázquez-Aragón, Ariadna González-del Angel, Liliana Fernández-Hernández, and Miguel Angel Alcántara-Ortigoza. 2022. "The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes" Life 12, no. 11: 1723. https://doi.org/10.3390/life12111723
APA StyleEstandia-Ortega, B., Reyna-Fabián, M. E., Velázquez-Aragón, J. A., González-del Angel, A., Fernández-Hernández, L., & Alcántara-Ortigoza, M. A. (2022). The Enigmatic Etiology of Oculo-Auriculo-Vertebral Spectrum (OAVS): An Exploratory Gene Variant Interaction Approach in Candidate Genes. Life, 12(11), 1723. https://doi.org/10.3390/life12111723